Bayesian Inference and MCMC

Aryan Arbabi Partly based on MCMC slides from CSC412

Fall 2018

Bayesian Inference - Motivation

- ► Consider we have a data set D = {x₁,...,x_n}. E.g each x_i can be the outcome of a coin flip trial.
- ► We are interested in learning the dynamics of the world to explain how this data was generated (p(D|θ))
- \blacktriangleright In our example θ is the probability of observing head in a coin trial
- Learning θ will enable us to also predict future outcomes (P(x'|θ))

Bayesian Inference - Motivation

- The primary question is how to infer θ
- Observing the sample set D gives us some information about θ, however there is still some uncertainty about it (specially when we have very few samples)
- Furthermore we might have some prior knowledge about θ, which we are interested to take into account
- ► In Bayesian approach we embrace this uncertainty by calculating the posterior p(θ|D)

Bayes rule

Using Bayes rule we know:

$$P(heta|D) = rac{P(D| heta)P(heta)}{P(D)} \propto P(D| heta)P(heta)$$

- Where P(D|θ) is the data likelihood, P(θ) is the prior, and P(D) is called the evidence
- In Maximum Likelihood estimation (MLE) we find a θ that maximizes the likelihood:

$$rg\max_{ heta} \{ P(D| heta) \}$$

In Maximum a posteriori (MAP) estimation, the prior is also incorporated:

 $\arg\max_{\theta} \{P(D|\theta)P(\theta)\}$

Bayesian Inference

- \blacktriangleright Alternatively, instead of learning a fixed point-value for $\theta,$ we can incorporate the uncertainty around θ
- We can predict the probability of observing a new sample x' by marginalizing over θ:

$$P(x'|D) = \int_{ heta} P(heta|D) P(x'| heta) d heta$$

- In cases such as when the model is simple and conjugate priors are being used the posterior and the above integral can be solved analytically
- However in many practical cases it is difficult to solve the integral in closed form

Monte Carlo methods

 Although it might be difficult to solve the previous integral, however if we can take samples from the posterior distribution, it can be approximated as

$$\int_{ heta} P(heta|D) P(x'| heta) d heta \simeq rac{1}{n} \sum_{1 \leq i \leq n} P(x'| heta^{(i)})$$

• Where $\theta^{(i)}$ s are samples from the posterior:

$$\theta^{(i)} \sim P(\theta|D)$$

This estimation is called Monte Carlo method

Monte Carlo methods

 In its general form, Monte Carlo estimates the following expectation

$$\int_{x} P(x)f(x)dx \approx \frac{1}{5} \sum_{1 \leq s \leq 5} f(x^{(s)})$$

$$x^{(s)} \sim P(x)$$

- It is useful wherever we need to compute difficult integrals:
 - Posterior marginals
 - Finding moments (expectations)
 - Predictive distributions
 - Model comparison

Bias and variance of Monte Carlo

Monte Carlo is an unbiased estimation:

$$\mathbb{E}\left[\frac{1}{S}\sum_{1\leq s\leq S}f(x^{(s)})\right] = \frac{1}{S}\sum_{1\leq s\leq S}\mathbb{E}[f(x^{(s)})] = \mathbb{E}[f(x)]$$

• The variance reduces proportional to S:

$$Var(\frac{1}{S}\sum_{1 \le s \le S} f(x^{(s)})) = \frac{1}{S^2}\sum_{1 \le s \le S} Var(f(x^{(s)}))) = \frac{1}{S}Var(f(x))$$

How to sample from P(x)?

 One way is to first sample from a Uniform[0,1] generator:

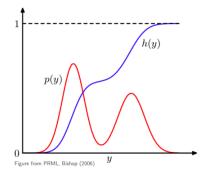
 $u \sim Uniform[0,1]$

Transform the sample as:

$$h(x) = \int_{\inf}^{x} p(x') dx'$$

 $x(u)=h^{-1}(u)$

 This assumes we can easily compute h⁻¹(u), which is not always true

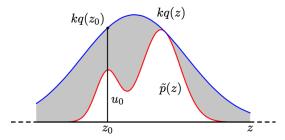


Rejection Sampling

Another approach is to define a simple distribution q(z) and find a k where for all z:

$$kq(z) \ge p(z)$$

- Draw $z_0 \sim q(z)$
- Draw $u \sim Uniform[0, kq(z_0)]$
- Discard if $u > p(z_0)$



Rejection sampling in high dimensions

- Curse of dimensionality makes rejection sampling inefficient
- It is difficult to find a good q(x) in high dimensions and the discard rate can get very high
- ► For example consider P(x) = N(0, I), where x is D dimensional
- ▶ Then for $q(x) = N(0, \sigma I)$ (with $\sigma \ge 1$), the acceptance rate will be σ^{-D}

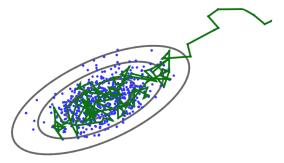
Markov Chains

- A Markov chain is a stochastic model for a sequence of random variables that satisfies the Markov property
- A chain has Markov property if each state is only dependent on the previous state
- It is also called memoryless property
- E.g for the sequence $x^{(1)}, ..., x^{(n)}$ we would have:

$$P(x^{(i)}|x^{(1)},...,x^{(i-1)}) = P(x^{(i)}|x^{(i-1)})$$

Markov Chain Monte Carlo (MCMC)

- An alternative to rejection sampling is to generate dependent samples
- Similarly, we define and sample from a proposal distribution
- But now we maintain the record of current state, and proposal distribution depends on it
- In this setting the samples form a Markov Chain



Markov Chain Monte Carlo (MCMC)

- Several variations of MCMC have been introduced
- Some popular variations are: Metropolis-Hasting, Slice sampling and Gibbs sampling
- They differ on aspects like how the proposal distribution is defined
- Some motivations are reducing correlation between successive samples in the Markov chain, or increasing the acceptance rate

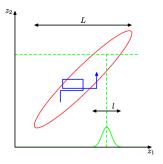
Gibbs Sampling

- A simple, general MCMC algorithm
- Initialize x to some value
- Select an ordering for the variables x₁,..., x_d (can be random or fixed)
- ▶ Pick each variable x_i according to the order and resample P(x_i|**x**_{-i})
- There is no rejection when taking a new sample

Gibbs Sampling

- ► For example consider we have three variables P(x₁, x₂, x₃)
- At each round t, we take samples from the following distributions:

$$\begin{aligned} x_1^{(t)} &\sim P(x_1 | x_2^{(t-1)}, x_3^{(t-1)}) \\ x_2^{(t)} &\sim P(x_2 | x_1^{(t)}, x_3^{(t-1)}) \\ x_3^{(t)} &\sim P(x_3 | x_1^{(t)}, x_2^{(t)}) \end{aligned}$$



Monte Carlo methods summary

- Useful when we need approximate methods to solve sums/integrals
- Monte Carlo does not explicitly depend on dimension, although simple methods work only in low dimensions
- Markov chain Monte Carlo (MCMC) can make local moves.
 By assuming less it is more applicable to higher dimensions
- It produces approximate, correlated samples
- Simple computations and easy to implement

Probabilistic programming languages

- In probablistic programming languages, such as Stan we can describe Bayesian models and perform inference
- Models can be described by defining the random variables, model parameters and their distributions
- Given a model description and a data set, Stan can then perform Bayesian inference using methods such as MCMC