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A Generative View of Clustering

@ Last time: hard and soft k-means algorithm
@ This lecture: probabilistic formulation of clustering
@ We need a sensible measure of what it means to cluster the data well

» This makes it possible to judge different methods
» It may help us decide on the number of clusters

@ An obvious approach is to imagine that the data was produced by a
generative model

» Then we adjust the model parameters using maximum likelihood i.e. to
maximize the probability that it would produce exactly the data we
observed
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The Generative Model

o We'll be working with the following generative model for data x € RP
@ Assume a datapoint x is generated as follows:

» Choose a cluster z from {1,..., K} such that p(z = k) = 7
» Given z, sample x from a Gaussian distribution N (1, /)

@ Can also be written:
p(z = k) = mk

p(x|z = k) = N (x|p; 1)
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Clusters from Generative Model

@ This defines a joint distribution p(z,x) = p(z)p(x|z) with parameters
{ﬂ-ka Mk}l}le

@ p(z = k|x) can be computed using Bayes rule and tells us the
probability x came from the k" cluster

o How should we choose the parameters {7y, ux }K_,?
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Maximum Likelihood with Latent Variables

@ Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

@ We don't observe the cluster assignments z- we only see the data x

o Given data D = {x(M}N_, choose parameters to maximize:
log p(D) = Z log p(x(")
@ We can find p(x) by marginalizing out z:

K K
=Y p(z=k,x) = p(z=k)p(x|z = k)
k=1 k=1
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Gaussian Mixture Model (GMM)

What is p(x)?

K K
=3 p(z = Kp(xlz = k) = 3" mN (x|, 1)

k=1 k=1

@ This distribution is an example of a Gaussian Mixture Model (GMM),
and 7, are known as the mixing coefficients

@ If we allow arbitrary covariance matrices, GMMs are universal

approximators of densities (if you have enough Gaussians). Even diagonal
GMM s are universal approximators.
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Visualizing a Mixture of Gaussians — 1D Gaussians

@ If you fit a Gaussian to data:
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Now, we are trying to fit a GMM (with K = 2 in this example):
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Visualizing a Mixture of Gaussians — 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood objective:
N N K
log p(D) = _ log p(x(") =) " log (Z N (X |, /)>
n=1 n=1 k=1

@ How would you optimize this w.r.t. parameters {mx, s }?

» No closed form solution when we set derivatives to 0
» Difficult because sum inside the log

@ One option: gradient ascent. Can we do better?

@ Can we have a closed form update?
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Maximum Likelihood

@ Observation: if we knew z(") for every x("), (i.e. our dataset was
Deomplete = {(z(”),x("))}gzl) the maximum likelihood problem is easy:

|0g P complete Z |0g P X(n )

N
n=

iy

> log p(x("[z(") + log p(z(")

N
=1

n

ZZH[Z = Kk](log N'(x\" |11, 1) + log 7x)

k=1

=

n=

Uof T CSC 411 Lecl6 10 /22



Maximum Likelihood

N K
108 P(Deompiere) = 3 3 1z = K|(log (x| 1) + log i)
n=1 k=1

@ We have been optimizing something similar for Gaussian bayes classifiers

@ We would get this:

Z,’:’Zl I[z(M = k] x(")

e ZnNzl H[z(") = K]
1 N
_ (n) _
T = N ,?:1 I[z\" = k]
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Maximum Likelihood

@ We don’t know z(" for every x("), but we can compute p(z("|x(")) using
Bayes rule

@ Conditional probability (using Bayes rule) of z given x

plz = K)plxlz = k)
p(x)
p(z = K)p(xlz = )
S p(z = J)p(xlz = j)
kN (X ks 1)
Sy N (x| 1)

plz = kix) =
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Maximum Likelihood

N K
log p(Deompiete) = »_ > _ 12" = K](log N' (x| i, 1) + log )

n=1 k=1

o If we plug in r,E") = p(z(" = k|x(") for I[z{") = k], we get:

N K
S K (log N (x| jui, 1) + log i)

n=1 k=1

@ This is still easy to optimize! Solution is similar to what we have seen:

Zrlyzl r’En)X(,,)

Hi = N n
Zn:l rIE )
N
T = Zn:l rlEn)
N

@ Note: this only works if we treat r,&") as fixed — really, it depends on the

model parameters as well
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How Can We Fit a Mixture of Gaussians?

@ This motivates the Expectation-Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probabilities r,S") = p(z{" = k|x(")
given our current model - i.e. how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the parameters,
assuming r,S") are held fixed- change the parameters of each Gaussian
to maximize the probability that it would generate the data it is
currently responsible for.
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EM Algorithm for GMM

@ Initialize the means p, and mixing coefficients 7
@ lterate until convergence:

(n)

» E-step: Evaluate the responsibilities r,”” given current parameters

N (X |, 1)
Sy N (X |z, 1)

» M-step: Re-estimate the parameters given current responsibilities

r,En) _ p(z(") _ k|x(")) _

1 ()
_ n)_(n)
Mk = i ;:1 re'x
N
N . n
T = Wk with Nk:% r,E)

» Evaluate log likelihood and check for convergence

log p(D) = _ log <Z N (™ |, | ))

Uof T CSC 411 Lecl6 15 /22



=2 0 (d) 2 -2 0 (e) 2 -2 0 H

Uof T CSC 411 Lecl6



What just happened: A review

@ The maximum likelihood objective ZnN:I log p(x(") was hard to
optimize

@ The complete data likelihood objective was easy to optimize:

N N K
> log p(z,x(M) =3 3 "1z = K](log N (x|, 1) + log k)
n=1

n=1 k=1

o We don't know z(") for each x("), so we replaced I[z(") = k] with
) = p(z(M = Kk|x()
o Another way of saying this: we replaced I[z{") = k] with its
expectation under p(z("|x(M)
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What just happened: A review

@ We ended up with the expected complete data log-likelihood:

N N K

> B log p(z xM)] = SN K (1og N (x| jug, 1) -+log )

n=1 n=1 k=1

@ The EM algorithm alternates between:
> The E-step: computing the rl” = p(z(") = k|x(") (i.e. the
expectations ]Ep(z(mx(n))[]l[z(") = k]]) given the current model
parameters my, Lk
> The M-step: update the model parameters 7y, uyx to optimize the
expected complete data log-likelihood
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What just happened: A review

@ Why does this make sense? In the next lecture, we'll see how EM is
optimizing the observed data log-likelihood Z,’Yzl log p(x(M) in a
somewhat roundabout fashion

o We'll give a principled justification of the EM algorithm and describe
how it can be applied to general latent variable models
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Relation to k-Means

@ The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the average of the data
assigned to it

@ The EM Algorithm:
1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.
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Further Discussion

@ We assumed the covariance of each Gaussian was / to simplify the math.

This assumption can be removed, allowing clusters to have different spatial
extents

@ Possible problems with maximum likelihood objective:

» Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point with variance shrinking to zero
» Non-convex
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GMM Recap

@ A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

@ Model using latent variables.

@ General approach, can replace Gaussian with other distributions

(continuous or discrete)

@ More generally, mixture model are very powerful models, universal
approximator

Optimization is done using the EM algorithm.
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