CSC 411: Introduction to Machine Learning
Lecture 2: Nearest Neighbours

Mengye Ren and Matthew MacKay

University of Toronto
Today (and for the next 5 weeks) we’re focused on **supervised learning**.

This means we’re given a **training set** consisting of **inputs** and corresponding **labels**.

Machine learning - learning a program. Labels are the expected output of the correct program when given the inputs.

<table>
<thead>
<tr>
<th>Task</th>
<th>Inputs</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>object recognition</td>
<td>image</td>
<td>object category</td>
</tr>
<tr>
<td>image captioning</td>
<td>image</td>
<td>caption</td>
</tr>
<tr>
<td>document classification</td>
<td>text</td>
<td>document category</td>
</tr>
<tr>
<td>speech-to-text</td>
<td>audio waveform</td>
<td>text</td>
</tr>
</tbody>
</table>

Goal: correctly predict labels for data not in the training set (“in the wild”) i.e. our ML algorithm must **generalize**
Machine learning algorithms need to handle lots of types of data: images, text, audio waveforms, credit card transactions, etc.

Common strategy: represent the input as an **input vector** in \mathbb{R}^d

- **Representation** = mapping to another space that’s easy to manipulate
- Vectors are a great representation since we can do linear algebra!
Input Vectors

What an image looks like to the computer:

[Image credit: Andrej Karpathy]
Input Vectors

Can use raw pixels:

Images ↔ Vectors

Can do much better if you compute a vector of meaningful features.
Mathematically, our training set consists of a collection of pairs of an input vector \(x \in \mathbb{R}^d \) and its corresponding target, or label, \(t \)

- **Regression**: \(t \) is a real number (e.g. stock price)
- **Classification**: \(t \) is an element of a discrete set \(\{1, \ldots, C\} \)
- These days, \(t \) is often a highly structured object (e.g. image)

Denote the training set \(\{(x^{(1)}, t^{(1)}), \ldots, (x^{(N)}, t^{(N)})\} \)

- Note: these superscripts have nothing to do with exponentiation!
Nearest Neighbours

- Suppose we’re given a novel input vector x we’d like to classify.
- The idea: find the nearest input vector to x in the training set and copy its label.
- Can formalize “nearest” in terms of Euclidean distance

$$
\|x - y\|_2 = \sqrt{\sum_{j=1}^{d}(x_j - y_j)^2}
$$

Algorithm:

1. Find example (x^*, t^*) (from the stored training set) closest to x. That is:

$$
x^* = \arg\min_{x^{(i)} \in \text{train. set}} \text{dist}(x^{(i)}, x)
$$

2. Output $y = t^*$

- Note: we don’t need to compute the square root. Why?
Nearest Neighbours: Decision Boundaries

We can visualize the behavior in the classification setting using a **Voronoi diagram**.
Nearest Neighbours: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned to different categories.

![Decision boundary diagram](image-url)
Example: 3D decision boundary
Nearest Neighbours are sensitive to noise or mis-labeled data ("class noise"). Solution?

Smooth by having k nearest Neighbours vote.

Algorithm (kNN):

1. Find k examples \(\{(x^{(r)}, t^{(r)})\}_{r=1}^{k} \) closest to the test instance \(x \)
2. Classification output is majority class

\[
y = \arg \max_t \sum_{r=1}^{k} \mathbb{I}[t = t^{(r)}]
\]
K-Nearest Neighbours

$k=1$

[Image credit: "The Elements of Statistical Learning"]
K-Nearest Neighbours

k=15

[Image credit: "The Elements of Statistical Learning"]
Tradeoffs in choosing k? Remember: goal is to correctly classify unseen examples

- **Small k**
 - Good at capturing fine-grained patterns
 - May *overfit*, i.e. be sensitive to random idiosyncrasies in the training data

- **Large k**
 - Makes stable predictions by averaging over lots of examples
 - May *underfit*, i.e. fail to capture important regularities

- Rule of thumb: $k < \sqrt{n}$, where n is the number of training examples
Choosing Hyperparameters using a Validation Set

- k is an example of a **hyperparameter**, something we can’t fit as part of the learning algorithm itself, but which controls the behavior of the algorithm.

- We want to choose hyperparameters based on how well the algorithm generalizes.

- Thus, we separate some of our available data into a **validation set**, distinct from the training set.

- Model’s performance on the validation set indicates how well it generalizes:
 - choose hyperparameters which leads to best performance (lowest error) on validation set
 - Note: error here means number of incorrectly classified examples
Test Set

- Now hyperparameters might have overfit to the validation set! Validation performance not good assessment of generalization of final algorithm.
- Solution: separate an additional test set from the available data and evaluate on it once hyperparameters are chosen.
 - Available data partitioned into 3 sets: training, validation, and test.

