CSC 411: Introduction to Machine Learning CSC 411 Lecture 22: Reinforcement Learning II

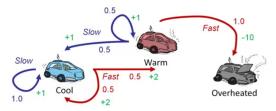
Mengye Ren and Matthew MacKay

University of Toronto

• Markov Decision Problem (MDP): tuple (S, A, P, γ) where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

- Main assumption: Markovian dynamics and reward.
- Standard MDP problems:
 - Planning: given complete Markov decision problem as input, compute policy with optimal expected return



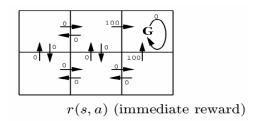
[Pic: P. Abbeel]

• Markov Decision Problem (MDP): tuple (S, A, P, γ) where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

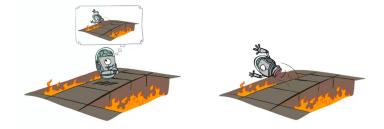
- Standard MDP problems:
 - Planning: given complete Markov decision problem as input, compute policy with optimal expected return
 - Learning: We don't know which states are good or what the actions do. We must try out the actions and states to learn what to do

Example of Standard MDP Problem



- Planning: given complete Markov decision problem as input, compute policy with optimal expected return
- Learning: Only have access to experience in the MDP, learn a near-optimal strategy

Example of Standard MDP Problem



- Planning: given complete Markov decision problem as input, compute policy with optimal expected return
- **Learning**: Only have access to experience in the MDP, learn a near-optimal strategy

We will focus on learning, but discuss planning along the way

- If we knew how the world works (embodied in *P*), then the policy should be deterministic
 - just select optimal action in each state
- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment
- Without losing too much reward along the way
- Since we do not have complete knowledge of the world, taking what appears to be the optimal action may prevent us from finding better states/actions
- Interesting trade-off:
 - immediate reward (**exploitation**) vs. gaining knowledge that might enable higher future reward (**exploration**)

Examples

- Restaurant Selection
 - Exploitation: Go to your favourite restaurant
 - Exploration: Try a new restaurant
- Online Banner Advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

[Slide credit: D. Silver]

• The value function $V^{\pi}(s)$ assigns each state the expected reward

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{a_t, a_{t+i}, s_{t+i}} \left[\sum_{i=1}^{\infty} \gamma^i r_{t+i} | s_t = s
ight]$$

- Usually not informative enough to make decisions.
- The Q-value Q^π(s, a) is the expected reward of taking action a in state s and then continuing according to π.

$$\mathcal{Q}^{\pi}(s, \mathbf{a}) = \mathop{\mathbb{E}}_{\mathbf{a}_{t+i}, \mathbf{s}_{t+i}} \left[\sum_{i=1}^{\infty} \gamma^{i} r_{t+i} | \mathbf{s}_{t} = \mathbf{s}, \mathbf{a}_{t} = \mathbf{a}
ight]$$

Bellman equations

• The foundation of many RL algorithms

$$V^{\pi}(s) = \underset{a_{t}, a_{t+i}, s_{t+i}}{\mathbb{E}} \left[\sum_{i=1}^{\infty} \gamma^{i} r_{t+i} | s_{t} = s \right]$$

= $\underset{a_{t}}{\mathbb{E}} [r_{t+1} | s_{t} = s] + \gamma \underset{a_{t}, a_{t+i}, s_{t+i}}{\mathbb{E}} \left[\sum_{i=1}^{\infty} \gamma^{i} r_{t+i+1} | s_{t} = s \right]$
= $\underset{a_{t}}{\mathbb{E}} [r_{t+1} | s_{t} = s] + \gamma \underset{s_{t+1}}{\mathbb{E}} [V^{\pi}(s_{t+1}) | s_{t} = s]$
= $\underset{a, r}{\sum} P^{\pi}(a | s_{t}) p(r | a, s_{t}) \cdot r + \gamma \underset{a, s'}{\sum} P^{\pi}(a | s_{t}) p(s' | a, s_{t}) \cdot V^{\pi}(s')$

