
CSC 411: Introduction to Machine Learning
CSC 411 Lecture 22: Reinforcement Learning II

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 22 1 / 21

MDP

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Main assumption: Markovian dynamics and reward.

Standard MDP problems:

1 Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

[Pic: P. Abbeel]

UofT CSC411 2019 Winter Lecture 22 2 / 21

Basic Problems

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Standard MDP problems:

1 Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2 Learning: We don’t know which states are good or what the actions
do. We must try out the actions and states to learn what to do

[P. Abbeel]

UofT CSC411 2019 Winter Lecture 22 3 / 21

Example of Standard MDP Problem

1 Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2 Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

UofT CSC411 2019 Winter Lecture 22 4 / 21

Example of Standard MDP Problem

1 Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2 Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

UofT CSC411 2019 Winter Lecture 22 5 / 21

Exploration vs. Exploitation

If we knew how the world works (embodied in P), then the policy should be
deterministic

just select optimal action in each state

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from its experiences of the
environment

Without losing too much reward along the way

Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

Interesting trade-off:

immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

UofT CSC411 2019 Winter Lecture 22 6 / 21

Examples

Restaurant Selection

Exploitation: Go to your favourite restaurant
Exploration: Try a new restaurant

Online Banner Advertisements

Exploitation: Show the most successful advert
Exploration: Show a different advert

Oil Drilling

Exploitation: Drill at the best known location
Exploration: Drill at a new location

Game Playing

Exploitation: Play the move you believe is best
Exploration: Play an experimental move

[Slide credit: D. Silver]

UofT CSC411 2019 Winter Lecture 22 7 / 21

Value function

The value function V π(s) assigns each state the expected reward

V π(s) = E
at ,at+i ,st+i

[∞∑
i=1

γ i rt+i |st = s

]

Usually not informative enough to make decisions.

The Q-value Qπ(s, a) is the expected reward of taking action a in state s
and then continuing according to π.

Qπ(s, a) = E
at+i ,st+i

[∞∑
i=1

γ i rt+i |st = s, at = a

]

UofT CSC411 2019 Winter Lecture 22 8 / 21

Bellman equations

The foundation of many RL algorithms

V π(s) = E
at ,at+i ,st+i

[
∞∑
i=1

γ i rt+i |st = s

]

= E
at
[rt+1|st = s] + γ E

at ,at+i ,st+i

[
∞∑
i=1

γ i rt+i+1|st = s

]
= E

at
[rt+1|st = s] + γ E

st+1

[V π(st+1)|st = s]

=
∑
a,r

Pπ(a|st)p(r |a, st) · r + γ
∑
a,s′

Pπ(a|st)p(s ′|a, st) · V π(s ′)

Similar equation holds for Q

Qπ(s, a) = E
at+i ,st+i

[
∞∑
i=1

γ i rt+i |st = s, at = a

]
=
∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) · V π(s ′)

=
∑
r

p(r |a, st) · r + γ
∑
a′,s′

p(s ′|a, st)p(a′|s ′) · Qπ(s ′, a′)

UofT CSC411 2019 Winter Lecture 22 9 / 21

Solving Bellman equations

The Bellman equations are a set of linear equations with a unique solution.

Can solve fast(er) because the linear mapping is a contractive mapping.

This lets you know the quality of each state/action under your policy -
policy evaluation.

You can improve by picking π′(s) = maxa Q
π(s, a) - policy improvement.

Can show the iterative policy evaluation and improvement converges to the
optimal policy.

Are we done? Why isn’t this enough?

Need to know the model! Usually isn’t known.
Number of states is usually huge (how many unique states does a chess
game have?)

UofT CSC411 2019 Winter Lecture 22 10 / 21

Optimal Bellman equations

First step is understand the Bellman equation for the optimal policy π∗

Under this policy V ∗(s) = maxa Q
∗(s, a)

V ∗(s) = max
a

[
E [rt+1|st = s, at = a] + γ E

st+1

[V ∗(st+1)|st = s, at = a]

]
= max

a

[∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) · V ∗(s ′)

]

Q∗(s, a) = E [rt+1|st = s, at = a] + γ E
st+1

[
max
a′

Q∗(st+1, a
′)|st = s, at = a

]
=
∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) ·max
a′

Q∗(s ′, a′)

Set on nonlinear equations.

Same issues as before.

UofT CSC411 2019 Winter Lecture 22 11 / 21

Q-learning intuition

Q-learning is a simple algorithm to find the optimal policy without knowing
the model.

Q∗ is the unique solution to the optimal Bellman equation.

Q∗(s, a) = E [rt+1|st = s, at = a] + γ E
st+1

[
max
a′

Q∗(st+1, a
′)|st = s, at = a

]

We don’t know the model and don’t want to update all states
simultaneously.

