Inspiration: The Brain

- Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
Inspiration: The Brain

- Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.

![Graph showing neuronal voltage changes](www.moleculardevices.com)

[Pic credit: www.moleculardevices.com]
Inspiration: The Brain

- For neural nets, we use a much simpler model neuron, or **unit**:

\[
y = \sigma \left(\mathbf{w}^\top \mathbf{x} + b \right)
\]

- Compare with logistic regression: \(y = \sigma (\mathbf{w}^\top \mathbf{x} + b) \)

- By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!
Multilayer Perceptrons

- We can connect lots of units together into a **directed acyclic graph**.
- This gives a **feed-forward neural network**. That’s in contrast to **recurrent neural networks**, which can have cycles.
- Typically, units are grouped together into **layers**.
Each layer connects \(N \) input units to \(M \) output units.

In the simplest case, all input units are connected to all output units. We call this a **fully connected layer**. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.

Recall from softmax regression: this means we need an \(M \times N \) weight matrix.

The output units are a function of the input units:

\[
y = f(x) = \phi(Wx + b)
\]

A multilayer network consisting of fully connected layers is called a **multilayer perceptron**. Despite the name, it has nothing to do with perceptrons!
Multilayer Perceptrons

Some activation functions:

Linear

\[y = z \]

Rectified Linear Unit (ReLU)

\[y = \max(0, z) \]

Soft ReLU

\[y = \log(1 + e^z) \]
Some activation functions:

Hard Threshold

\[y = \begin{cases}
1 & \text{if } z > 0 \\
0 & \text{if } z \leq 0
\end{cases} \]

Logistic

\[y = \frac{1}{1 + e^{-z}} \]

Hyperbolic Tangent (tanh)

\[y = \frac{e^z - e^{-z}}{e^z + e^{-z}} \]
Designing a network to compute XOR:

Assume hard threshold activation function
- h_1 computes $x_1 \text{ OR } x_2$
- h_2 computes $x_1 \text{ AND } x_2$
- y computes $h_1 \text{ AND NOT } x_2$
Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

\[
\begin{align*}
 h^{(1)} &= f^{(1)}(x) \\
 h^{(2)} &= f^{(2)}(h^{(1)}) \\
 &\vdots \\
 y &= f^{(L)}(h^{(L-1)})
\end{align*}
\]

- Or more simply:

\[
y = f^{(L)} \circ \cdots \circ f^{(1)}(x).
\]

- Neural nets provide modularity: we can implement each layer’s computations as a black box.
Feature Learning

- Neural nets can be viewed as a way of learning features:

 \[
 y = \psi(x)
 \]

- The goal:
Suppose we’re trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28 = 784$ pixel values.

Each first-layer hidden unit computes $\sigma(w_i^T x)$. It acts as a feature detector.

We can visualize w by reshaping it into an image. Here’s an example that responds to a diagonal stroke.
Feature Learning

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:
Expressive Power

- We’ve seen that there are some functions that linear classifiers can’t represent. Are deep networks any better?

- Any sequence of linear layers can be equivalently represented with a single linear layer.

\[
y = \underbrace{W^{(3)}W^{(2)}W^{(1)}}_{\Delta W'} x
\]

- Deep linear networks are no more expressive than linear regression.
- Linear layers do have their uses.
Multilayer feed-forward neural nets with *nonlinear* activation functions are **universal function approximators**: they can approximate any function arbitrarily well.

This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)

- Even though ReLU is “almost” linear, it’s nonlinear enough.
Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only requires one hidden layer, though it needs to be extremely wide.
What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and biases:

\[y = \sigma(x) \]

\[y = \sigma(5x) \]

This is good: logistic units are differentiable, so we can train them with gradient descent.
Limits of universality

- You may need to represent an exponentially large network.
- If you can learn any function, you’ll just overfit.
- Really, we desire a *compact* representation.
Training neural networks with backpropagation
Recap: Gradient Descent

- **Recall**: gradient descent moves opposite the gradient (the direction of steepest descent)

![Gradient Descent Image]

- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in *all* the layers
- Conceptually, not any different from what we’ve seen so far — just higher dimensional and harder to visualize!
- We want to compute the cost gradient $\frac{dJ}{dw}$, which is the vector of partial derivatives.
 - This is the average of $\frac{dL}{dw}$ over all the training examples, so in this lecture we focus on computing $\frac{dL}{dw}$.
We’ve already been using the univariate Chain Rule.

Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$\frac{df}{dt}(x(t)) = \frac{df}{dx} \frac{dx}{dt}.$$
Recall: Univariate logistic least squares model

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2}(y - t)^2 \]

Let’s compute the loss derivatives.
Univariate Chain Rule

How you would have done it in calculus class

\[L = \frac{1}{2} (\sigma(wx + b) - t)^2 \]

\[\frac{\partial L}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right]
\]

\[= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx + b) - t)^2
\]

\[= (\sigma(wx + b) - t) \frac{\partial}{\partial w} (\sigma(wx + b) - t)
\]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)
\]

\[= (\sigma(wx + b) - t)\sigma'(wx + b)x \]

\[\frac{\partial L}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2} (\sigma(wx + b) - t)^2 \right]
\]

\[= \frac{1}{2} \frac{\partial}{\partial b} (\sigma(wx + b) - t)^2
\]

\[= (\sigma(wx + b) - t) \frac{\partial}{\partial b} (\sigma(wx + b) - t)
\]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \frac{\partial}{\partial b} (wx + b)
\]

\[= (\sigma(wx + b) - t)\sigma'(wx + b) \]

What are the disadvantages of this approach?
Univariate Chain Rule

A more structured way to do it

Computing the loss:

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2}(y - t)^2 \]

Computing the derivatives:

\[\frac{d\mathcal{L}}{dy} = y - t \]
\[\frac{d\mathcal{L}}{dz} = \frac{d\mathcal{L}}{dy} \sigma'(z) \]
\[\frac{\partial\mathcal{L}}{\partial w} = \frac{d\mathcal{L}}{dz} x \]
\[\frac{\partial\mathcal{L}}{\partial b} = \frac{d\mathcal{L}}{dz} \]

Remember, the goal isn’t to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.
We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.
Univariate Chain Rule

A slightly more convenient notation:

- Use \bar{y} to denote the derivative $d\mathcal{L}/dy$, sometimes called the **error signal**.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

\[
\begin{align*}
 z &= w x + b \\
 y &= \sigma(z) \\
 \mathcal{L} &= \frac{1}{2} (y - t)^2
\end{align*}
\]

Computing the derivatives:

\[
\begin{align*}
 \bar{y} &= y - t \\
 \bar{z} &= \bar{y} \sigma'(z) \\
 \bar{w} &= \bar{z} x \\
 \bar{b} &= \bar{z}
\end{align*}
\]
Problem: what if the computation graph has fan-out > 1? This requires the multivariate Chain Rule!

L_2-Regularized regression

\[
\begin{align*}
 z &= wx + b \\
 y &= \sigma(z) \\
 \mathcal{L} &= \frac{1}{2}(y - t)^2 \\
 \mathcal{R} &= \frac{1}{2}w^2 \\
 \mathcal{L}_{\text{reg}} &= \mathcal{L} + \lambda \mathcal{R}
\end{align*}
\]

Softmax regression

\[
\begin{align*}
 z_\ell &= \sum_j w_{\ell j} x_j + b_\ell \\
 y_k &= \frac{e^{z_k}}{\sum_\ell e^{z_\ell}} \\
 \mathcal{L} &= -\sum_k t_k \log y_k
\end{align*}
\]
Multivariate Chain Rule

- Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$
\frac{d}{dt} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}
$$

- Example:

$$
f(x, y) = y + e^{xy}
$$

$x(t) = \cos t$

$y(t) = t^2$

- Plug in to Chain Rule:

$$
\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}
$$

$$
= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t
$$
Multivariable Chain Rule

- In the context of backpropagation:

\[\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \]

- Values already computed by our program

- In our notation:

\[\overline{t} = \bar{x} \frac{dx}{dt} + \bar{y} \frac{dy}{dt} \]
Full backpropagation algorithm:
Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)

v_N denotes the variable we’re trying to compute derivatives of (e.g. loss).

