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Overview

Today we’ll cover the first unsupervised learning algorithm for this
course: principal component analysis (PCA)

Dimensionality reduction: map the data to a lower dimensional space

Save computation/memory
Reduce overfitting
Visualize in 2 dimensions

PCA is a linear model, with a closed-form solution. It’s useful for
understanding lots of other algorithms.

Autoencoders
Matrix factorizations (next lecture)

Today’s lecture is very linear-algebra-heavy.

Especially orthogonal matrices and eigendecompositions.
Don’t worry if you don’t get it immediately — next few lectures won’t
build on it
Not on midterm (which only covers up through L10)
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Projection onto a subspace

Set-up: given a dataset D = {x(1), . . . , x(N)} ⊂ RD

Set µ to the mean of the data, µ = 1
N

∑N
i=1 x(i)

Goal: find a K -dimensional subspace S ⊂ RD such that x(n) − µ is
“well-represented” by its projection onto S
Recall: The projection of a point x onto S is the point in S closest to
x.
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Projection onto a subspace

Let {uk}Kk=1 be an orthonormal basis of the subspace S
Approximate each data point x as:

x̃ = µ + ProjS(x− µ)

= µ +
K∑

k=1

zkuk

From linear algebra: zk = uT
k (x− µ)

Let U be a matrix with columns {uk}Kk=1 then z = UT (x− µ)

Also: x̃ = µ + Uz
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Projection onto a Subspace

z = U>(x− µ)

In machine learning, x̃ is also called the reconstruction of x.

z is its representation, or code.
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Projection onto a Subspace

If we have a K -dimensional subspace in a
D-dimensional input space, then x ∈ RD and
z ∈ RK .

If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of these same
operations on the code vectors z.

If K � D, then it’s much cheaper to work
with z than x.

A mapping to a space that’s easier to
manipulate or visualize is called a
representation, and learning such a mapping
is representation learning.

Mapping data to a low-dimensional space is
called dimensionality reduction.
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Learning a Subspace

How to choose a good subspace S?
Need to choose D × K matrix U with orthonormal columns.

Two criteria:
Minimize the reconstruction error

min
1

N

N∑
i=1

‖x(i) − x̃(i)‖2

Maximize the variance of the code vectors

max
∑
j

Var(zj) =
1

N

∑
j

∑
i

(z
(i)
j − z̄j)

2

=
1

N

∑
i

‖z(i) − z̄‖2

=
1

N

∑
i

‖z(i)‖2 Exercise: show z̄ = 0

Note: here, z̄ denotes the mean, not a derivative.
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Learning a Subspace

These two criteria are equivalent! I.e., we’ll show

1

N

N∑
i=1

‖x(i) − x̃(i)‖2 = const− 1

N

∑
i

‖z(i)‖2

Observation: by unitarity,

‖x̃(i) − µ‖ = ‖Uz(i)‖ = ‖z(i)‖

By the Pythagorean Theorem,

1

N

N∑
i=1

‖x̃(i) − µ‖2︸ ︷︷ ︸
projected variance

+
1

N

N∑
i=1

‖x(i) − x̃(i)‖2︸ ︷︷ ︸
reconstruction error

=
1

N

N∑
i=1

‖x(i) − µ‖2︸ ︷︷ ︸
constant
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the
reconstruction error, is called principal component analysis (PCA).

Recall:

Spectral Decomposition: a symmetric matrix A has a full set of
eigenvectors, which can be chosen to be orthogonal. This gives a
decomposition

A = QΛQ>,

where Q is orthogonal and Λ is diagonal. The columns of Q are
eigenvectors, and the diagonal entries λj of Λ are the corresponding
eigenvalues.

I.e., symmetric matrices are diagonal in some basis.

A symmetric matrix A is positive semidefinite iff each λj ≥ 0.
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Principal Component Analysis

Consider the empirical covariance matrix:

Σ =
1

N

N∑
i=1

(x(i) − µ)(x(i) − µ)>

Recall: Covariance matrices are symmetric and positive semidefinite.

The optimal PCA subspace is spanned
by the top K eigenvectors of Σ.

More precisely, choose the first K of
any orthonormal eigenbasis for Σ.
The general case is tricky, but we’ll
show this for K = 1.

These eigenvectors are called principal
components, analogous to the principal
axes of an ellipse.
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Deriving PCA

For K = 1, we are fitting a unit vector u, and the code is a scalar
z = u>(x− µ).

1

N

∑
i

[z (i)]2 =
1

N

∑
i

(u>(x(i) − µ))2

=
1

N

N∑
i=1

u>(x(i) − µ)(x(i) − µ)>u

= u>

[
1

N

N∑
i=1

(x(i) − µ)(x(i) − µ)>
]

u

= u>Σu

= u>QΛQ>u Spectral Decomposition

= a>Λa for a = Q>u

=
D∑
j=1

λja
2
j
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Deriving PCA

Maximize a>Λa =
∑D

j=1 λja
2
j for a = Q>u.

This is a change-of-basis to the eigenbasis of Σ.

Assume the λi are in sorted order. For simplicity, assume they are all
distinct.

Observation: since u is a unit vector, then by unitarity, a is also a unit
vector. I.e.,

∑
j a

2
j = 1.

By inspection, set a1 = ±1 and aj = 0 for j 6= 1.

Hence, u = Qa = q1 (the top eigenvector).

A similar argument shows that the kth principal component is the kth
eigenvector of Σ. If you’re interested, look up the Courant-Fischer
Theorem.
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Decorrelation

Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U>(x− µ))

= U> Cov(x)U

= U>ΣU

= U>QΛQ>U

=
(
I 0

)
Λ

(
I
0

)
by orthogonality

= top left K × K block of Λ

If the covariance matrix is diagonal, this means the features are
uncorrelated.

This is why PCA was originally invented (in 1901!).
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Recap

Recap:

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

For face recognition PCA with 3 components obtains 79% accuracy on
face/non-face discrimination on test data vs. 76.8% for a Gaussian
mixture model (GMM) with 84 states. (We’ll cover GMMs later in the
course.)

Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits
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Next

Next: two more interpretations of PCA, which have interesting
generalizations.

1 Autoencoders

2 Matrix factorization (later lecture)
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Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Linear Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Learn abstract features in an unsupervised way so you can apply them
to a supervised task

Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ‖x− x̃‖2

This network computes x̃ = W2W1x, which is
a linear function.

If K ≥ D, we can choose W2 and W1 such
that W2W1 is the identity matrix. This isn’t
very interesting.

But suppose K < D:

W1 maps x to a K -dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

Observe that the output of the autoencoder must lie in a
K -dimensional subspace spanned by the columns of W2.

We saw that the best possible K -dimensional subspace in terms of
reconstruction error is the PCA subspace.

The autoencoder can achieve this by setting W1 = U> and W2 = U.

Therefore, the optimal weights for a linear autoencoder are just the
principal components!
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Nonlinear Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.
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Nonlinear Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup articles.
They’re color-coded by topic, but the algorithm wasn’t given the labels.
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