• Similar equation holds for Q

$$Q^{\pi}(s,a) = \underset{a_{t+i},s_{t+i}}{\mathbb{E}} \left[\sum_{i=1}^{\infty} \gamma^{i} r_{t+i} | s_{t} = s, a_{t} = a \right]$$
$$= \sum_{r} p(r|a,s_{t}) \cdot r + \gamma \sum_{s'} p(s'|a,s_{t}) \cdot V^{\pi}(s')$$
$$= \sum_{r} p(r|a,s_{t}) \cdot r + \gamma \sum_{a',s'} p(s'|a,s_{t}) p(a'|s') \cdot Q^{\pi}(s',a')$$

- The Bellman equations are a set of linear equations with a unique solution.
- Can solve fast(er) because the linear mapping is a contractive mapping.
- This lets you know the quality of each state/action under your policy **policy evaluation**.
- You can improve by picking $\pi'(s) = \max_a Q^{\pi}(s, a)$ **policy improvement**.
- Can show the iterative policy evaluation and improvement converges to the optimal policy.
- Are we done? Why isn't this enough?
 - Need to know the model! Usually isn't known.
 - Number of states is usually huge (how many unique states does a chess game have?)

Optimal Bellman equations

- First step is understand the Bellman equation for the optimal policy π^*
- Under this policy $V^*(s) = \max_a Q^*(s, a)$

$$V^{*}(s) = \max_{a} \left[\mathbb{E} \left[r_{t+1} | s_{t} = s, a_{t} = a \right] + \gamma \mathbb{E}_{s_{t+1}} \left[V^{*}(s_{t+1}) | s_{t} = s, a_{t} = a \right] \right]$$

=
$$\max_{a} \left[\sum_{r} p(r|a, s_{t}) \cdot r + \gamma \sum_{s'} p(s'|a, s_{t}) \cdot V^{*}(s') \right]$$
$$Q^{*}(s, a) = \mathbb{E} \left[r_{t+1} | s_{t} = s, a_{t} = a \right] + \gamma \mathbb{E}_{s_{t+1}} \left[\max_{a'} Q^{*}(s_{t+1}, a') | s_{t} = s, a_{t} = a \right]$$
$$= \sum_{r} p(r|a, s_{t}) \cdot r + \gamma \sum_{s'} p(s'|a, s_{t}) \cdot \max_{a'} Q^{*}(s', a')$$

- Set on nonlinear equations.
- Same issues as before.

Q-learning intuition

- Q-learning is a simple algorithm to find the optimal policy without knowing the model.
- Q^* is the unique solution to the optimal Bellman equation.

$$Q^*(s,a) = \mathbb{E}\left[r_{t+1}|s_t = s, a_t = a\right] + \gamma \underset{s_{t+1}}{\mathbb{E}}\left[\max_{a'} Q^*(s_{t+1},a')|s_t = s, a_t = a\right]$$

- We don't know the model and don't want to update all states simultaneously.
- Solution given sample $s_t, a_t, r_{t+1}, s_{t+1}$ from the environment update your Q-values so they are closer to satisfying the bellman equation.
 - off-policy method: Samples don't have to be from the optimal policy.
- Samples need to be diverse enough to see everything exploration.

- Given Q-value the best thing we can do (given our limited knowledge) is to take a = arg max_a, Q(s, a) - exploitation
- How do we balance exploration with exploitation?
- Simplest solution: ϵ -greedy.
 - With probability 1ϵ pick $a = \arg \max_{a'} Q(s, a')$ (i.e. greedy)
 - With probability ϵ pick any other action uniformly.
- Another idea softmax using Q values
 - With probability 1ϵ pick $a = \arg \max_{a'} Q(s, a')$ (i.e. greedy)
 - With probability ϵ pick any other action with probability $\propto \exp(\beta Q(s, a))$.
- Other fancier solutions exist, many leading methods use simple ϵ -greedy sampling.

