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Maximum Likelihood

We’ll shift directions now, and spend most of the next 4 weeks talking
about probabilistic models.

This lecture

Maximum likelihood estimation

Näıve Bayes
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Maximum Likelihood

Motivating example: estimating the parameter of a biased coin

You flip a coin 100 times. It lands heads NH = 55 times and tails
NT = 45 times.

What is the probability it will come up heads if we flip again?

Model: flips are independent Bernoulli random variables with
parameter θ.

Assume the observations are independent and identically
distributed (i.i.d.)
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Maximum Likelihood

The likelihood function is the probability of the observed data, as a
function of θ.

In our case, it’s the probability of a particular sequence of H’s and T’s.

Under the Bernoulli model with i.i.d. observations,

L(θ) = p(D) = θNH (1− θ)NT

This takes very small values. In this case,
L(0.5) = 0.5100 ≈ 7.9× 10−31

Therefore, we usually work with log-likelihoods:

`(θ) = log L(θ) = NH log θ + NT log(1− θ)

Here, `(0.5) = log 0.5100 = 100 log 0.5 = −69.31
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Maximum Likelihood

NH = 55, NT = 45
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Maximum Likelihood

Good values of θ should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin
example.

d`

dθ
=

d

dθ
(NH log θ + NT log(1− θ))

=
NH

θ
− NT

1− θ

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
,
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Maximum Likelihood

This is equivalent to minimizing cross-entropy. Let ti = 1 for heads
and ti = 0 for tails.

LCE = −
∑
i

ti log θ − (1− ti ) log(1− θ)

= −NH log θ − NT log(1− θ)

= −`(θ)
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Maximum Likelihood

Recall the Gaussian, or normal,
distribution:

N (x ;µ, σ) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)

The Central Limit Theorem says
that sums of lots of independent
random variables are approximately
Gaussian.

In machine learning, we use
Gaussians a lot because they make
the calculations easy.
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Maximum Likelihood

Suppose we want to model the distribution of temperatures in
Toronto in March, and we’ve recorded the following observations:

-2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4

Assume they’re drawn from a Gaussian distribution with known
standard deviation σ = 5, and we want to find the mean µ.

Log-likelihood function:

`(µ) = log
N∏
i=1

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

log

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

−1

2
log 2π − log σ︸ ︷︷ ︸
constant

−(x (i) − µ)2

2σ2
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Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= − 1

2σ2

N∑
i=1

d

dµ
(x (i) − µ)2

=
1

σ2

N∑
i=1

x (i) − µ

Solving we get µ = 1
N

∑N
i=1 x

(i)

This is just the mean of the observed values, or the empirical mean.
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Maximum Likelihood

In general, we don’t know the true standard deviation σ, but we can
solve for it as well.

Set the partial derivatives to zero, just like in linear regression.

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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Maximum Likelihood

Sometimes there is no closed-form solution. E.g., consider the gamma
distribution, whose PDF is

p(x) =
ba

Γ(a)
xa−1e−bx ,

where Γ is the gamma function, a generalization of the factorial
function to continuous values.

There is no closed-form solution, but we can still optimize the
log-likelihood using gradient ascent.
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Maximum Likelihood

So far, maximum likelihood has told us to use empirical counts or
statistics:

Bernoulli: θ = NH

NH+NT

Gaussian: µ = 1
N

∑
x (i), σ2 = 1

N

∑
(x (i) − µ)2

This doesn’t always happen; the class of probability distributions that
have this property is exponential families.

fX (x |θ) = h(x) exp(η(θ)>T (x)− A(θ))

θ: distribution parameters
η(θ): natural parameter
T (x): sufficient statistic
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Maximum Likelihood

We’ve been doing maximum likelihood estimation all along!

Squared error loss (e.g. linear regression)

p(t|y) = N (t; y , σ2)

− log p(t|y) =
1

2σ2
(y − t)2 + const

Cross-entropy loss (e.g. logistic regression)

p(t = 1|y) = Bernoulli(t; y)

− log p(t|y) = −t log y − (1− t) log(1− y)
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Generative vs Discriminative

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

Tries to solve: How do I separate the classes?

learn p(y |x) directly (logistic regression models)

learn mappings from inputs to classes (least-squares, decision trees)

Generative approach: model the distribution of inputs characteristic
of the class (Bayes classifier).

Tries to solve: What does each class ”look” like?

