
Bayesian Inference and MCMC

Aryan Arbabi
Partly based on MCMC slides from CSC412

Fall 2018

1 / 1

Bayesian Inference - Motivation

I Consider we have a data set D = {x1, ..., xn}. E.g each xi can
be the outcome of a coin flip trial.

I We are interested in learning the dynamics of the world to
explain how this data was generated (p(D|θ))

I In our example θ is the probability of observing head in a coin
trial

I Learning θ will enable us to also predict future outcomes
(P(x ′|θ))

2 / 1

Bayesian Inference - Motivation

I The primary question is how to infer θ

I Observing the sample set D gives us some information about
θ, however there is still some uncertainty about it (specially
when we have very few samples)

I Furthermore we might have some prior knowledge about θ,
which we are interested to take into account

I In Bayesian approach we embrace this uncertainty by
calculating the posterior p(θ|D)

3 / 1

Bayes rule

I Using Bayes rule we know:

P(θ|D) =
P(D|θ)P(θ)

P(D)
∝ P(D|θ)P(θ)

I Where P(D|θ) is the data likelihood, P(θ) is the prior, and
P(D) is called the evidence

I In Maximum Likelihood estimation (MLE) we find a θ that
maximizes the likelihood:

arg max
θ
{P(D|θ)}

I In Maximum a posteriori (MAP) estimation, the prior is also
incorporated:

arg max
θ
{P(D|θ)P(θ)}

4 / 1

Bayesian Inference

I Alternatively, instead of learning a fixed point-value for θ, we
can incorporate the uncertainty around θ

I We can predict the probability of observing a new sample x ′

by marginalizing over θ:

P(x ′|D) =

∫
θ
P(θ|D)P(x ′|θ)dθ

I In cases such as when the model is simple and conjugate
priors are being used the posterior and the above integral can
be solved analytically

I However in many practical cases it is difficult to solve the
integral in closed form

5 / 1

Monte Carlo methods

I Although it might be difficult to solve the previous integral,
however if we can take samples from the posterior
distribution, it can be approximated as∫

θ
P(θ|D)P(x ′|θ)dθ ' 1

n

∑
1≤i≤n

P(x ′|θ(i))

I Where θ(i)s are samples from the posterior:

θ(i) ∼ P(θ|D)

I This estimation is called Monte Carlo method

6 / 1

Monte Carlo methods

I In its general form, Monte Carlo estimates the following
expectation ∫

x
P(x)f (x)dx ≈ 1

S

∑
1≤s≤S

f (x (s))

x (s) ∼ P(x)

I It is useful wherever we need to compute difficult integrals:
I Posterior marginals
I Finding moments (expectations)
I Predictive distributions
I Model comparison

7 / 1

Bias and variance of Monte Carlo

I Monte Carlo is an unbiased estimation:

E[
1

S

∑
1≤s≤S

f (x (s))] =
1

S

∑
1≤s≤S

E[f (x (s))] = E[f (x)]

I The variance reduces proportional to S :

Var(
1

S

∑
1≤s≤S

f (x (s))) =
1

S2

∑
1≤s≤S

Var(f (x (s)))) =
1

S
Var(f (x))

8 / 1

How to sample from P(x)?

I One way is to first sample
from a Uniform[0,1]
generator:

u ∼ Uniform[0, 1]

I Transform the sample as:

h(x) =

∫ x

inf
p(x ′)dx ′

x(u) = h−1(u)

I This assumes we can easily
compute h−1(u), which is
not always true

9 / 1

Rejection Sampling
I Another approach is to define a simple distribution q(z) and

find a k where for all z :

kq(z) ≥ p(z)

I Draw z0 ∼ q(z)
I Draw u ∼ Uniform[0, kq(z0)]
I Discard if u > p(z0)

10 / 1

Rejection sampling in high dimensions

I Curse of dimensionality makes rejection sampling inefficient

I It is difficult to find a good q(x) in high dimensions and the
discard rate can get very high

I For example consider P(x) = N(0, I), where x is D
dimensional

I Then for q(x) = N(0, σI) (with σ ≥ 1), the acceptance rate
will be σ−D

11 / 1

Markov Chains

I A Markov chain is a stochastic model for a sequence of
random variables that satisfies the Markov property

I A chain has Markov property if each state is only dependent
on the previous state

I It is also called memoryless property

I E.g for the sequence x (1), ..., x (n) we would have:

P(x (i)|x (1), ..., x (i−1)) = P(x (i)|x (i−1))

12 / 1

Markov Chain Monte Carlo (MCMC)
I An alternative to rejection sampling is to generate dependent

samples
I Similarly, we define and sample from a proposal distribution
I But now we maintain the record of current state, and proposal

distribution depends on it
I In this setting the samples form a Markov Chain

13 / 1

Markov Chain Monte Carlo (MCMC)

I Several variations of MCMC have been introduced

I Some popular variations are: Metropolis-Hasting, Slice
sampling and Gibbs sampling

I They differ on aspects like how the proposal distribution is
defined

I Some motivations are reducing correlation between successive
samples in the Markov chain, or increasing the acceptance rate

14 / 1

Gibbs Sampling

I A simple, general MCMC algorithm

I Initialize x to some value

I Select an ordering for the variables x1, ..., xd (can be random
or fixed)

I Pick each variable xi according to the order and resample
P(xi |x−i)

I There is no rejection when taking a new sample

15 / 1

Gibbs Sampling

I For example consider we have three
variables P(x1, x2, x3)

I At each round t, we take samples
from the following distributions:

x
(t)
1 ∼ P(x1|x (t−1)2 , x

(t−1)
3)

x
(t)
2 ∼ P(x2|x (t)1 , x

(t−1)
3)

x
(t)
3 ∼ P(x3|x (t)1 , x

(t)
2)

16 / 1

Monte Carlo methods summary

I Useful when we need approximate methods to solve
sums/integrals

I Monte Carlo does not explicitly depend on dimension,
although simple methods work only in low dimensions

I Markov chain Monte Carlo (MCMC) can make local moves.
By assuming less it is more applicable to higher dimensions

I It produces approximate, correlated samples

I Simple computations and easy to implement

17 / 1

Probabilistic programming languages

I In probablistic programming languages, such as Stan we can
describe Bayesian models and perform inference

I Models can be described by defining the random variables,
model parameters and their distributions

I Given a model description and a data set, Stan can then
perform Bayesian inference using methods such as MCMC

18 / 1

