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Overview

We’ve covered both parametric and nonparametric models for
regression and classification.

Parametric models summarize the data into a model with a finite
number of parameters. E.g., linear regression, logistic regression, neural
nets, (linear) SVM, Näıve Bayes, GDA
Nonparametric models refer back to the data to make predictions.
E.g., KNN

The next two lectures are about Bayesian approaches to regression.

This lecture: Bayesian linear regression, a parametric model
Next lecture: Gaussian processes, a nonparametric model
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Overview

We’re going to be Bayesian about the parameters of the model, i.e.
model them as random variables

Do not confuse a Bayesian approach with using Bayes rule! i.e. näıve
Bayes and GDA used Bayes’ rule to infer the class, but used point
estimates of the parameters.
By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

How can uncertainty in the predictions help us?

Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)
Assign confidences to predictions
Make more robust decisions
Guide exploration (focus on areas you’re uncertain about)

E.g., Bayesian optimization (see next tutorial)
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Recap: Linear Regression

Given a training set D of inputs and targets {(x(n), t(n))}Nn=1, use
linear model with fixed feature mapping φ

y = w>φ(x)

Squared error cost (aka least-squares objective):

1

2

[
N∑

n=1

(w>φ(x(n))− t(n))2

]
L2 regularization:

λ

2
‖w‖2

Let Φ be data matrix:

Φ =

— φ(x(1))> —
...

— φ(x(N))> —


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Recap: Linear Regression

Solution 1: solve analytically by setting the gradient to 0

w = (Φ>Φ + λI)−1Φ>t

Solution 2: solve approximately using gradient descent

w← (1− αλ)w − αΦ>(y − t)
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Recap: Linear Regression

We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t | x ∼ N (w>φ(x), σ2)

Minimizing least squares objective is equivalent to maximizing likelihood under this
model:

1

N

N∑
n=1

log p(t(n) | x(n); w) =
1

N

N∑
n=1

logN (t(n); w>φ(x(n)), σ2)

=
1

N

N∑
n=1

log

[
1√
2πσ

exp

(
− (t(n) − w>φ(x(n)))2

2σ2

)]

= const− 1

2Nσ2

N∑
n=1

(t(n) − w>φ(x(n)))2
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Recap: Linear Regression

We can view an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

arg max
w

log p(w | D) = arg max
w

log p(w) + log p(D |w)− log p(D)︸ ︷︷ ︸
constant w.r.t. w


We just derived the likelihood term log p(D |w):

log p(D |w) = − 1

2Nσ2

N∑
n=1

(t(n) − w>φ(x(n)))2 + const

Assume a Gaussian prior, w ∼ N (m,S). Commonly, m = 0 and S = ηI, so:

log p(w) = logN (w; 0, ηI)

= log

(
1

(2π)D/2ηD/2
exp

(
− 1

2η
wTw

))
= − 1

2η
‖w‖2 + const.

This is just L2 regularization!
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(t | x,D) =

∫
p(w | D) p(t | x,w) dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations
for how the data were generated.
It makes predictions using all possible regression weights, weighted by
their posterior probability.

We can visualize how p(w|D) changes with more data by sampling
w ∼ p(w|D) and plotting y = wTx:

Prior distribution: w ∼ N (0, ηI )

Likelihood: t | x,w ∼ N (w>φ(x), σ2)

η and σ2 are hyperparameters
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D |w) + const

= − 1
2η

w>w − 1

2σ2

N∑
n=1

(wTφ(x(n))− t(n))2 + const

= − 1
2η

w>w − 1

2σ2
‖Φw − t‖2 + const

= − 1
2η

w>w − 1

2σ2
(Φw − t)>(Φw − t) + const

= − 1
2η

w>w − 1

2σ2

(
w>Φ>Φw − 2t>Φw + t>t

)
+ const

= − 1
2
(w − µ)>Σ−1(w − µ) + const (complete the square!)

where
µ = σ−2ΣΦ>t

Σ−1 = σ−2Φ>Φ + η−1I
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Bayesian Linear Regression: Posterior

log p(w | D) = −1
2(w − µ)>Σ−1(w − µ) + const

where
µ = σ−2ΣΦ>t, Σ−1 = σ−2Φ>Φ + η−1I

Hence:

p(w | D) = exp(−1
2(w − µ)>Σ−1(w − µ)) exp(const)

∝ exp(−1
2(w − µ)>Σ−1(w − µ))

This is a multivariate Gaussian distribution, i.e.

w | D ∼ N (µ,Σ)
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Bayesian Linear Regression: Posterior

Just showed:

w | D ∼ N (µ,Σ)

µ = σ−2ΣΦ>t

Σ−1 = σ−2Φ>Φ + η−1I

Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

Compare µ with the closed-form solution for linear regression:

