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Stochastic gradient descent
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Gradient Checking

We’ve derived a lot of gradients so far. How do we know if they’re
correct?

Recall the definition of the partial derivative:

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Check your derivatives numerically by plugging in a small value of h,
e.g. 10−10. This is known as finite differences.
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Gradient Checking

Even better: the two-sided definition

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h
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Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

Compute the relative error between derived gradient and finite
difference approximation:

|a− b|
|a|+ |b|

The relative error should be very small, e.g. 10−6

UofT CSC 411: 08-Linear Classification 5 / 34



Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.

But:
They might work much better if the derivatives are correct.
Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.
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Learning Rate

In gradient descent, the learning rate α is a hyperparameter we need
to tune. Here are some things that can go wrong:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).
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Training Curves

To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can’t guarantee convergence.
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Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (θ) =
1

N

N∑
i=1

L(i) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∂J
∂θ

=
1

N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!
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Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example, chosen uniformly at random:

θ ← θ − α∂L
(i)

∂θ

SGD can make significant progress before it has even looked at all the data!

Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E
[
∂L(i)

∂θ

]
=

1

N

N∑
i=1

∂L(i)

∂θ
=
∂J
∂θ

.

Problems:

Variance in this estimate may be high
If we only look at one training example at a time, we can’t exploit
efficient vectorized operations.
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Stochastic Gradient Descent

Compromise approach: compute the gradients on a randomly chosen
medium-sized set of training examples M⊂ {1, . . . ,N}, called a
mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

[
1

|M|
∑
i∈M

∂L(i)

∂θj

]
=

1

|M|2
∑
i∈M

Var

[
∂L(i)

∂θj

]
=

1

|M|
Var

[
∂L(i)

∂θj

]

The mini-batch size |M| is a hyperparameter that needs to be set.

Too large: takes more memory to store the activations, and longer to
compute each gradient update
Too small: can’t exploit vectorization
A reasonable value might be |M| = 100.
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Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:

Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.
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Convex Sets

Convex Sets

A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x1, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

A simple inductive argument shows that for x1, . . . , xN ∈ S, weighted
averages, or convex combinations, lie within the set:

λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.
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Convex Functions

A function f is convex if for any x0, x1 in the domain of f ,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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Convex Functions

We just saw that the
least-squares loss
function 1

2 (y − t)2 is
convex as a function of y

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.
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Convex Functions

Which loss functions are convex?
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Convex Functions

Why we care about convexity

All critical points are minima

Gradient descent finds the optimal solution (more on this in a later
lecture)
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Multiclass Classification

What about classification tasks with more than two categories?
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1
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Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑
j

wkjxj + bk

Vectorized:
z = Wx + b
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Multiclass Classification

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK )k =
ezk∑
k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
If one of the zk ’s is much larger than the others, softmax(z) is
approximately the argmax. (So really it’s more like “soft-argmax”.)
Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

Softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

Gradient descent updates are derived in the readings:

∂LCE

∂z
= y − t
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Limits of Linear Classification

Visually, it’s obvious that XOR is not linearly separable. But how to
show this?
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Limits of Linear Classification

Showing that XOR is not linearly separable

Half-spaces are obviously convex.

Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

Similarly, the red line segment must line within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

Discriminating simple patterns  
under translation with wrap-around 

•  Suppose we just use pixels as 
the features. 

•  Can a binary threshold unit 
discriminate between different 
patterns that have the same 
number of on pixels? 
–  Not if the patterns can 

translate with wrap-around! 

pattern A 

pattern A 

pattern A 

pattern B 

pattern B 

pattern B 

Discriminating simple patterns  
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These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with
wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the
vector (0.25, 0.25, . . . , 0.25). Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also (0.25, 0.25, . . . , 0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
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Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

ψ(x) =

 x1

x2

x1x2


x1 x2 ψ1(x) ψ2(x) ψ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses directly.
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