Build a model of p(x|y)

Apply Bayes Rule
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Bayes Classifier

Aim to classify text into spam/not-spam (yes c=1; no c=0)

Use bag-of-words features, get binary vector x for each email

Example: “You are one of the very few who have been selected as a
winners for the free $1000 Gift Card.”

Vocabulary:
“a”: 1
...
“car”: 0
“card”: 1
...
“win”: 0
“winner”: 1
“winter”: 0
...
“you”: 1
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Bayes Classifier

Given features x = [x1, x2, · · · , xd ]T we want to compute class
probabilities using Bayes Rule:

p(c |x)︸ ︷︷ ︸
Pr. class given words

=
p(x, c)

p(x)
=

Pr. words given class︷ ︸︸ ︷
p(x|c) p(c)

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x|c = 0)p(c = 0) + p(x|c = 1)p(c = 1)

To compute p(c |x) we need: p(x|c) and p(c)
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Näıve Bayes

Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1, . . . , xD ] saying
whether each word appears in the e-mail.

If we define a joint distribution p(c, x1, . . . , xD), this gives enough
information to determine p(c) and p(x|c).

Problem: specifying a joint distribution over D + 1 binary variables
requires 2D+1 entries. This is computationally prohbitive and would
require an absurd amount of data to fit.
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Näıve Bayes

We’d like to impose structure on the distribution such that:

it can be compactly represented
learning and inference are both tractable

Probabilistic graphical models are a powerful and wide-ranging
class of techniques for doing this. We’ll just scratch the surface here.
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Näıve Bayes

Näıve Bayes makes the assumption that the word features xi are
conditionally independent given the class c .

This means xi and xj are independent under the conditional
distribution p(x|c).
Note: this doesn’t mean they’re independent. (E.g., “gift” and ”card”
are correlated insofar as they both depend on c .)
Mathematically,

p(c , x1, . . . , xD) = p(c)p(x1|c) · · · p(xD |c).

Compact representation of the joint distribution

Prior probability of class: p(c = 1) = θC
Conditional probability of word feature given class: p(xj = 1|c) = θjc
2D + 1 parameters total
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Bayes Nets

We can represent this model using an directed graphical model, or
Bayesian network:

This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, this doesn’t hold without additional assumptions.
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Näıve Bayes: Learning

The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

`(θ) =
N∑
i=1

log p(c (i), x (i))

=
N∑
i=1

log p(c (i))
D∏
j=1

p(x
(i)
j | c

(i))

=
N∑
i=1

[
log p(c (i)) +

D∑
j=1

log p(x
(i)
j | c

(i))

]

=
N∑
i=1

log p(c (i))︸ ︷︷ ︸
Bernoulli log-likelihood

of labels

+
D∑
j=1

N∑
i=1

log p(x
(i)
j | c

(i))︸ ︷︷ ︸
Bernoulli log-likelihood

for feature xj

Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Näıve Bayes: Learning

Want to maximize
∑N

i=1 log p(x
(i)
j | c(i))

This is a minor variant of our coin flip example. Let
θab = p(xj = a | c = b). Note θ1b = 1− θ0b.

Log-likelihood:

N∑
i=1

log p(x
(i)
j | c

(i)) =
N∑
i=1

c (i)x
(i)
j log θ11 +

N∑
i=1

c (i)(1− x
(i)
j ) log(1− θ11)

+
N∑
i=1

(1− c (i))x
(i)
j log θ10 +

N∑
i=1

(1− c (i))(1− x
(i)
j ) log(1− θ10)

Obtain maximum likelihood estimates by setting derivatives to zero:

θ11 =
N11

N11 + N01
θ10 =

N10

N10 + N00

where Nab is the counts for xj = a and c = b.
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Näıve Bayes: Inference

We predict the category by performing inference in the model.

Apply Bayes’ Rule:

p(c | x) =
p(c)p(x | c)∑
c ′ p(c ′)p(x | c ′)

=
p(c)

∏D
j=1 p(xj | c)∑

c ′ p(c ′)
∏D

j=1 p(xj | c ′)

We need not compute the denominator if we’re simply trying to
determine the mostly likely c .

Shorthand notation:

p(c | x) ∝ p(c)
D∏
j=1

p(xj | c)
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Näıve Bayes

Näıve Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood

Compute co-occurrence counts of each feature with the labels.
Requires only one pass through the data!

Test time: apply Bayes’ Rule

Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “näıve” independence assumption.
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