forward pass

For $i = 1, \ldots, N$

Compute v_i as a function of $\text{Pa}(v_i)$

$\frac{\partial v_i}{\partial v_i} = 1$

backward pass

For $i = N - 1, \ldots, 1$

$$\frac{\partial v_i}{\partial v_i} = \sum_{j \in \text{Ch}(v_i)} \frac{\partial v_j}{\partial v_i}$$
Example: univariate logistic least squares regression

Forward pass:
\begin{align*}
z &= wx + b \\
y &= \sigma(z) \\
\mathcal{L} &= \frac{1}{2} (y - t)^2 \\
\mathcal{R} &= \frac{1}{2} w^2 \\
\mathcal{L}_{\text{reg}} &= \mathcal{L} + \lambda \mathcal{R}
\end{align*}

Backward pass:
\begin{align*}
\mathcal{L}_{\text{reg}} &= 1 \\
\overline{\mathcal{R}} &= \mathcal{L}_{\text{reg}} \frac{d\mathcal{L}_{\text{reg}}}{d\mathcal{R}} \\
&= \mathcal{L}_{\text{reg}} \lambda \\
\overline{\mathcal{L}} &= \mathcal{L}_{\text{reg}} \frac{d\mathcal{L}_{\text{reg}}}{d\mathcal{L}} \\
&= \mathcal{L}_{\text{reg}} \\
\overline{y} &= \mathcal{L} \frac{d\mathcal{L}}{dy} \\
&= \overline{\mathcal{L}} (y - t) \\
\overline{z} &= \overline{y} \frac{dy}{dz} \\
&= \overline{y} \sigma'(z) \\
\overline{w} &= \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{d\mathcal{R}}{dw} \\
&= \overline{z} x + \overline{\mathcal{R}} w \\
\overline{b} &= \overline{z} \frac{\partial z}{\partial b} \\
&= \overline{z}
\end{align*}
Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

\[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]

\[h_i = \sigma(z_i) \]

\[y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)} \]

\[\mathcal{L} = \frac{1}{2} \sum_k (y_k - t_k)^2 \]

Backward pass:

\[\overline{\mathcal{L}} = 1 \]

\[\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k) \]

\[\overline{w_{ki}^{(2)}} = \overline{y_k} h_i \]

\[\overline{b_k^{(2)}} = \overline{y_k} \]

\[\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)} \]

\[\overline{z_i} = \overline{h_i} \sigma'(z_i) \]

\[\overline{w_{ij}^{(1)}} = \overline{z_i} x_j \]

\[\overline{b_i^{(1)}} = \overline{z_i} \]
Backpropagation

In vectorized form:

Forward pass:

\[z = W^{(1)}x + b^{(1)} \]
\[h = \sigma(z) \]
\[y = W^{(2)}h + b^{(2)} \]
\[\mathcal{L} = \frac{1}{2} \| t - y \|^2 \]

Backward pass:

\[\overline{\mathcal{L}} = 1 \]
\[\overline{y} = \overline{\mathcal{L}} (y - t) \]
\[\overline{W}^{(2)} = \overline{y}h^\top \]
\[\overline{b}^{(2)} = \overline{y} \]
\[\overline{h} = W^{(2)\top} \overline{y} \]
\[\overline{z} = \overline{h} \circ \sigma'(z) \]
\[\overline{W}^{(1)} = \overline{zx}^\top \]
\[\overline{b}^{(1)} = \overline{z} \]
Computational Cost

- Computational cost of forward pass: one **add-multiply operation** per weight
 \[z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \]

- Computational cost of backward pass: two add-multiply operations per weight
 \[w_{ki}^{(2)} = \bar{y}_k h_i \]
 \[\bar{h}_i = \sum_k \bar{y}_k w_{ki}^{(2)} \]

- Rule of thumb: the backward pass is about as expensive as two forward passes.

- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.
Backpropagation

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.

- Despite its practical success, backprop is believed to be neurally implausible.
 - No evidence for biological signals analogous to error derivatives.
 - Forward & backward weights are tied in backprop.
 - Backprop requires synchronous update (1 forward followed by 1 backward).
 - All the biologically plausible alternatives we know about learn much more slowly (on computers).