Solution - given sample st , at , rt+1, st+1 from the environment update your
Q-values so they are closer to satisfying the bellman equation.

off-policy method: Samples don’t have to be from the optimal policy.

Samples need to be diverse enough to see everything - exploration.

UofT CSC411 2019 Winter Lecture 22 12 / 21

Exploration vs exploitation

Given Q-value the best thing we can do (given our limited knowledge) is to
take a = arg maxa′ Q(s, a′) - exploitation

How do we balance exploration with exploitation?

Simplest solution: ε-greedy.

With probability 1− ε pick a = arg maxa′ Q(s, a′) (i.e. greedy)
With probability ε pick any other action uniformly.

Another idea - softmax using Q values

With probability 1− ε pick a = arg maxa′ Q(s, a′) (i.e. greedy)
With probability ε pick any other action with probability
∝ exp(βQ(s, a)).

Other fancier solutions exist, many leading methods use simple ε-greedy
sampling.

UofT CSC411 2019 Winter Lecture 22 13 / 21

Q-learning algorithm

Can prove convergence to the optimal Q∗ under mild conditions.

Update is equivalent to gradient descent on loss
||R + γmaxa Q(S ′, a)− Q(s, a)||2.

At optimal Q, the loss is 0.

UofT CSC411 2019 Winter Lecture 22 14 / 21

Bootstrapping

Another way to think about Q-learning.

Q(s, a) is the expected reward, can use Monte-Carlo estimation.

Problem - you update only after the episode ends, can be very long (or
infinite).

Q-learning solution - take only 1 step forward and estimate the future using
our Q value - bootstrapping.

”learn a guess from a guess”

Q-learning is just one algorithm in a family of algorithms that use this idea.

UofT CSC411 2019 Winter Lecture 22 15 / 21

Function approximation

Q-learning still scales badly with large state spaces, how many states does a
chess game have? Need to save the full table!

Similar states, e.g. move all chess pieces two steps to the left, at treated as
totally different.

Solution: Instead of Q being a S × A table it is a parametrized function.

Looking for function Q̂(s, a; w) ≈ Q∗(s, a)

Linear functions Q(s, a; w) = wTφ(s, a).
Neural network

Hopefully can generalize to unseen states.

Problem: Each change to parameters changes all states/actions - can lead
to instability.

For non-linear Q-learning can diverge.

UofT CSC411 2019 Winter Lecture 22 16 / 21

Deep Q-learning

We have a function approximator Q(s, a; θ), standard is neural net but
doesn’t have to be.

What is the objective that we are optimizing?

We want to minimize Eρ[||R + γmaxa′ Q(S ′, a′)− Q(s, a)||2]

ρ is a distribution over states, depends on θ!

Two terms depend on Q, don’t want to take gradients w.r. to
γmaxa Q(S ′, a)

We want to correct our previous estimation given the new information.

Figure: Take from:rll.berkeley.edu/deeprlcourse

This simple approach doesn’t work well as is.

UofT CSC411 2019 Winter Lecture 22 17 / 21

Issues and solutions

Problem: data in the minibatch is highly correlated

Consecutive samples are from the same eposide and probably similar
states.
Solution: Replay memory.
You store a large memory buffer of previous (s, a, r , s ′) (notice this is all
you need for Q-learning) and sample from it to get diverse minibatch.

Problem: The data distribution keeps changing

Since we aren’t optimizing yi its like solving a different (but related)
least squares each iteration.
We can stabilize by fixing a target network for a few iterations

Figure: Take from:rll.berkeley.edu/deeprlcourse

UofT CSC411 2019 Winter Lecture 22 18 / 21

Example: DQN on atari

Trained a NN from scratch on atari games

Ablation study

UofT CSC411 2019 Winter Lecture 22 19 / 21

RL recap

Learning from experience not from labeled examples.

Why is RL hard?

Limited feedback.
Delayed rewards.
Your model effect what you see.
Huge state space.

Usually solved by learning the value function or optimizing the policy (not
covered)

How do you define the rewards? Can be tricky.

Bad rewards can lead to reward hacking

UofT CSC411 2019 Winter Lecture 22 20 / 21

Q-Learning recap

Try to find Q that satisfies the optimal Bellman conditions

Off-policy algorithm - Doesn’t have to follow a greedy policy to evaluate it.

Model free algorithm - Doesn’t have any model for instantaneous reward or
dynamics.

Learns a seperate value for each s, a pair - doesn’t scale up to huge state
spaces.

Can scale using a function approximation

No more theoretical guarantees.
Can diverge.
Some simple tricks help a lot.

UofT CSC411 2019 Winter Lecture 22 21 / 21

