Linear Algebra - Part IIProjection, Eigendecomposition, SVD

(Adapted from Punit Shah's slides)

2019

Brief Review from Part 1

• Matrix Multiplication is a linear tranformation.

Symmetric Matrix:

$$\mathbf{A} = \mathbf{A}^T$$

Orthogonal Matrix:

$$\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}$$
 and $\mathbf{A}^{-1} = \mathbf{A}^T$

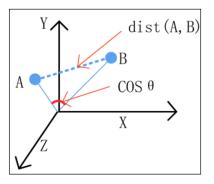
• 1.2 Norm:

$$||\mathbf{x}||_2 = \sqrt{\sum_i x_i^2}$$

Angle Between Vectors

• Dot product of two vectors can be written in terms of their L2 norms and the angle θ between them.

$$\mathbf{a}^T \mathbf{b} = ||\mathbf{a}||_2 ||\mathbf{b}||_2 \cos(\theta)$$



Cosine Similarity

• Cosine between two vectors is a measure of their similarity:

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \ ||\mathbf{b}||}$$

• Orthogonal Vectors: Two vectors **a** and **b** are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b} = 0$.

Vector Projection

- Given two vectors **a** and **b**, let $\hat{\mathbf{b}} = \frac{\mathbf{b}}{||\mathbf{b}||}$ be the unit vector in the direction of **b**.
- Then $\mathbf{a}_1 = a_1 \cdot \hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{a} onto a straight line parallel to **b**, where

$$a_1 = ||\mathbf{a}||\cos(\theta) = \mathbf{a} \cdot \hat{\mathbf{b}} = \mathbf{a} \cdot \frac{\mathbf{b}}{||\mathbf{b}||}$$

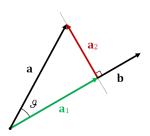


Image taken from wikipedia.

Diagonal Matrix

- Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix.
- A square diagonal matrix with diagonal elements given by entries of vector **v** is denoted:

$$diag(\mathbf{v})$$

• Multiplying vector **x** by a diagonal matrix is efficient:

$$diag(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x}$$

- \odot is the entrywise product.
- Inverting a square diagonal matrix is efficient:

$$\mathsf{diag}(\mathbf{v})^{-1} = \mathsf{diag}\left(\left[\frac{1}{v_1}, \dots, \frac{1}{v_n}\right]^T\right)$$

Determinant

• Determinant of a square matrix is a mapping to a scalar.

$$det(\mathbf{A})$$
 or $|\mathbf{A}|$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$\det(\mathbf{AB}) \ = \ \det(\mathbf{A})\det(\mathbf{B})$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

List of Equivalencies

The following are all equivalent:

- Ax = b has a **unique** solution (for every b with correct dimension).
- Ax = 0 has a unique, trivial solution: x = 0.
- Columns of **A** are linearly independent.
- A is invertible, i.e. A^{-1} exists.
- $det(\mathbf{A}) \neq 0$

Zero Determinant

If $det(\mathbf{A}) = 0$, then:

- A is linearly dependent.
- Ax = b has no solution or infinitely many solutions.
- Ax = 0 has a non-zero solution.

Matrix Decomposition

• We can decompose an integer into its prime factors, e.g. $12 = 2 \times 2 \times 3$.

• Similarly, matrices can be decomposed into factors to learn universal properties:

$$\mathbf{A} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{V}^{-1}$$

• Unlike integers, matrix factorization is not unique:

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

Eigenvectors

• An eigenvector of a square matrix ${\bf A}$ is a nonzero vector ${\bf v}$ such that multiplication by ${\bf A}$ only changes the scale of ${\bf v}$.

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

- The scalar λ is known as the **eigenvalue**.
- If v is an eigenvector of A, so is any rescaled vector sv.
 Moreover, sv still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$||{\bf v}|| = 1$$

Characteristic Polynomial(1)

• Eigenvalue equation of matrix **A**:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
$$\lambda\mathbf{v} - \mathbf{A}\mathbf{v} = \mathbf{0}$$
$$(\lambda\mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$$

• If nonzero solution for **v** exists, then it must be the case that:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

• Unpacking the determinant as a function of λ , we get:

$$P_A(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = 1 \times \lambda^n + c_{n-1} \times \lambda^{n-1} + \ldots + c_0$$

• This is called the characterisite polynomial of A.