µ = σ−2(σ−2Φ>Φ + η−1I )−1Φ>t

w = (Φ>Φ + λI)−1Φ>t
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning

UofT CSC 411: 19-Bayesian Linear Regression 13 / 27



Bayesian Linear Regression: Posterior

Aside: why are likelihood contours lines?

c = N (t|w0x0 + w1x1, σ
2)

=⇒ c = d exp

(
− 1

2σ2
(t − w0x0 − w1x1)2

)
=⇒

√
−2σ2 log(c/d) = t − w0x0 − w1x1

Set e =
√
−2σ2 log(c/d):

e = t − w0x0 − w1x1

=⇒ w1 =
1

x1
(t − w0x0 − e)

We find w1 is a linear function of w0
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Bayesian Linear Regression

Example with radial basis function (RBF) features

φj(x) = exp

(
−

(x − µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning

φ(x) =

φ1(x)
...

φJ(x)


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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Posterior predictive distribution:

p(t | x,D) =

∫
p(t | x,w)︸ ︷︷ ︸

N (t ;w>φ(x),σ2)

p(w | D)︸ ︷︷ ︸
N (w ;µ,Σ)

dw

Another interpretation: t = w>φ(x) + ε, where ε ∼ N (0, σ2) is
independent of w.

By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

µpred = µ>φ(x)

σ2pred = φ(x)>Σφ(x) + σ2

Hence, the posterior predictive distribution is N (t ; µpred, σ
2
pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Decision Theory

What do we actually do with the posterior predictive distribution
p(t | x,D)?

Often, we want to make a decision. We can formulate this as
minimizing an expected loss under the posterior predictive
distribution. This is known as decision theory.

Simple example: we have an entire distribution over targets
p(t | x,D). How should we choose a single prediction to make?

One criterion: choose single prediction y to minimize the expected
squared error loss.

arg min
y

Ep(t | x,D)[(y − t)2] = Ep(t | x,D)[t] = µpred

Same derivation as bias/variance from Lecture 4

Another criterion: minimize the expected absolute value loss. You can
show that you should pick the median of p(t | x,D)
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Optional material
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Occam’s Razor (optional)

Occam’s Razor: “Entities should not be multiplied beyond necessity.”

Named after the 14th century British theologian William of Occam

Huge number of attempts to formalize mathematically

See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

Common misinterpretation: your prior should favor simple
explanations
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Occam’s Razor (optional)

Suppose you have a finite set of models, or hypotheses {Hi}Mi=1

(e.g. polynomials of different degrees)

Posterior inference over models (Bayes’ Rule):

p(Hi | D) ∝ p(Hi )︸ ︷︷ ︸
prior

p(D |Hi )︸ ︷︷ ︸
evidence

Which of these terms do you think is more important?

The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

p(D |Hi ) =

∫
p(w |Hi ) p(D |w,Hi )dw

If we’re comparing a handful of hypotheses, p(Hi ) isn’t very
important, so we can compare them based on marginal likelihood.
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Occam’s Razor (optional)

Suppose M1, M2, and M3 denote a linear, quadratic, and cubic model.

M3 is capable of explaning more datasets than M1.

But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

— Bishop, Pattern Recognition and Machine Learning

UofT CSC 411: 19-Bayesian Linear Regression 23 / 27



Occam’s Razor (optional)

How does the evidence (or marginal likelihood) penalize complex
models?

Approximating the integral:

p(D |Hi ) =

∫
p(D |w,Hi ) p(w |Hi )

' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) ∆w︸ ︷︷ ︸
Occam factor
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Occam’s Razor (optional)

Multivariate case:

p(D |Hi ) ' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) |A|−1/2︸ ︷︷ ︸
Occam factor

,

where A = ∇2
w log p(D |w,Hi )

The determinant appears because we’re
taking the volume.

The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

— Bishop, Pattern Recognition and Machine
Learning
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Occam’s Razor (optional)

Analyzing the asymptotic behavior:

A = ∇2
w log p(D |w,Hi )

=
N∑
j=1

∇2
w log p(yi | xi ,w,Hi )︸ ︷︷ ︸

,Ai

≈ N E[Ai ]

log Occam factor = log p(wMAP |Hi ) + log |A|−1/2

≈ log p(wMAP |Hi ) + log |N E[Ai ]|−1/2

= log p(wMAP |Hi )−
1

2
log |E[Ai ]| −

D logN

2

= const− D logN

2

Bayesian Information Criterion (BIC): penalize the complexity of your model by
1
2
D logN.
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Occam’s Razor (optional)

Summary

p(Hi | D) ∝ p(Hi ) p(D |Hi )

p(D |Hi ) ' p(D |wMAP,Hi ) p(wMAP |Hi ) |A|−1/2

Asymptotically, with lots of data, this behaves like

log p(D |Hi ) = log p(D |wMAP,Hi )−
1

2
D logN.

Occam’s Razor is about integration, not priors (over hypotheses).
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