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Gaussian Process

Is a Gaussian distribution over functions.

f is a Gaussian process if for every finite set of points t1, ..., tn:
(f (t1), ..., f (tn)) is a multivariate Gaussian random variable.

We need mean and variance at every point and covariance
between every pair of point to identify a Gaussian process.

If we assume mean is zero we only need to find variances and
covariances to determine the process.

Bayseian Optimization 2019 2 / 29



Gaussian Process cont’d

For a set of points like t1, ..., tn the covariance matrix can be
constructed by finding covariances of every pair of points and
variances of individual points.

For covariance we use a function called the kernel function,
which takes two points t1, t2 and its output is cov [f (t1), f (t2)].
This function computes variance at each point as well.

Image taken from wikipedia.
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https://en.wikipedia.org/wiki/Gaussian_process


Gaussian Distribution Recap

For identifying a multivariate Gaussian, we only need to know its
mean and covariance matrix.

For a multivariate Gaussian distribution, both the marginal and
conditional distributions are Gaussian and the parameters(mean
and covariance) can be computed analytically.
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Marginal of a Gaussian

If x = (x1, x2) is guassian with parameters:

µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 = ΣT
12 Σ22

)
Then the marginals are:

p(x1) = N (x1|µ1,Σ11), p(x2) = N (x2|µ2,Σ22)
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Conditional of a Gaussian

The conditional probability(same setting as the previous slide):

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 + Σ12Σ−122 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ−122 Σ21

The point is all parameters can be computed analytically.
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Search for Good Hyperparameters

We have an objective function, we care about generalization
performance. Use cross validation to measure parameter quality.

We can evaluate the objective pointwise, but do not have an
easy functional form or gradients.

How do people currently search?

Grid search
Random search

Learning the parameters and computing the validation loss is
computationally costly.
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Bayesian Optimization

Build a probabilistic model for the objective using Gaussian
process.

Compute the posterior predictive distribution. Since our model is
a Gaussian process this can be computed analytically.

Optimize a cheap proxy function instead. Make the proxy
function exploit uncertainty to balance exploration against
exploitation.(More on this later)
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Bayesian Optimization

Fix a Kernel function.

Evaluate the objective at a random point first.

Now using the kernel function and functions value at random
point we can compute the posterior predictive mean and
variance for every point. Since marginal distribution of Gaussian
is Gaussian, we have a distribution for objective function values
at every point.

Now using these distributions and an acquisition function(proxy
function) to decide which point to evaluate next. Repeat!

Keep track of the minimum.
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How to decide for the next point
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How to decide for the next point
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How to decide for the next point
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How to decide for the next point
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How to decide for the next point
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How to decide for the next point
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How to decide for the next point

Images taken from Ryan P. Adams’s Slides.
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https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf


Acquisition Function

After computing posterior predictive distribution over points, we
need a criteria for choosing the next point to evaluate.

Acquisition function is an easy to evaluate function based on the
distribution over points(which can be computed based on mean
and covariances since distributions are Gaussian) which helps us
choose the next point.

We should use a function that balances exploration and
exploitation

Exploration: Seek places with high variance.
Exploitation: Seek places with low mean.
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Expected Improvement

Idea: For a given point what is the expected value of
improvement, while neglecting the cases when the new value is
worse than previous minimum.

If we did worse we will keep the previous min so there is not
much to lose, so concentrate on gain.

EI (x) = E[max(0, f min − fn+1(x)− ξ)|Dn]

Next point should maximize expected improvement.

ξ Controls exploration and exploitation balance.

EI can be computed analytically:

EI (x) =

{
(f min − µ(x)− ξ)Φ(Z ) + σ(x)φ(Z ) σ(x) > 0

0 σ(x) = 0

Z =
f min − µ(x)− ξ

σ(x)
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Probability of Improvement

Idea: For a given point, what is the probability of getting a
better result.

PI (x) = P(fn+1(x) ≤ f min − ξ|Dn)

Next point should maximize probability of improvement.

ξ Controls exploration and exploitation balance.

PI can be computed analytically:

PI (x) = Φ(
f min − µ(x)− ξ

σ(x)
)
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Lower(Upper) Confidence Bound

Idea: Compute a confidence interval(For example %95), and
choose the point with lowest bound.

LCB(x) = µ(x)− κσ(x)

Next point should minimize(maximize) Lower(Upper)
Confidence.

κ Controls exploration and exploitation balance.
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Illustrating Bayesian Optimization
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Illustrating Bayesian Optimization
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Illustrating Bayesian Optimization

Images taken from Ryan P. Adams’s Slides.
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https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf


Downsides

Experiments are run sequentially. We want to take advantage of
cluster computing.

Limited scalability in dimensions and evaluations.

Bayesian optimization has its own hyperparameters.

Covariance function selection.
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Kernels

Image taken from Ryan P. Adams’s Slides.
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