CSC411: Final Review

Shengyang Sun $^{\rm 2}$

April 2, 2019

²Slides adapted from James Lucas & David Madras

Agenda

- 1. A brief overview
- 2. Some sample questions

Basic ML Terminology

The final exam will be on the entire course; however, it will be more heavily weighted towards post-midterm material. For pre-midterm material, refer to the midterm review slides on the course website.

- Feed-forward Neural Network (NN)
- Activation Function
- Backpropagation
- Fully-connected vs. convolutional NN
- Dimensionality Reduction
- Principal Component Analysis (PCA)

- Autoencoder
- Generative vs.
 Discriminative Classifiers
- Naive Bayes
- Bayesian parameter estimation
- Prior/posterior distributions
- Gaussian Discriminant Analysis (GDA)

Basic ML Terminology

The final exam will be on the entire course; however, it will be more heavily weighted towards post-midterm material. For pre-midterm material, refer to the midterm review slides on the course website.

- K-Means (hard and soft)
- Latent variable/factor models
- Clustering
- Gaussian Mixture Model (GMM)
- Expectation-Maximization (EM) algorithm
- Jensen's Inequality

- Matrix factorization
- Matrix completion
- Gaussian Processes
- Kernel trick
- Reinforcement learning
- States/actions/rewards
- Exploration/exploitation

Question 1

True or False:

- 1. PCA always uses an invertible linear map
- 2. K-Means will always find the global minimum
- 3. Naive Bayes assumes that all features are independent

Question 1

True or False:

- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

Question 1

True or False:

- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

Question 2

1. How can a generative model $p(\mathbf{x}|y)$ be used as a classifier?

Question 1

True or False:

- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

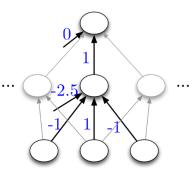
Question 2

- 1. How can a generative model $p(\mathbf{x}|y)$ be used as a classifier?
- 2. Give one advantage of Bayesian linear regression over ML linear regression. Give a disadvantage.

- 1. Neural Networks
- 2. PCA
- 3. Probabalistic Models
- 4. Latent Variable Models
- 5. Bayesian Learning
- 6. Reinforcement Learning

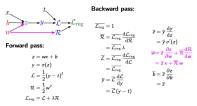
Neural Networks

- 1. Forwarding given weights and biases
- 2. Why nonlinear activations are necessary?
- 3. Expressive power of neural networks
- 4. Backpropagation & gradient descent



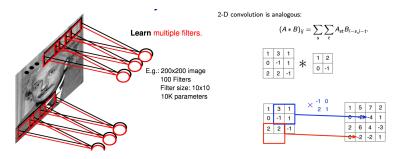
Backpropagation

Example: univariate logistic least squares regression



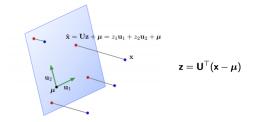
Convolutional Neural Networks

- 1. CNN architecture (kernels, channels, connections)
- 2. Local connection, weight sharing, pooling
- 3. How to perform convolutions ?
- 4. What specific functionality for some kernel ?



Principal Component Analysis (PCA)

- 1. Why dimensionality reduction ?
- 2. What does PCA reconstruction minimize?
- 3. How to perform PCA ?
- 4. What is the optimal PCA subspace given empirical Σ ?
- 5. Linear & non-Linear Autoencoders



- \bullet In machine learning, \tilde{x} is also called the reconstruction of x.
- z is its representation, or code.

Probabilistic Models

1. i.i.d.

- 2. Maximium Likelihood Estimation (MLE)
- 3. Generative $p(\mathbf{x}|y)$ vs. discriminative $p(y|\mathbf{x})$ classification
- Assume they're drawn from a Gaussian distribution with known standard deviation $\sigma =$ 5, and we want to find the mean μ .
- Log-likelihood function:

$$\begin{split} \ell(\mu) &= \log \prod_{i=1}^{N} \left[\frac{1}{\sqrt{2\pi \cdot \sigma}} \exp\left(-\frac{(\mathbf{x}^{(i)} - \mu)^2}{2\sigma^2} \right) \right] \\ &= \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi \cdot \sigma}} \exp\left(-\frac{(\mathbf{x}^{(i)} - \mu)^2}{2\sigma^2} \right) \right] \qquad \qquad \mathbf{0} = \frac{\partial \ell}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \mathbf{x}^{(i)} - \mu \\ &= \sum_{i=1}^{N} \underbrace{-\frac{1}{2} \log 2\pi - \log \sigma}_{\text{constant}} -\frac{(\mathbf{x}^{(i)} - \mu)^2}{2\sigma^2} \qquad \qquad \mathbf{0} = \frac{\partial \ell}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\sum_{i=1}^{N} -\frac{1}{2} \log 2\pi - \log \sigma - \frac{1}{2\sigma^2} (\mathbf{x}^{(i)} - \mu)^2 \right] \end{split}$$