 $\begin{array}{l} \mbox{Initialize } Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), \mbox{ arbitrarily, and } Q(terminal-state, \cdot) = 0 \\ \mbox{Repeat (for each episode):} \\ \mbox{ Initialize } S \\ \mbox{Repeat (for each step of episode):} \\ \mbox{ Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., ε-greedy)} \\ \mbox{ Take action } A, \mbox{ observe } R, \ S' \\ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ S \leftarrow S'; \\ \mbox{ until } S \mbox{ is terminal} \\ \end{array}$

- Can prove convergence to the optimal Q^* under mild conditions.
- Update is equivalent to gradient descent on loss $||R + \gamma \max_{a} Q(S', a) Q(s, a)||^2$.
- At optimal Q, the loss is 0.

- Another way to think about Q-learning.
- Q(s, a) is the expected reward, can use Monte-Carlo estimation.
- Problem you update only after the episode ends, can be very long (or infinite).
- Q-learning solution take only 1 step forward and estimate the future using our Q value **bootstrapping**.
 - "learn a guess from a guess"
- Q-learning is just one algorithm in a family of algorithms that use this idea.

Function approximation

- Q-learning still scales badly with large state spaces, how many states does a chess game have? Need to save the full table!
- Similar states, e.g. move all chess pieces two steps to the left, at treated as totally different.
- Solution: Instead of Q being a $S \times A$ table it is a parametrized function.
- Looking for function $\hat{Q}(s, a; \mathbf{w}) \approx Q^*(s, a)$
 - Linear functions $Q(s, a; \mathbf{w}) = \mathbf{w}^T \phi(s, a)$.
 - Neural network
- Hopefully can generalize to unseen states.
- Problem: Each change to parameters changes all states/actions can lead to instability.
- For non-linear Q-learning can diverge.

Deep Q-learning

- We have a function approximator Q(s, a; θ), standard is neural net but doesn't have to be.
- What is the objective that we are optimizing?
- We want to minimize $\mathbb{E}_{
 ho}[||R + \gamma \max_{a'} Q(S', a') Q(s, a)||^2]$
 - ρ is a distribution over states, depends on θ !
- Two terms depend on Q, don't want to take gradients w.r. to $\gamma \max_a Q(S', a)$
- We want to correct our previous estimation given the new information. online Q iteration algorithm:

1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2. $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$ Figure: Take from:rll.berkeley.edu/deeprlcourse

• This simple approach doesn't work well as is.

Issues and solutions

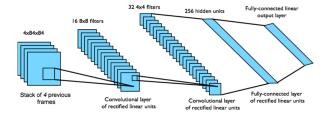
- Problem: data in the minibatch is highly correlated
 - Consecutive samples are from the same eposide and probably similar states.
 - Solution: Replay memory.
 - You store a large memory buffer of previous (*s*, *a*, *r*, *s'*) (notice this is all you need for Q-learning) and sample from it to get diverse minibatch.
- Problem: The data distribution keeps changing
 - Since we aren't optimizing y_i its like solving a different (but related) least squares each iteration.
 - We can stabilize by fixing a target network for a few iterations
 - ▶ 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$, add it to \mathcal{B}
 - 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5. update φ': copy φ every N steps
 Figure: Take from:rll.berkeley.edu/deeprlcourse

Example: DQN on atari

• Trained a NN from scratch on atari games



Ablation study

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

- Learning from experience not from labeled examples.
- Why is RL hard?
 - Limited feedback.
 - Delayed rewards.
 - Your model effect what you see.
 - Huge state space.
- Usually solved by learning the value function or optimizing the policy (not covered)
- How do you define the rewards? Can be tricky.
 - Bad rewards can lead to reward hacking

- Try to find Q that satisfies the optimal Bellman conditions
- Off-policy algorithm Doesn't have to follow a greedy policy to evaluate it.
- **Model free** algorithm Doesn't have any model for instantaneous reward or dynamics.
- Learns a seperate value for each *s*, *a* pair doesn't scale up to huge state spaces.
- Can scale using a function approximation
 - No more theoretical guarantees.
 - Can diverge.
 - Some simple tricks help a lot.