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Reinforcement Learning Problem

In supervised learning, the problem is to predict an output t given an input x .

But often the ultimate goal is not to predict, but to make decisions, i.e.,
take actions.

And we need to take a sequence of actions.

The actions have long-term consequences.Reinforcement Learning (RL)

An agent observes the 
world

takes an action and 
its states changes

with the goal of 
achieving long-term 
rewards.

Reinforcement Learning Problem: An agent continually interacts with the 
environment. How should it choose its actions so that its long-term rewards are 
maximized?

Also might be called: 
• Adaptive Situated Agent Design 
• Adaptive Controller for Stochastic Nonlinear Dynamical Systems

Reinforcement Learning Problem: An agent continually interacts with the
environment. How should it choose its actions so that its long-term rewards are
maximized?
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Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk


Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_l4U9A
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Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE
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Reinforcement Learning Resources

Reinforcement Learning: An Introduction second edition, Sutton & Barto
Book (2018)

Video lectures by David Silver
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https://www.youtube.com/watch?v=2pWv7GOvuf0


Reinforcement Learning

Learning algorithms differ in the information available to learner

Supervised: correct outputs, e.g., class label

Unsupervised: no feedback, must construct measure of good output

Reinforcement learning: Reward (or cost)

More realistic learning scenario:

Continuous stream of input information, and actions

Effects of action depend on state of the world

Obtain reward that depends on world state and actions

You know the reward for your action, not other actions.
Could be a delay between action and reward.
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Reinforcement Learning
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Example: Tic Tac Toe, Notation
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Example: Tic Tac Toe, Notation
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Example: Tic Tac Toe, Notation
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Example: Tic Tac Toe, Notation
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Formalizing Reinforcement Learning Problems

Markov Decision Process (MDP) is the mathematical framework to describe
RL problems

A discounted MDP is defined by a tuple (S,A,P,R, γ).

S: State space. Discrete or continuous
A: Action space. Here we consider finite action space, i.e.,
A = {a1, . . . , a|A|}.
P: Transition probability
R: Immediate reward distribution
γ: Discount factor (0 ≤ γ < 1)
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Formalizing Reinforcement Learning Problems

The agent has a state s ∈ S in the environment, e.g., the location of X and
O in tic-tac-toc, or the location of a robot in a room.

At every time step t = 0, 1, . . . , the agent is at state st .

Takes an action at
Moves into a new state st+1, according to the dynamics of the
environment and the selected action, i.e., st+1 ∼ P(·|st , at)
Receives some reward rt+1 ∼ R(·|st , at , st+1)

<latexit sha1_base64="jsVk2wqUYQLyJV+kHrWSdo6cMHs="></latexit>
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Formulating Reinforcement Learning

The action selection mechanism is described by a policy π

Policy π is a mapping from states to actions, i.e., at = π(st)

The goal is to find a policy π such that long-term rewards of the agent is
maximized.

Different notations of long-term reward:

Average reward:
rt + rt+1 + rt+2 + . . .

Sometimes a future reward is discounted by γk−1, where k is the
number of time-steps in the future when it is received:

rt + γrt+1 + γ2rt+2 + . . .

If γ close to 1, rewards further in the future count more, and we say
that the agent is “farsighted”
γ is less than 1 because there is usually a time limit to the sequence of
actions needed to solve a task (we prefer rewards sooner rather than
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Transition Probability (or Dynamics)

The transition probability describes the changes in the state of the agent
when it chooses actions

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

This model has Markov property: the future depends on the past only
through the current state
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Policy

A policy is the action selection mechanism of the agent, and describes its
behaviour.

Policy can be deterministic or stochastic:

Deterministic policy: a = π(s)
Stochastic policy: A ∼ π(·|s)
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Value Function

Value function is the expected future reward, and is used to evaluate the
desirability of states.

State-value function V π (or simply value function) for policy π is a function
defined as

V π(s) , Eπ

∑
t≥0

γtRt | S0 = s

 .
It describes the expected discounted reward if the agent starts from state s
and follows policy π.

