CSC 411 Lecture 16: Expectation-Maximization for Mixture of Gaussians

Mengye Ren and Matthew MacKay

University of Toronto

- Last time: hard and soft k-means algorithm
- This lecture: probabilistic formulation of clustering
- We need a sensible measure of what it means to cluster the data well
 - This makes it possible to judge different methods
 - It may help us decide on the number of clusters
- An obvious approach is to imagine that the data was produced by a generative model
 - Then we adjust the model parameters using maximum likelihood i.e. to maximize the probability that it would produce exactly the data we observed

- We'll be working with the following generative model for data $\textbf{x} \in \mathbb{R}^{D}$
- Assume a datapoint **x** is generated as follows:
 - Choose a cluster z from $\{1, \ldots, K\}$ such that $p(z = k) = \pi_k$
 - Given z, sample x from a Gaussian distribution $\mathcal{N}(\mu_z, I)$
- Can also be written:

$$p(z = k) = \pi_k$$

 $p(\mathbf{x}|z = k) = \mathcal{N}(\mathbf{x}|\mu_k, I)$

- This defines a joint distribution $p(z, \mathbf{x}) = p(z)p(\mathbf{x}|z)$ with parameters $\{\pi_k, \mu_k\}_{k=1}^K$
- p(z = k|x) can be computed using Bayes rule and tells us the probability x came from the kth cluster
- How should we choose the parameters $\{\pi_k, \mu_k\}_{k=1}^{K}$?

Maximum Likelihood with Latent Variables

- Maximum likelihood principle: choose parameters to maximize likelihood of **observed data**
- We don't observe the cluster assignments z- we only see the data x
- Given data $\mathcal{D} = {\mathbf{x}^{(n)}}_{n=1}^N$, choose parameters to maximize:

$$\log p(\mathcal{D}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)})$$

• We can find $p(\mathbf{x})$ by marginalizing out z:

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(z=k, \mathbf{x}) = \sum_{k=1}^{K} p(z=k) p(\mathbf{x}|z=k)$$

What is $p(\mathbf{x})$?

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(z=k) p(\mathbf{x}|z=k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, I)$$

- This distribution is an example of a Gaussian Mixture Model (GMM), and π_k are known as the mixing coefficients
- If we allow arbitrary covariance matrices, GMMs are universal approximators of densities (if you have enough Gaussians). Even diagonal GMMs are universal approximators.

Visualizing a Mixture of Gaussians – 1D Gaussians

• If you fit a Gaussian to data:

• Now, we are trying to fit a GMM (with K = 2 in this example):

UofT

Visualizing a Mixture of Gaussians – 2D Gaussians

Maximum likelihood objective:

$$\log p(\mathcal{D}) = \sum_{n=1}^{N} \log p(\mathbf{x}^{(n)}) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, I) \right)$$

• How would you optimize this w.r.t. parameters $\{\pi_k, \mu_k\}$?

- No closed form solution when we set derivatives to 0
- Difficult because sum inside the log
- One option: gradient ascent. Can we do better?
- Can we have a closed form update?

Maximum Likelihood

• **Observation:** if we knew $z^{(n)}$ for every $\mathbf{x}^{(n)}$, (i.e. our dataset was $\mathcal{D}_{\text{complete}} = \{(z^{(n)}, \mathbf{x}^{(n)})\}_{n=1}^{N}$) the maximum likelihood problem is easy:

$$\log p(\mathcal{D}_{\text{complete}}) = \sum_{n=1}^{N} \log p(z^{(n)}, \mathbf{x}^{(n)})$$

= $\sum_{n=1}^{N} \log p(\mathbf{x}^{(n)} | z^{(n)}) + \log p(z^{(n)})$
= $\sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}[z^{(n)} = k](\log \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, I) + \log \pi_k)$

$$\log p(\mathcal{D}_{\text{complete}}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}[z^{(n)} = k](\log \mathcal{N}(x^{(n)}|\mu_k, I) + \log \pi_k)$$

We have been optimizing something similar for Gaussian bayes classifiersWe would get this:

$$\mu_{k} = \frac{\sum_{n=1}^{N} \mathbb{I}[z^{(n)} = k] \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{I}[z^{(n)} = k]}$$
$$\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[z^{(n)} = k]$$

Maximum Likelihood

- We don't know $z^{(n)}$ for every $\mathbf{x}^{(n)}$, but we can compute $p(z^{(n)}|\mathbf{x}^{(n)})$ using Bayes rule
- Conditional probability (using Bayes rule) of z given x

$$p(z = k | \mathbf{x}) = \frac{p(z = k)p(\mathbf{x} | z = k)}{p(\mathbf{x})}$$
$$= \frac{p(z = k)p(\mathbf{x} | z = k)}{\sum_{j=1}^{K} p(z = j)p(\mathbf{x} | z = j)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} | \mu_k, I)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x} | \mu_j, I)}$$

Maximum Likelihood

$$\log p(\mathcal{D}_{\text{complete}}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}[z^{(n)} = k] (\log \mathcal{N}(x^{(n)} | \mu_k, I) + \log \pi_k)$$

