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Review

Supervised learning: regression, classification

Choose model, loss function, optimizer

MSE

cross entropy

hinge loss

exponential loss

Iterative optimization vs. closed-form solutions

Loss function + regularization vs. Bayesian

MLE, MAP, posterior, posterior predictive

Bayes rule & conjugate prior
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Review

Supervised learning: regression, classification

Parametric vs. nonparametric

Parametric: LR, DT, NN, SVM, Bayesian LR

Non-parametric: k-NN, GP, kernel trick (kernelized version of
parametric models)

Time and space complexity

Generative vs. discriminative

Generative: Naive Bayes, Gaussian Bayes

Decision boundary
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Review

Unsupervised learning: learning useful representation from data
without label

dimensionality reduction: PCA, autoencoder

latent variable models: k-means, GMM

EM algorithm, likelihood lower bound

matrix factorization, sparse coding

Reinforcement learning: learning through interaction with an
environment

MDP, value function, Bellman operator

planning: value iteration, policy iteration

learning: Q-learning, deep Q-learning
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CSC421: Neural Nets

This course covered some fundamental ideas, most of which are more
than 10 years old.

Big shift of the past decade: neural nets and deep learning

2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
2012–2015: neural nets reduced error rates for object recognition by a
factor of 6
2016: a program called AlphaGo defeated the human Go champion
2016: neural nets bridged half the gap between machine and human
translation
2015–2018: neural nets learned to produce convincing high-resolution
images
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CSC421: Automatic Differentiation

In this course, you derived update rules by hand

Backprop is totally mechanical. Now we have automatic
differentiation tools that compute gradients for you.

In CSC421, you learn how an autodiff package can be implemented

Lets you do fancy things like differentiate through the whole training
procedure to compute the gradient of validation loss with respect to
the hyperparameters.

With TensorFlow, PyTorch, etc., we can build much more complex
neural net architectures that we could previously.
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CSC421: Beyond Scalar/Discrete Targets

This course focused on regression and classification, i.e. scalar-valued
or discrete outputs. Sometimes we would like more structured output:

text (e.g. image captioning, machine translation)

dense labels of images (e.g. semantic segmentation)

graphs (e.g. molecule design)
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CSC421: Representation Learning

We talked about neural nets as learning feature maps you can use for
regression/classification

More generally, want to learn a representation of the data such that
mathematical operations on the representation are semantically
meaningful

Classic (decades-old) example: representing words as vectors

Measure semantic similarity using the dot product between word
vectors (or dissimilarity using Euclidean distance)
Represent a web page with the average of its word vectors
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CSC421: Representation Learning

Here’s a linear projection of word representations for cities and capitals into
2 dimensions (part of a representation learned using word2vec)

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Mikolov et al., 2018, “Efficient estimation of word representations in vector space”
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CSC421: Representation Learning

In other words, vec(Paris)− vec(France) ≈ vec(London)− vec(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vec(France)− vec(Paris) + vec(London)

Example analogies:

Mikolov et al., 2018, “Efficient estimation of word representations in vector space”
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CSC421: Representation Learning

One of the big goals is to learn disentangled representations, where
individual dimensions tell you something meaningful
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(a) Baldness (-6, 6) (b) Face width (0, 6) (c) Gender (-6, 6) (d) Mustache (-6, 0)

Figure 1: Qualitative comparisons on CelebA. Traversal ranges are shown in parentheses. Some
attributes are only manifested in one direction of a latent variable, so we show a one-sided traversal.
Most semantically similar variables from a �-VAE are shown for comparison.

1 Background: Learning and Evaluating Disentangled Representations

We discuss existing work that aims at either learning disentangled representations without supervision
or evaluating such representations. The two problems are inherently related, since improvements
to learning algorithms require evaluation metrics that are sensitive to subtle details, and stronger
evaluation metrics reveal deficiencies in existing methods.

