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Overview

@ We've covered both parametric and nonparametric models for
regression and classification.

e Parametric models summarize the data into a model with a finite
number of parameters. E.g., linear regression, logistic regression, neural
nets, (linear) SVM, Naive Bayes, GDA

o Nonparametric models refer back to the data to make predictions.
E.g., KNN

@ The next two lectures are about Bayesian approaches to regression.

o This lecture: Bayesian linear regression, a parametric model

o Next lecture: Gaussian processes, a nonparametric model
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Overview

@ We're going to be Bayesian about the parameters of the model, i.e.
model them as random variables

o Do not confuse a Bayesian approach with using Bayes rule! i.e. naive
Bayes and GDA used Bayes' rule to infer the class, but used point
estimates of the parameters.

e By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

@ How can uncertainty in the predictions help us?

e Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)

o Assign confidences to predictions

e Make more robust decisions
o Guide exploration (focus on areas you're uncertain about)

e E.g., Bayesian optimization (see next tutorial)
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Recap: Linear Regression

e Given a training set D of inputs and targets {(x("), t(M)}N__ use
linear model with fixed feature mapping ¢

y =w'¢(x)

@ Squared error cost (aka least-squares objective):

N
; [Z(w%(x% - r<">)2]
n=1

@ L, regularization:

2wl

o Let ® be data matrix:

J— ¢(X(1))T J—
b= :
— o(xMT  —
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Recap: Linear Regression

@ Solution 1: solve analytically by setting the gradient to 0

w=(dTd+A) Tt

@ Solution 2: solve approximately using gradient descent

we (1—ad)w—ad’(y—t)
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Recap: Linear Regression

@ We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

tlx ~N(w'(x), o°)

@ Minimizing least squares objective is equivalent to maximizing likelihood under this

model:
1 & 1 &

_ /i/nZle)g {\/21?0 exp (_(t(n) _ V;;js(x(n))y)]

N
_ 1 (n) T L ro(my2
—const—mg(t —w'p(x\"))
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Recap: Linear Regression

@ We can view an L, regularizer as MAP inference with a Gaussian prior.
@ Recall MAP inference:

arg max log p(w | D) = argmax |log p(w) + log p(D |w) — log p(D)
w w W—/
constant w.r.t. w.

@ We just derived the likelihood term log p(D | w):

log p(D |w) = N T Z —w ' p(x"))? + const

@ Assume a Gaussian prior, w ~ A (m,S). Commonly, m =0 and S = nl, so:

log p(w) = log N'(w; 0, nl)
= log (é exp (—inw>>
(27)D/2D/2 2n
1 2
= fZHWH + const.

This is just Ly regularization!
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes' Rule:

p(w|D) o< p(w)p(D | w)

Make predictions using the posterior predictive distribution:

ple D) = [ p(w| D) p(t | x, w) dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

o Bayesian linear regression considers various plausible explanations
for how the data were generated.
@ It makes predictions using all possible regression weights, weighted by
their posterior probability.
o We can visualize how p(w|D) changes with more data by sampling
w ~ p(w|D) and plotting y = w'x:

= = =

no observations one observation two observations
e Prior distribution: w ~ N (0,7/)
o Likelihood: t|x,w ~ N (w'¢(x), 02)
e 7 and o2 are hyperparameters
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Bayesian Linear Regression: Posterior

@ Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D | w) + const
N
T 1 T n n)y2
=W w— 557 Z(w (x) — t(M)? 4 const
n=1
=—Ztw'w— i||d>w —t]|* 4 const
- 2n 20-2
T 1 T
= _ﬁw w— ﬁ(d)w —t) (dw —t) + const
= fzinw _ L (WT¢T¢W — 2t dw + tTt) + const
n 252

=—1(w-— ) 7N (w — p) + const (complete the square!)

where
p=oc2Zo’t
T l=020To4+9l
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Bayesian Linear Regression: Posterior

log p(w | D) = —5(w — ) = 7w — p) + const
where
p=0Xd't, s l=0"20Td 4+

@ Hence:

p(w|D) = exp(—5(w — ) 'E~}(w — p)) exp(const)
(w—p) =7 (w— p))

Nl= NI

x exp(—

@ This is a multivariate Gaussian distribution, i.e.

w|D ~N(p, X)
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Bayesian Linear Regression: Posterior

@ Just showed:
w|D ~ N (u,X)
p=o0’Xod't
T l=020Td 7l

@ Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

o Compare p with the closed-form solution for linear regression:

p=o02(c20To+np1N1oTt
w=(¢To+A)toTt
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Bayesian Linear Regression

likelihood prior/posterior data space
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression: Posterior