• If we plug in $r_k^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)})$ for $\mathbb{I}[z^{(n)} = k]$, we get:

$$\sum_{k=1}^{N} \sum_{k=1}^{K} r_k^{(n)} (\log \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, I) + \log \pi_k)$$

 $n=1 \ k=1$

$$\mu_{k} = \frac{\sum_{n=1}^{N} r_{k}^{(n)} \mathbf{x}^{(n)}}{\sum_{n=1}^{N} r_{k}^{(n)}}$$
$$\pi_{k} = \frac{\sum_{n=1}^{N} r_{k}^{(n)}}{N}$$

• Note: this only works if we treat $r_k^{(n)}$ as fixed – really, it depends on the model parameters as well

UofT

How Can We Fit a Mixture of Gaussians?

- This motivates the **Expectation-Maximization algorithm**, which alternates between two steps:
 - 1. **E-step**: Compute the posterior probabilities $r_k^{(n)} = p(z^{(n)} = k|x^{(n)})$ given our current model i.e. how much do we think a cluster is responsible for generating a datapoint.
 - 2. **M-step**: Use the equations on the last slide to update the parameters, assuming $r_k^{(n)}$ are held fixed- change the parameters of each Gaussian to maximize the probability that it would generate the data it is currently responsible for.

EM Algorithm for GMM

- Initialize the means μ_k and mixing coefficients π_k
- Iterate until convergence:
 - **E-step**: Evaluate the responsibilities $r_k^{(n)}$ given current parameters

$$r_{k}^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)}) = \frac{\pi_{k} \mathcal{N}(\mathbf{x}^{(n)} | \mu_{k}, I)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}^{(n)} | \mu_{j}, I)}$$

• M-step: Re-estimate the parameters given current responsibilities

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N r_k^{(n)} \mathbf{x}^{(n)}$$
$$\pi_k = \frac{N_k}{N} \quad \text{with} \quad N_k = \sum_{n=1}^N r_k^{(n)}$$

Evaluate log likelihood and check for convergence

$$\log p(\mathcal{D}) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, I) \right)$$

What just happened: A review

- The maximum likelihood objective $\sum_{n=1}^{N} \log p(\mathbf{x}^{(n)})$ was hard to optimize
- The complete data likelihood objective was easy to optimize:

$$\sum_{n=1}^{N} \log p(z^{(n)}, \mathbf{x}^{(n)}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}[z^{(n)} = k] (\log \mathcal{N}(\mathbf{x}^{(n)} | \mu_k, I) + \log \pi_k)$$

- We don't know $z^{(n)}$ for each $\mathbf{x}^{(n)}$, so we replaced $\mathbb{I}[z^{(n)} = k]$ with $r_k^{(n)} = p(z^{(n)} = k | \mathbf{x}^{(n)})$
- Another way of saying this: we replaced I[z⁽ⁿ⁾ = k] with its expectation under p(z⁽ⁿ⁾|x⁽ⁿ⁾)

• We ended up with the expected complete data log-likelihood:

$$\sum_{n=1}^{N} \mathbb{E}_{p(z^{(n)}|\mathbf{x}^{(n)})}[\log p(z^{(n)}, \mathbf{x}^{(n)})] = \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)}(\log \mathcal{N}(\mathbf{x}^{(n)}|\mu_k, I) + \log \pi_k)$$

- The EM algorithm alternates between:
 - ► The E-step: computing the r_k⁽ⁿ⁾ = p(z⁽ⁿ⁾ = k|x⁽ⁿ⁾) (i.e. the expectations E_{p(z⁽ⁿ⁾|x⁽ⁿ⁾)}[I[z⁽ⁿ⁾ = k]]) given the current model parameters π_k, μ_k
 - The M-step: update the model parameters π_k, μ_k to optimize the expected complete data log-likelihood

- Why does this make sense? In the next lecture, we'll see how EM is optimizing the observed data log-likelihood $\sum_{n=1}^{N} \log p(\mathbf{x}^{(n)})$ in a somewhat roundabout fashion
- We'll give a principled justification of the EM algorithm and describe how it can be applied to general latent variable models

- The K-Means Algorithm:
 - 1. Assignment step: Assign each data point to the closest cluster
 - 2. **Refitting step**: Move each cluster center to the average of the data assigned to it
- The EM Algorithm:
 - 1. **E-step**: Compute the posterior probability over *z* given our current model
 - 2. **M-step**: Maximize the probability that it would generate the data it is currently responsible for.

- We assumed the covariance of each Gaussian was *I* to simplify the math. This assumption can be removed, allowing clusters to have different spatial extents
- Possible problems with maximum likelihood objective:
 - Singularities: Arbitrarily large likelihood when a Gaussian explains a single point with variance shrinking to zero
 - Non-convex

- A probabilistic view of clustering Each cluster corresponds to a different Gaussian.
- Model using latent variables.
- General approach, can replace Gaussian with other distributions (continuous or discrete)
- More generally, mixture model are very powerful models, **universal** approximator
- Optimization is done using the **EM** algorithm.