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Introduction to Notation



Uncertainty arises through:

e Noisy measurements
e Finite size of data sets

e Limited Model Complexity

Probability theory provides a consistent framework for the
quantification and manipulation of uncertainty.



Sample Space

Sample space Q is the set of all possible outcomes of an
experiment.

Observations w € Q are points in the space also called sample

outcomes, realizations, or elements.

Events E C Q are subsets of the sample space.

In this experiment we flip a coin twice:

Sample space All outcomes Q = {HH,HT, TH, TT}
Observation w = HT valid sample since w € Q

Event Both flips same E = {HH, TT} valid event since E C Q



Probability



Probability

The probability of an event E, P(E), satisfies three axioms:

1: P(E) > 0 for every E
2. P(2)=1
3: If E1, Ep, ... are disjoint then

[e.e]

P(JE) =D P(E)
i=1 i=1



Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B).
Conditional Probability of A given B is denoted P(A|B).

Joint: p(A,B) = p(ANB)

p(ANB)
p(B)

Conditional: p(A|B) =

p(A, B) = p(A|B)p(B) = p(B|A)p(A)



Conditional Example

60% of ML students pass the final and 45% of ML students pass
both the final and the midterm.

What percent of students who passed the final also passed the
midterm?



Conditional Example

60% of ML students pass the final and 45% of ML students pass
both the final and the midterm.

What percent of students who passed the final also passed the
midterm?

Reword: What percent passed the midterm given they passed the
final?

P(M|F) = P(M,F)/P(F)
— 0.45/0.60
—0.75



Independence

Events A and B are independent if P(A, B) = P(A)P(B).

e Indepentent: A: first toss is HEAD; B: second toss is HEAD;
P(A,B) =0.5%0.5 = P(A)P(B)

e Not Indepentent: A: first toss is HEAD; B: first toss is
HEAD;

P(A, B) = 0.5 % P(A)P(B)



Independence

Events A and B are conditionally independent given C if
P(A, B|C) = P(B|C)P(A|C)
Consider two coins : A regular coin and a coin which always

outputs HEAD or always outputs TAIL.

A=The first toss is HEAD; B=The second toss is HEAD; C=The
regular coin is used. D=The other coin is used.

Then A and B are conditionally independent given C, but A and B
are NOT conditionally independent given D.

1www.probabilitycourse.com/chapterl/l 4_4_conditional_

independence.php
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Marginalization and Law of Total Probability

Law of Total Probability 2
P(X) =Y P(X,Y)=) P(XX|Y)P(Y)
Y Y

S S
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Bayes’ Rule




Bayes’ Rule

Bayes' Rule:
B|AYP
palg) — PBIAPA)
P(B)
P(x|0)P(6)
P(Ob) =~ pris
. Likelihood * Prior
Posterior = -
Evidence

Posterior < Likelihood x Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

This depends on accuracy and sensitivity of test and prior
probability of the disease:

e P(T =1|D =1)=0.95 (likelihood)
e P(T =1|D = 0) = 0.10 (likelihood)
e P(D=1)=0.1 (prior)

So P(D =1|T =1) =?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the
probability you actually have the disease?

P(T =1|D = 1) = 0.95 (true positive)

P(T =1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

So P(D=1|T =1) =7
Use Bayes' Rule:
P(T=1D=1)P(D=1) 0.95%0.1
P(T =1) P(T =1)
P(T=1)=P(T=1D=1)P(D=1)+P(T =1|D=0)P(D =0)
=0.95%0.14+0.1%0.90 =0.185

P(D=1|T =1) = =051
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Random Variables and Statistics




Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number X(w)

to each observed outcome w € Q

For example, let’s flip a coin 10 times. X(w) counts the number of
Heads we observe in our sequence. If w = HHTHTHHTHT then
X(w) = 6.
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Discrete and Continuous Random Variables

Discrete Random Variables

e Takes countably many values, e.g., number of heads
e Distribution defined by probability mass function (PMF)
e Marginalization: p(x) = > p(x,y)
Continuous Random Variables
e Takes uncountably many values, e.g., time to complete task
e Distribution defined by probability density function (PDF)
e Marginalization: p(x) = fy p(x,y)dy
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Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.

This is a common assumption for observations. For example, coin

flips are assumed to be iid.

ii5)



Probability Distribution Statistics

Mean: First Moment, u

oo
E[x] = Zx,-p(x,-) (univariate discrete r.v.)
i=1
: o0
Elx] = / xp(x)dx (univariate continuous r.v.)
—0o0

\Variance: Second Moment, o2

Varbd = [ (x = u2p(x)ds

J —00

— El(x— 7
= E[x?] — E[x]?
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Gaussian Distribution




Univariate Gaussian Distribution

Also known as the Normal Distribution, N'(p, o2)

2 1 2
N(x|p,0%) = ——=exp{—=5(x — i
(i 0%) = ——sep{ 55 (x— )’}
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

x is a D-dimensional vector

1 is a D-dimensional mean vector

Y is a D x D covariance matrix with determinant |X|

Nl D) = i x5 (x - ) T (x — )

(27T)D/2 |z|1/2

Mulivariate Normal Distribution
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Covariance Matrix

Recall that x and p are D-dimensional vectors
Covariance matrix X is a matrix whose (/, /) entry is the covariance

Y = Cov(xi,x))
= E[(xi — pi)(xj — )]
= E[(xix;)] — pinj
so notice that the diagonal entries are the variance of each
elements.

The covariant matrix has the property that it is symmetric and

positive-semidefinite (this is useful for whitening).
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Inferring Parameters




Inferring Parameters

We have data X and we assume it is sampled from some
distribution.

How do we figure out the parameters that ‘best’ fit that
distribution?
Maximum Likelihood Estimation (MLE)

Onie = argmaxP(X|6)
0
Maximum a Posteriori (MAP)

éMAP = argmaxP(9|X)
0
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian
Distribution, mean (x) and variance (o2).

N (x|u,0%) =

1 2
— exp{—5—5(x = u)"}

The likelihood that our observations xi, ..., xy were generated by
a univariate Gaussian with parameters ;i and o2 is

N

1 1
Likelihood = p(xi . .. xn|p, 02) = exp{—=—= x,-—u2
Coeowle o) =TT ol —gogt = )
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult

because it is represented by a product of terms

N

1 1
Likelihood = p(xi . .. xn|p, 02) = exp{——=(x;i — p)?
pOxa . xwlp, o) HIW p{— 5 (x — 1)’}

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(x1 . . . x|, 02)

1 1 )
=D log Tz Pl ga (6 — 1))
Since log is monotonically increasing max L(0) = maxlog L(6)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

N
1 1
L(p,0) = lo exp{— = (x; — p)?
(w,0) iE_l 8 5Pl 5,z (6 — 1))

N

1 2 (xi — p)?
= —ENlog(27m ) — 2 g2

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

1 = (% — p)?

i=1
Derivative w.r.t. 1, set equal to 0, and solve for i

N
9L(p, 0) L1
Therefore the [i that maximizes the likelihood is the average of the
data points.

Derivative w.r.t. o2, set equal to 0, and solve for 2

9L(p,0)

N
A 1 N
902 =0 = 02:NZ(X;—M)2
i=1
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