The action-value function Qπ for policy π is

Qπ(s, a) , Eπ

∑
t≥0

γtRt | S0 = s,A0 = a

 .
It describes the expected discounted reward if the agent starts from state s,
takes action a, and afterwards follows policy π.
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Value Function

Our aim will be to find a policy π that maximizes the value function (the
total reward we receive over time): find the policy with the highest expected
reward

Optimal value function:

Q∗(s, a) = sup
π

Qπ(s, a)

Given Q∗, the optimal policy can be obtained as

π∗(s)← argmax
a

Q∗(s, a)

The goal of an RL agent is to find a policy π that is close to optimal, i.e.,
Qπ ≈ Q∗.
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Bellman Equation

The value function satisfies the following recursive relationship:

Qπ(s, a) = E

[ ∞∑
t=0

γtRt |S0 = s,A0 = a

]

= E

[
R(S0,A0) + γ

∞∑
t=0

γtRt+1|s0 = s, a0 = a

]
= E [R(S0,A0) + γQπ(S1, π(S1))|S0 = s,A0 = a]

= r(s, a) + γ

∫
S
P(ds ′|s, a)Qπ(s ′, π(s ′))︸ ︷︷ ︸

,(TπQπ)(s,a)

This is called the Bellman equation and Tπ : B(S ×A)→ B(S ×A) is the
Bellman operator. Similarly, we define the Bellman optimality operator:

(T ∗Q)(s, a) , r(s, a) + γ

∫
S
P(ds ′|s, a) max

a′∈A
Q(s ′, a′)
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Bellman Equation

Key observation:

Qπ = TπQπ

Q∗ = T ∗Q∗

Value-based approaches try to find a Q̂ such that

Q̂ ≈ T ∗Q̂

The greedy policy of Q̂ is close to the optimal policy:

Qπ(x ;Q̂) ≈ Q∗

where the greedy policy is defined as

π(s; Q̂)← argmax
a∈A

Q̂(s, a)
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Finding the Optimal Value Function: Value Iteration

Assume that we know the model P and R. How can we find the optimal
value function?

This is the problem of Planning.

We can benefit from the Bellman optimality equation and use a method
called Value Iteration

Qk+1 ← T ∗Qk

Bellman operator T ∗

Qk

Qk+1 ← T ∗Qk

Q∗

Qk+1(s, a)← r(s, a) + γ

∫
S
P(ds ′|s, a) max

a′∈Å
Qk(s ′, a′)

Qk+1(s, a)← r(s, a) + γ
∑
s′∈S
P(s ′|s, a) max

a′∈Å
Qk(s ′, a′)
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Value Iteration

The Value Iteration converges to the optimal value function.

This is because of the contraction property of the Bellman (optimality)
operator, i.e., ‖T ∗Q1 − T ∗Q2‖∞ ≤ γ ‖Q1 − Q2‖∞.

Qk+1 ← T ∗Qk

Qk+1(s, a)← r(s, a) + γ

∫
S
P(ds ′|s, a) max

a′∈Å
Qk(s ′, a′)

Qk+1(s, a)← r(s, a) + γ
∑
s′∈S
P(s ′|s, a) max

a′∈Å
Qk(s ′, a′)
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Maze Example

Rewards: −1 per time-step

Actions: N, E, S, W

States: Agent’s location

[Slide credit: D. Silver]
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Maze Example

Arrows represent policy π(s)
for each state s

[Slide credit: D. Silver]
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Maze Example

Numbers represent value V π(s)
of each state s

[Slide credit: D. Silver]
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Example: Tic-Tac-Toe

Consider the game tic-tac-toe:

reward: win/lose/tie the game (+1/− 1/0) [only at final move in
given game]

state: positions of X’s and O’s on the board

policy: mapping from states to actions

based on rules of game: choice of one open position

value function: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, we can use a table to represent
value function
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RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

start with all values = 0.5
policy: choose move with highest
probability of winning given current
legal moves from current state
update entries in table based on
outcome of each game
After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)
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