1.1 Learning Disentangled Representations

VAE and �-VAE The variational autoencoder (VAE) [9, 10] is a latent variable model that pairs a
top-down generator with a bottom-up inference network. Instead of directly performing maximum
likelihood estimation on the intractable marginal log-likelihood, training is done by optimizing the
tractable evidence lower bound (ELBO). We would like to optimize this lower bound averaged over
the empirical distribution (with � = 1):
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(Eq[log p(xn|z)] � � KL (q(z|xn)||p(z))) (1)

The �-VAE [7] is a variant of the variational autoencoder that attempts to learn a disentangled
representation by optimizing a heavily penalized objective with � > 1. Such simple penalization
has been shown to be capable of obtaining models with a high degree of disentanglement in image
datasets. However, it is not made explicit why penalizing KL(q(z|x)||p(z)) with a factorial prior can
lead to learning latent variables that exhibit disentangled transformations for all data samples.

InfoGAN The InfoGAN [6] is a variant of the generative adversarial network (GAN) [11] that
encourages an interpretable latent representation by maximizing the mutual information between the
observation and a small subset of latent variables. The approach relies on optimizing a lower bound
of the intractable mutual information.

1.2 Evaluating Disentangled Representations

When the true underlying generative factors are known and we have reason to believe that this
set of factors is disentangled, it is possible to create a supervised evaluation metric. Many have
proposed classifier-based metrics for assessing the quality of disentanglement [7, 8, 12, 13, 14, 15].
We focus on discussing the metrics proposed in [7] and [8], as they are relatively simple in design
and generalizable.

The Higgins’ metric [7] is defined as the accuracy that a low VC-dimension linear classifier can
achieve at identifying a fixed ground truth factor. Specifically, for a set of ground truth factors
{vk}K
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Chen et al., 2018, “Isolating sources of disentanglement in variational autoencoders”
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CSC421: Image-to-Image Translation

Due to convenient autodiff frameworks, we can combine multiple neural
nets together into fancy architectures. Here’s the CycleGAN.

Zhu et al., 2017, “Unpaired image-to-image translation using cycle-consistent adversarial networks”
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CSC421: Image-to-Image Translation

Style transfer problem: change the style of an image while preserving the
content.

Data: Two unrelated collections of images, one for each style
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CSC412: Probabilistic Graphical Models

In this course, we just scratched the surface of probabilistic models.

Probabilistic graphical models (PGMs) let you encode complex
probabilistic relationships between lots of variables.

Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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CSC412: PGM Inference

We derived inference methods by inspection for some easy special
cases (e.g. GDA, näıve Bayes)

In CSC412, you’ll learn much more general and powerful inference
techniques that expand the range of models you can build

Exact inference using dynamic programming, for certain types of graph
structures (e.g. chains)

Markov chain Monte Carlo

forms the basis of a powerful probabilistic modeling tool called Stan

Variational inference: try to approximate a complex, intractable,
high-dimensional distribution using a tractable one

Try to minimze the KL divergence
Based on the same math from our EM lecture
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CSC412: Beyond Clustering

We’ve seen unsupervised learning algorithms based on two ways of
organizing your data

low-dimensional spaces (dimensionality reduction)
discrete categories (clustering)

Other ways to organize/model data

hierarchies
dynamical systems
sets of attributes
topic models (each document is a mixture of topics)

Motifs can be combined in all sorts of different ways
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CSC412: Beyond Clustering

Latent Dirichlet Allocation (LDA)

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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Blei et al., 2003, “Latent Dirichlet Allocation”
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CSC412: Beyond Clustering

Interpretable latent structure:

Dynamical system:

Johnson et al., 2016, “Composing graphical models with neural networks for structured representations and fast inference”
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CSC412: Automatic Statistician

Automatic search over Gaussian process kernel structures

Duvenaud et al., 2013, “Structure discovery in nonparametric regression through compositional kernel search”
Image: Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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Resources

Continuing with machine learning

Courses

CSC 421/2516, “Neural Networks and Deep Learning”
CSC 412/2506, “Probabilistic Learning and Reasoning”
Various topics courses (varies from year to year)

Videos from top ML conferences (NIPS/NeurIPS, ICML, ICLR, UAI)

Tutorials and keynote talks are aimed at people with your level of
background (know the basics, but not experts in a subfield)

Try to reproduce results from papers

If they’ve released code, you can use that as a guide if you get stuck

Lots of excellent free resources avaiable online!
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