Characteristic Polynomial(2)

• If $\lambda_1, \lambda_2, \dots, \lambda_n$ are roots of the characteristic polynomial, they are eigenvalues of **A** and we have:

$$P_A(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i)$$

- $c_{n-1} = -\sum_{i=1}^{n} \lambda_i = -tr(A)$
- $c_0 = (-1)^n \prod_{i=1}^n \lambda_i = (-1)^n det(\mathbf{A})$
- Roots might be complex. If a root has multiplicity of $r_j > 1$, then the dimension of eigenspace for that eigenvalue might be less than r_j (or equal but never more). But one eigenvector is guaranteed.

Example

Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

• The characteristic polynomial is:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det\begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

- It has roots $\lambda=1$ and $\lambda=3$ which are the two eigenvalues of **A**.
- We can then solve for eigenvectors using $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$:

$$\mathbf{v}_{\lambda=1} = [1,-1]^T$$
 and $\mathbf{v}_{\lambda=3} = [1,1]^T$

Eigendecomposition

- Suppose that $n \times n$ matrix **A** has n linearly independent eigenvectors $\{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}\}$ with eigenvalues $\{\lambda_1, \dots, \lambda_n\}$.
- Concatenate eigenvectors (as columns) to form matrix **V**.
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1, \dots, \lambda_n]^T$.
- The eigendecomposition of A is given by:

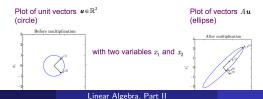
$$AV = V diag(\lambda) \implies A = V diag(\lambda)V^{-1}$$

Symmetric Matrices

- Every symmetric (hermitian) matrix of dimension n has a set of (not necessarily unique) n orthogonal eigenvectors. Furthermore, All eigenvalues are real.
- Every real symmetric matrix **A** can be decomposed into real-valued eigenvectors and eigenvalues:

$$A = Q\Lambda Q^T$$

- ullet Q is an orthogonal matrix of the eigenvectors of $oldsymbol{A}$, and $oldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues.
- We can think of **A** as scaling space by λ_i in direction $\mathbf{v}^{(i)}$.



16 / 22

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- ullet By convention, order entries of Λ in descending order. Then, eigendecomposition is unique if all eigenvalues are unique.
- If any eigenvalue is zero, then the matrix is **singular**. Because if \mathbf{v} is the corresponding eigenvector we have: $\mathbf{A}\mathbf{v} = 0\mathbf{v} = 0$.

Positive Definite Matrix

• If a symmetric matrix A has the property:

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
 for any nonzero vector \mathbf{x}

Then A is called **positive definite**.

- If the above inequality is not strict then A is called **positive** semidefinite.
- For positive (semi)definite matrices all eigenvalues are positive(non negative).

Singular Value Decomposition (SVD)

- If **A** is not square, eigendecomposition is undefined.
- **SVD** is a decomposition of the form:

$$A = UDV^T$$

- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD Definition (1)

- Write **A** as a product of three matrices: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$.
- If **A** is $m \times n$, then **U** is $m \times m$, **D** is $m \times n$, and **V** is $n \times n$.
- **U** and **V** are orthogonal matrices, and **D** is a diagonal matrix (not necessarily square).
- Diagonal entries of D are called singular values of A.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

SVD Definition (2)

- SVD can be interpreted in terms of eigendecompostion.
- Left singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}\mathbf{A}^T$.
- Right singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}^T \mathbf{A}$.
- Nonzero singular values of A are square roots of eigenvalues of A^TA and AA^T.
- Numbers on the diagonal of D are sorted largest to smallest and are positive (This makes SVD unique)

SVD Optimality

- We can write $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ in this form: $\mathbf{A} = \sum_{i=1}^n d_i \mathbf{u}_i \mathbf{v}_i^T$
- Instead of n we can sum up to r: $\mathbf{A}_r = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i^T$
- This is called a low rank approximation of A.
- \mathbf{A}_r is the best approximation of rank r by many norms:
 - When considering vector norm, it is optimal. Which means \mathbf{A}_r is a linear transformation that captures as much energy as possible.
 - When considering Frobenius norm, it is optimal which means \mathbf{A}_r is projection of A on the best(closest) r dimensional subspace.