1. prior, likelihood, posterior. Bayes' rule

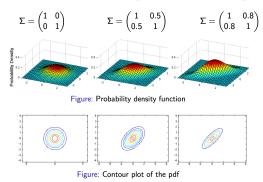
$$p(heta | \mathcal{D}) = rac{p(\mathcal{D} | heta) p(heta)}{p(\mathcal{D})} \propto p(\mathcal{D} | heta) p(heta)$$

- 2. Bayesian parameter estimation
- 3. Maximium A Posteriori (MAP)

$$\hat{ heta}_{\mathsf{MAP}} = rg\max_{ heta} \log p(heta | \mathcal{D}) = rg\max_{ heta} \log p(\mathcal{D} | heta) + \log p(heta)$$

Probabilistic Models (continued)

1. Gaussian Discriminant Analysis (mean, covariance)

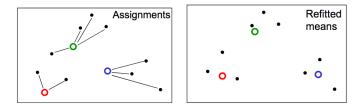


2. Naive bayes: Assumes features independent given the class.

$$p(\mathbf{x}|t=k) = \prod_{i=1}^{d} p(x_i|t=k)$$

K-Means

- 1. Initialization, assigment, refitting
- 2. Convergence
- 3. Soft vs. hard K-means



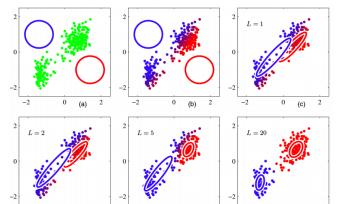
Gaussian Mixture Model (GMM)

1. latent (hidden) variables z,

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(z=k) p(\mathbf{x}|z=k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

2. E-Step: Compute the posterior over z given our current model

3. M-Step: Given z assignment, optimizes model parameters.

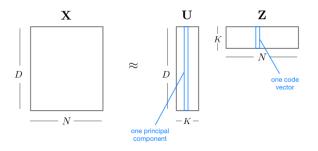


- 1. Why use latent variables ?
- 2. The EM lower bound

$$\sum_{n=1}^{N} \log p(\mathbf{x}^n; \theta) \geq \sum_{n=1}^{n} \mathbb{E}_{q_n(z^n)} \left[\log \frac{p(z^n, \mathbf{x}^n; \theta)}{q_n(z^n)} \right]$$

- 3. When is lower bound tight ?
- 4. E-Step and M-Step for optimizing the objective.

Matrix Factorization



- 1. Matrix Factorization: Rank-k approximation
- 2. Matrix completion . Alternating Least Squares (EM)
- 3. How K-Means can be seen as matrix factorization ?
- 4. Sparse Coding

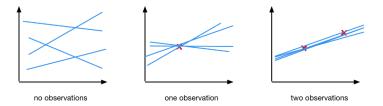
Bayesian Linear Regression

- 1. How can uncertainty in the predictions help us ?
- 2. Prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$; Likelihood: $t | \mathbf{x}, \mathbf{w} \sim \mathcal{N}(\mathbf{w}^{\top} \psi(\mathbf{x}), \sigma^2)$
- 3. Posterior distribution $\mathbf{w}|\mathcal{D} \sim \mathcal{N}(\mu, \Sigma)$

$$\boldsymbol{\mu} = \sigma^{-2} \boldsymbol{\Sigma} \boldsymbol{\Psi}^\top \mathbf{t}$$

$$\boldsymbol{\Sigma}^{-1} = \boldsymbol{\sigma}^{-2} \boldsymbol{\Psi}^\top \boldsymbol{\Psi} + \mathbf{S}^{-1}$$

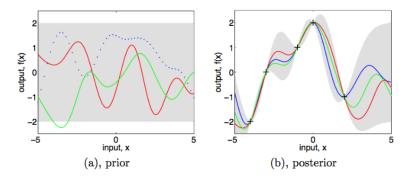
4. Bayesian optimization, acquisition function