![Diagram](attachment://diagram.png)

- The test set is used only at the very end, to measure the generalization performance of the final configuration.
K-Nearest Neighbours

[Image credit: "The Elements of Statistical Learning"]
The Curse of Dimensionality

- Low-dimensional visualizations are misleading!
 - Given a new point, we want to classify it based on a point only a small distance away
 - But in high dimensions, “most” points are far apart.

- At least how many points are needed to guarantee the nearest neighbor is closer than ϵ?
 - The volume of a single ball of radius ϵ is $O(\epsilon^d)$
 - The total volume of $[0, 1]^d$ is 1.
 - Therefore $O\left((\frac{1}{\epsilon})^d\right)$ balls are needed to cover the volume.

- Assuming data follows uniform distribution, training set size must grow exponentially with the number of dimensions for points to be close by!
The Curse of Dimensionality

- Edge length of hypercube required to occupy given fraction r of volume of unit hypercube $[0, 1]^d$ is $r^{1/d}$
 - If $d = 10$ and $r = 0.1$, the edge length required is $0.1^{1/10} \approx 0.8$
 - To use 10% of the data to make our decision, must cover 80% of the range of each dimension!

[Image credit: "The Elements of Statistical Learning"]
The Curse of Dimensionality

- In high dimensions, “most” points are approximately the same distance.

- Saving grace: some datasets (e.g. images) may have low intrinsic dimension, i.e. lie on or near a low-dimensional manifold. So nearest Neighbours sometimes still works in high dimensions.
Normalization

- Nearest Neighbours can be sensitive to the ranges of different features.
- Often, the units are arbitrary:

 ![Diagram](image)

 - Simple fix: **normalize** each dimension to be zero mean and unit variance. I.e., compute the mean μ_j and standard deviation σ_j, and take

 $$\tilde{x}_j = \frac{x_j - \mu_j}{\sigma_j}$$

 - Caution: depending on the problem, the scale might be important!
Computational Cost

- Number of computations at **training time**: 0
- Number of computations at **test time**, per query (naïve algorithm)
 - Calculate D-dimensional Euclidean distances with N data points: $O(ND)$
 - Sort the distances: $O(N \log N)$
- This must be done for each query, which is very expensive by the standards of a learning algorithm!
- Need to store the entire dataset in memory!
- Tons of work has gone into algorithms and data structures for efficient nearest Neighbours with high dimensions and/or large datasets.
Example: Digit Classification

- Decent performance when lots of data

 0 1 2 3 4 5 6 7 8 9

- Yann LeCunn – MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: $d = 784$
 - 60,000 training samples
 - 10,000 test samples

- Nearest neighbour is competitive

<table>
<thead>
<tr>
<th></th>
<th>Test Error Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifier (1-layer NN)</td>
<td>12.0</td>
</tr>
<tr>
<td>K-nearest-neighbors, Euclidean</td>
<td>5.0</td>
</tr>
<tr>
<td>K-nearest-neighbors, Euclidean, deskewed</td>
<td>2.4</td>
</tr>
<tr>
<td>K-NN, Tangent Distance, 16x16</td>
<td>1.1</td>
</tr>
<tr>
<td>K-NN, shape context matching</td>
<td>0.67</td>
</tr>
<tr>
<td>1000 RBF + linear classifier</td>
<td>3.6</td>
</tr>
<tr>
<td>SVM deg 4 polynomial</td>
<td>1.1</td>
</tr>
<tr>
<td>2-layer NN, 300 hidden units</td>
<td>4.7</td>
</tr>
<tr>
<td>2-layer NN, 300 HU, [deskewing]</td>
<td>1.6</td>
</tr>
<tr>
<td>LeNet-5, [distortions]</td>
<td>0.8</td>
</tr>
<tr>
<td>Boosted LeNet-4, [distortions]</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Example: Digit Classification

- KNN can perform a lot better with a good similarity measure.
- Example: shape contexts for object recognition. In order to achieve invariance to image transformations, they tried to warp one image to match the other image.
 - Distance measure: average distance between corresponding points on warped images
- Achieved 0.63% error on MNIST, compared with 3% for Euclidean KNN.
- Competitive with conv nets at the time, but required careful engineering.

[Belongie, Malik, and Puzicha, 2002. Shape matching and object recognition using shape contexts.]
Example: 80 Million Tiny Images

- 80 Million Tiny Images was the first extremely large image dataset. It consisted of color images scaled down to 32×32.

- With a large dataset, you can find much better semantic matches, and KNN can do some surprising things.

- Note: this required a carefully chosen similarity metric.

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]
Example: 80 Million Tiny Images

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]
Conclusions

- Simple algorithm that does all its work at test time — in a sense, no learning!
- Can control the complexity by varying k
- Suffers from the Curse of Dimensionality
- Next time: decision trees, another approach to regression and classification