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Agenda

1. A brief overview

2. Some sample questions
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Basic ML Terminology

I Regression

I Overfitting

I Generalization

I Stochastic Gradient Descent
(SGD)

I Classification

I Underfitting

I Regularization

I Bayes Optimal
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Basic ML Terminology

I Training Data

I Validation Data

I Test Data

I Optimization

I 0-1 Loss

I Linear classifier

I Features

I Model
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Some Questions

Question

1. Bagging improved performance by reducing

2. Bagging improved performance by reducing variance
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1. Bagging improved performance by reducing variance

2. Given discrete random variables X and Y. The
Information Gain in Y due to X is

IG (Y |X ) = H( )− H( ),

where H is the entropy
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Some Questions

Question 2

Take labelled data (X, y).

1. Why should you use a validation set?

2. How do you know if your model is overfitting?

3. How do you know if your model is underfitting?
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ML Models

1. Nearest Neighbours

2. Decision Trees

3. Ensembles

4. Linear Regression

5. Logistic Regression

6. SVMs
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Nearest Neighbours

1. Decision Boundaries
2. Choice of ‘k‘ vs. Generalization
3. Curse of dimensionality
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Decision Trees

1. Entropy: H(X ), H(Y |X )

2. Information Gain

3. Decision Boundaries
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Bayes Optimality

Starting with square error: E[(y − t)2|x] = E[y2 − 2yt + t2|x];

1. choose a single value y∗ based on p(t|x):

(y − E[t|x])2 + Var(t|x)

2. treat y as a random variable:
I bias term
I variance term
I Bayes error
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Ensembles

1. Bagging/bootstrap
aggregation

2. Boosting
I decision stumps:
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Linear Regression

1. Loss function

2. Direct solution

3. (Stochastic) Gradient
Descent

4. Regularization
I L1 vs L2 norm
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Logistic Regression

1. Loss functions
I 0-1 loss?
I l2 loss?
I cross-entropy loss?

2. Binary vs. Multi-class

3. Decision Boundaries
I p̂ = 1

1+e−θx
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SVMs

1. Hinge loss

2. Margins
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Sample Question 1

First, we use a linear regression method to model this data.
To test our linear regressor, we choose at random some data
records to be a training set, and choose at random some of the
remaining records to be a test set.
Now let us increase the training set size gradually. As the training
set size increases, what do you expect will happen with the mean
training and mean testing errors? (No explanation required)

I Mean Training Error: A. Increase; B. Decrease

I Mean Testing Error: A. Increase; B. Decrease
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Q1 Solution

I The training error tends to increase. As more examples have
to be fitted, it becomes harder to ’hit’, or even come close, to
all of them.

I The test error tends to decrease. As we take into account
more examples when training, we have more information, and
can come up with a model that better resembles the true
behavior. More training examples lead to better
generalization.
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Sample Question 2

If variables X and Y are independent, is I (X |Y ) = 0? If yes, prove
it. If no, give a counter example.
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Q2 Solution

Recall that

I two random variables X and Y are independent if for all
x ∈ Values(X ) and all y ∈ Values(Y ),
P(X = x ,Y = y) = P(X = x)P(Y = y).

I H(X ) = −
∑

x P(x)log2P(x)
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Q2 Solution

I (X |Y ) = H(X )− H(X |Y ) (1)

= −
∑
x

P(x)log2P(x)−
(
−
∑
y

∑
x

P(x , y)log2P(x |y)
)
(2)

= −
∑
x

P(x)log2P(x)−
(
−
∑
y

P(y)
∑
x

P(x)log2P(x)
)

(3)

= −
∑
x

P(x)log2P(x)−
(
−
∑
x

P(x)log2P(x)
)

(4)

= 0 (5)
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Sample Question 3

Given input x ∈ RD and target t ∈ R, consider a linear model of
the form: y(x ,w) =

∑D
i=1 wixi .. Now suppose a noisy pertubation

εi is added independently to each of the input variables xi . i.e.,
x̂i = xi + εi , assume

I E[εi ] = 0

I for i 6= j : E[εiεj ] = 0

I E[ε2i ] = λ

We define the following objective that tries to be robust to noise

w∗ = arg minEε[(w
T x̂− t)2]. (6)

Show that it is equivalent to minimizing L2 regularized linear
regression, i.e.,:

w∗ = arg min[(wTx− tn)2 + λ||w||2].
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Q3 Solution

Let

ŷ =
D∑
i=1

wi (xi + εi ) = y +
D∑
i=1

wiεi ,

where y = wTx =
∑D

i=1 wixi .
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Q3 Solution

Then we start with

w∗ = arg minEε[(w
T x̂− t)2] = arg minEε[(ŷ − t)2],

the inner term

(ŷ − t)2 = ŷ2 − 2ŷ t + t2 (7)

= (y +
D∑
i=1

wiεi )
2 − 2t(y +

D∑
i=1

wiεi ) + t2 (8)

= y2 + 2y
D∑
i=1

wiεi + (
D∑
i=1

wiεi )
2 − 2ty − 2t

D∑
i=1

wiεi + t2

(9)

then we take the expectation under the distribution of ε
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Q3 Solution

That is,

Eε

[
y2 + 2y

D∑
i=1

wiεi + (
D∑
i=1

wiεi )
2 − 2ty − 2t

D∑
i=1

wiεi + t2
]

we have the second and the fifth term equal to zero since E[εi ] = 0,
while the third term become Eε[(

∑D
i=1 wiεi )

2] = λ
∑D

i=1 w
2
i .

Finally we see

Eε

[
y2 + λ

D∑
i=1

w2
i − 2ty + t2

]
= Eε[(y − t)2 + λ

D∑
i=1

w2
i ].
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