Gaussian Processes

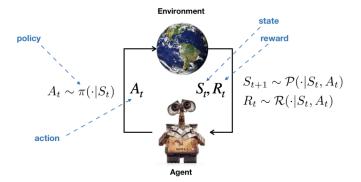
- 1. Distribution over functions!
- 2. What requirement does the kernel $k(\cdot, \cdot)$ need to fullfill ?
- 3. How the kernel trick builds up the connection between kernel function and feature space ?

$$k(\mathbf{x},\mathbf{x}')=\phi(\mathbf{x})^{ op}\phi(\mathbf{x}')$$



Reinforcement Learning

- 1. Choosing actions to maximize long-term reward
- 2. States, actions, rewards, policies, transition probability
- 3. Value function, Bellman Equation, value iteration
- 4. Exploration vs. Exploitation



Sample Question 1

Consider a 2-layer neural network, f, with 10-100-100 units in each layer respectively. We denote the weights of the network as $W^{(1)}$ and $W^{(2)}$.

a) What are the dimensions of $W^{(1)}$ and $W^{(2)}$? How many trainable parameters are in the neural network (ignoring biases)?

We will now replace the weights of f with a simple *Hypernetwork*. The Hypernetwork, h, will be a two layer network with 10 input units, 10 hidden units, and K output units where K is equal to the total number of trainable parameters in f. In each forward pass, the output of h will be reshaped and used as the weights of f.

- b) How many parameters does *h* have (ignoring biases)?
- c) How might we change the output layer to reduce the number of parameters? State how many trainable parameters *h* has with your suggested method. (HINT: use matrix factorization)

Q1 Solution

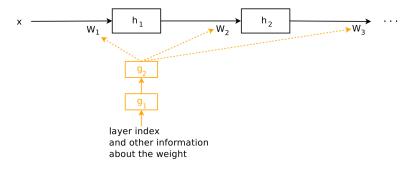
- a) $W^{(1)} \in \mathbb{R}^{10 \times 100}$, $W^{(1)} \in \mathbb{R}^{100 \times 100}$. Total parameters: $10 \times 100 + 100 \times 100 = 11000$.
- b) Total parameters: $10 \times 10 + 10 \times 11000 = 110100$.
- c) Output low rank approximations to each weight matrix. Instead of outputting $W^{(l)}$, output $U^{(l)}$ and $V^{(l)}$ such that $W^{(l)} \approx U^{(l)}V^{(l)}$. For example:

$$U^{(1)} \in \mathbb{R}^{10 \times 2} \quad V^{(1)} \in \mathbb{R}^{2 \times 100} \quad U^{(2)} \in \mathbb{R}^{100 \times 2} \quad V^{(2)} \in \mathbb{R}^{2 \times 100}$$

Now the total number of parameters is: $10 \times 10 + 10 \times (2 \times 10 + 2 \times 100 + 100 \times 2 + 2 \times 100) = 6300$

Quick interlude: Hypernetworks

This isn't quite how Hypernetworks typically work...



See Ha et al. 2016 for details

- a) State what conditions a function $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ must satisfy to be a valid kernel function.
- b) Prove that a symmetric matrix $K \in \mathbb{R}^{d \times d}$ is positive semidefinite if and only if for all vectors $\mathbf{c} \in \mathbb{R}^d$ we have $\mathbf{c}^T K \mathbf{c} \ge 0$.

Q2 Solution

- a) Its Gram matrix, given by $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ must be positive semidefinite for any choices of $\mathbf{x}_1, \ldots, \mathbf{x}_d$.
- b) First ⇒: If K is PSD then there exists an orthonormal basis of eigenvectors v₁,..., v_d with non-negative eigenvalues λ₁,..., λ_d. We can write any vector c in this basis:
 c = ∑_{i=1}^d a_iv_i. Then,

$$\mathbf{c}^{\mathsf{T}} \mathsf{K} \mathbf{c} = \left(\sum_{i=1}^{d} a_i \mathbf{v}_i\right)^{\mathsf{T}} \mathsf{K}\left(\sum_{i=1}^{d} a_i \mathbf{v}_i\right) = \sum_{i=1}^{d} a_i a_j \mathbf{v}_i^{\mathsf{T}} \mathsf{K} \mathbf{v}_j = \sum_{i=1}^{d} a_i a_j \mathbf{v}_i^{\mathsf{T}} \lambda_j \mathbf{v}_j$$

As each of the **v**'s are orthonormal, this sum is equal to $\sum_{i=1}^{d} a_i^2 \lambda_i \ge 0.$ For \Leftarrow : Pick **c** = **v**, some eigenvector. Then $\mathbf{v}K\mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} \ge 0 \Rightarrow \lambda \ge 0.$