@ Aside: why are likelihood contours lines?
c= N(t‘WoXo + wixy, 0'2)

1
(t — woxg — W1X1)2)

— c=dexp (—22
o

= 1/ —20?log(c/d) =t — woxg — wix1

e Set e = \/—202log(c/d):

e=1— wyxg — wix1
1

— wy = ;(t— WoXo —e)
1

@ We find wy is a linear function of wy
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Bayesian Linear Regression

e Example with radial basis function (RBF) features

o101 = (~E20)

252

/Y
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— Bishop, Pattern Recognition and Machine Learning
¢1(x)
ox)=1|
¢4(x)
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

@ Posterior predictive distribution:

p(t\x,D):/ p(t|x,w) p(w|D) dw
N(t;wT é(x),02) N(w;p,X)

o Another interpretation: t = w' ¢(x) + ¢, where ¢ ~ N(0,02) is
independent of w.

@ By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

Hpred = NT¢(X)
Ohred = H(X) T Ep(x) + 0°

@ Hence, the posterior predictive distribution is A/(t; /‘predvagred)-
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Decision Theory

@ What do we actually do with the posterior predictive distribution
p(t|x,D)?

@ Often, we want to make a decision. We can formulate this as
minimizing an expected loss under the posterior predictive
distribution. This is known as decision theory.

@ Simple example: we have an entire distribution over targets
p(t|x,D). How should we choose a single prediction to make?

@ One criterion: choose single prediction y to minimize the expected
squared error loss.

arg min Ep(e | 0)[(v = £)°] = Epe| x0)[t] = Hprea

o Same derivation as bias/variance from Lecture 4

@ Another criterion: minimize the expected absolute value loss. You can
show that you should pick the median of p(t|x, D)
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Optional material
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Occam'’s Razor (optional)

@ Occam's Razor: “Entities should not be multiplied beyond necessity.”
o Named after the 14th century British theologian William of Occam
@ Huge number of attempts to formalize mathematically
e See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf
@ Common misinterpretation: your prior should favor simple
explanations
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Occam'’s Razor (optional)

@ Suppose you have a finite set of models, or hypotheses {’H,-},-"il
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):
p(Hi|D) < p(Hi) p(D | ;)
N ——
prior  evidence

@ Which of these terms do you think is more important?

@ The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

P(D 1) = [ plw | #:) p(D | w, 1)

o If we're comparing a handful of hypotheses, p(H;) isn't very
important, so we can compare them based on marginal likelihood.
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Occam'’s Razor (optional)

@ Suppose My, M, and M3 denote a linear, quadratic, and cubic model.
@ Mjs is capable of explaning more datasets than M.

@ But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

4

p(D) M,

M

("

Dy

D

— Bishop, Pattern Recognition and Machine Learning
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Occam'’s Razor (optional)

@ How does the evidence (or marginal likelihood) penalize complex
models?

@ Approximating the integral:

p(D|H;) = / p(D |w, H;) p(w | H;)

~ p(D|wynap, Hi) p(Wnmap | Hi) Aw

best-fit likelihood OCC&I’;}’ factor
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Occam'’s Razor (optional)

likelihood priorfposterior data space
1 1

@ Multivariate case: @ §
p(D|Hi) = p(D | waiap, Hi) p(wuar | H) A 72, ' i §
best-fit likelihood Occam factor " ‘ Y

where A = V2 log p(D | w, H,)

@ The determinant appears because we're
taking the volume.

@ The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

Bl 0wy ! - 0wy ! gl ooz 1

— Bishop, Pattern Recognition and Machine
Learning
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Occam'’s Razor (optional)

@ Analyzing the asymptotic behavior:

A =V log p(D|w,H;)

N
- Z V2 log p(yi | xi, w, ;)

j=1

2
~ NE[A]]

log Occam factor = log p(wnmap | Hi) + log |A|71/2

~ log p(wniap | Hi) + log [N E[A]| />
Dlog N
2

1
= log p(waiap | Hi) — 5 log [E[A]] —

Dlog N

= const —
" 2

@ Bayesian Information Criterion (BIC): penalize the complexity of your model by
1
sDlog N.
2
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Occam'’s Razor (optional)

@ Summary

p(H;i|D) o< p(H;) p(D | H;)
p(D| ;) ~ p(D | waap, Hi) p(waiap | Hi) |A] 722

Asymptotically, with lots of data, this behaves like
1
log p(D | 1) = log p(D | wnap, H;) — 5 Dlog N.

@ Occam'’s Razor is about integration, not priors (over hypotheses).
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