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A Generative View of Clustering

Last time: hard and soft k-means algorithm

This lecture: probabilistic formulation of clustering

We need a sensible measure of what it means to cluster the data well

I This makes it possible to judge different methods
I It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

I Then we adjust the model parameters using maximum likelihood i.e. to
maximize the probability that it would produce exactly the data we
observed
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The Generative Model

We’ll be working with the following generative model for data x ∈ RD

Assume a datapoint x is generated as follows:
I Choose a cluster z from {1, . . . ,K} such that p(z = k) = πk
I Given z , sample x from a Gaussian distribution N (µz , I )

Can also be written:
p(z = k) = πk

p(x|z = k) = N (x|µk , I )
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Clusters from Generative Model

This defines a joint distribution p(z , x) = p(z)p(x|z) with parameters
{πk , µk}Kk=1

p(z = k |x) can be computed using Bayes rule and tells us the
probability x came from the kth cluster

How should we choose the parameters {πk , µk}Kk=1?
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Maximum Likelihood with Latent Variables

Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

We don’t observe the cluster assignments z- we only see the data x

Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =
N∑

n=1

log p(x(n))

We can find p(x) by marginalizing out z :

p(x) =
K∑

k=1

p(z = k , x) =
K∑

k=1

p(z = k)p(x|z = k)
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Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =
K∑

k=1

p(z = k)p(x|z = k) =
K∑

k=1

πkN (x|µk , I )

This distribution is an example of a Gaussian Mixture Model (GMM),
and πk are known as the mixing coefficients

If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even diagonal
GMMs are universal approximators.
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Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:

log p(D) =
N∑

n=1

log p(x(n)) =
N∑

n=1

log

(
K∑

k=1

πkN (x(n)|µk , I )

)

How would you optimize this w.r.t. parameters {πk , µk}?
I No closed form solution when we set derivatives to 0
I Difficult because sum inside the log

One option: gradient ascent. Can we do better?

Can we have a closed form update?
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Maximum Likelihood

Observation: if we knew z (n) for every x(n), (i.e. our dataset was
Dcomplete = {(z (n), x(n))}Nn=1) the maximum likelihood problem is easy:

log p(Dcomplete) =
N∑

n=1

log p(z (n), x(n))

=
N∑

n=1

log p(x(n)|z (n)) + log p(z (n))

=
N∑

n=1

K∑
k=1

I[z (n) = k](logN (x(n)|µk , I ) + log πk)
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Maximum Likelihood

log p(Dcomplete) =
N∑

n=1

K∑
k=1

I[z (n) = k](logN (x (n)|µk , I ) + log πk)

We have been optimizing something similar for Gaussian bayes classifiers

We would get this:

µk =

∑N
n=1 I[z (n) = k] x(n)∑N

n=1 I[z (n) = k]

πk =
1

N

N∑
n=1

I[z (n) = k]
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Maximum Likelihood

We don’t know z (n) for every x(n), but we can compute p(z (n)|x(n)) using
Bayes rule

Conditional probability (using Bayes rule) of z given x

p(z = k |x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk , I )∑K
j=1 πjN (x|µj , I )
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Maximum Likelihood

log p(Dcomplete) =
N∑

n=1

K∑
k=1

I[z (n) = k](logN (x (n)|µk , I ) + log πk)

If we plug in r
(n)
k = p(z (n) = k |x(n)) for I[z (n) = k], we get:

N∑
n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk , I ) + log πk)

This is still easy to optimize! Solution is similar to what we have seen:

µk =

∑N
n=1 r

(n)
k x(n)∑N

n=1 r
(n)
k

πk =

∑N
n=1 r

(n)
k

N

Note: this only works if we treat r
(n)
k as fixed − really, it depends on the

model parameters as well
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How Can We Fit a Mixture of Gaussians?

This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r
(n)
k = p(z (n) = k|x (n))

given our current model - i.e. how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the parameters,

assuming r
(n)
k are held fixed- change the parameters of each Gaussian

to maximize the probability that it would generate the data it is
currently responsible for.
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EM Algorithm for GMM

Initialize the means µk and mixing coefficients πk

Iterate until convergence:

I E-step: Evaluate the responsibilities r
(n)
k given current parameters

r
(n)
k = p(z (n) = k|x(n)) =

πkN (x(n)|µk , I )∑K
j=1 πjN (x(n)|µj , I )

I M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
n=1

r
(n)
k x(n)

πk =
Nk

N
with Nk =

N∑
n=1

r
(n)
k

I Evaluate log likelihood and check for convergence

log p(D) =
N∑

n=1

log

(
K∑

k=1

πkN (x(n)|µk , I )

)
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What just happened: A review

The maximum likelihood objective
∑N

n=1 log p(x(n)) was hard to
optimize

The complete data likelihood objective was easy to optimize:

N∑
n=1

log p(z(n), x(n)) =
N∑

n=1

K∑
k=1

I[z(n) = k](logN (x(n)|µk , I ) + log πk)

We don’t know z(n) for each x(n), so we replaced I[z(n) = k] with

r
(n)
k = p(z(n) = k |x(n))

Another way of saying this: we replaced I[z(n) = k] with its
expectation under p(z(n)|x (n))
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What just happened: A review

We ended up with the expected complete data log-likelihood:

N∑
n=1

Ep(z(n)|x(n))[log p(z(n), x(n))] =
N∑

n=1

K∑
k=1

r
(n)
k (logN (x(n)|µk , I )+log πk)

The EM algorithm alternates between:

I The E-step: computing the r
(n)
k = p(z (n) = k |x(n)) (i.e. the

expectations Ep(z(n)|x(n))[I[z (n) = k]]) given the current model
parameters πk , µk

I The M-step: update the model parameters πk , µk to optimize the
expected complete data log-likelihood
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What just happened: A review

Why does this make sense? In the next lecture, we’ll see how EM is
optimizing the observed data log-likelihood

∑N
n=1 log p(x(n)) in a

somewhat roundabout fashion

We’ll give a principled justification of the EM algorithm and describe
how it can be applied to general latent variable models
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Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the average of the data

assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.
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Further Discussion

We assumed the covariance of each Gaussian was I to simplify the math.
This assumption can be removed, allowing clusters to have different spatial
extents

Possible problems with maximum likelihood objective:

I Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point with variance shrinking to zero

I Non-convex

UofT CSC 411 Lec16 21 / 22



GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture model are very powerful models, universal
approximator

Optimization is done using the EM algorithm.
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