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Overview

Classification: predicting a discrete-valued target

Binary classification: predicting a binary-valued target

Examples

predict whether a patient has a disease, given the presence or absence
of various symptoms
classify e-mails as spam or non-spam
predict whether a financial transaction is fraudulent
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Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, followed by a threshold:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r
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Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias (i.e. w0 ≡ b)

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0
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Examples

Let’s consider some simple examples to examine the properties of our
model

Forget about generalization and suppose we just want to learn
Boolean functions

UofT CSC411 2019 Winter Lecture 07 5 / 27



Examples

NOT

x0 x1 t

1 0 1
1 1 0

This is our “training set”

What conditions are needed on w0,w1 to classify all examples?

When x1 = 0, need: w0x0 + w1x1 > 0 ⇐⇒ w0 > 0
When x1 = 1, need: w0x0 + w1x1 < 0 ⇐⇒ w0 + w1 < 0

Example solution: w0 = 1,w1 = −2

Is this the only solution?
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Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

need: w0 < 0

need: w0 + w2 < 0

need: w0 + w1 < 0

need: w0 + w1 + w2 > 0

Example solution: w0 = −1.5, w1 = 1, w2 = 1
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The Geometric Picture

Input Space, or Data Space for NOT example

x0 x1 t

1 0 1
1 1 0

Training examples are points

Hypotheses w can be represented by half-spaces
H+ = {x : wTx ≥ 0}, H− = {x : wTx < 0}

The boundaries of these half-spaces pass through the origin (why?)

The boundary is the decision boundary: {x : wTx = 0}
In 2-D, it’s a line, but think of it as a hyperplane

If the training examples can be separated by a linear decision rule,
they are linearly separable.
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The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Hypotheses w are points

Each training example x specifies a half-space w must lie in to be
correctly classified

For NOT example:

x0 = 1, x1 = 0, t = 1 =⇒ (w0,w1) ∈ {w : w0 > 0}
x0 = 1, x1 = 1, t = 0 =⇒ (w0,w1) ∈ {w : w0 + w1 < 0}

The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.

The origin in our visualization may not have all coordinates set to 0!
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The Geometric Picture

Visualizations of the AND example

Data Space

Slice for x0 = 1

Weight Space

Slice for w0 = −1

Recall constraints:
w0 < 0
w0 + w2 < 0
w0 + w1 < 0
w0 + w1 + w2 > 0

Why are only 3 constraints shown?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Proof coming next lecture...

UofT CSC411 2019 Winter Lecture 07 12 / 27



Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

How can we find good values for w, b?

If training set is separable, we can solve for w, b using linear
programming

If it’s not separable, the problem is harder
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Loss functions

Instead: define loss function then try to minimize the resulting cost
function

Recall: cost is loss averaged over the training set

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{
0 if y = t
1 if y 6= t

= I[y 6= t]
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Attempt 1: 0-1 loss

As always, the cost J is the average loss over training examples; for
0-1 loss, this is the error rate:

J =
1

N

N∑
i=1

I[y (i) 6= t(i)]

Visualization of cost function in weight space for 3 examples:
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Attempt 1: 0-1 loss

Problem: how to optimize? In general, a hard problem

(Guruswami and Raghavendra) “For arbitrary ε, δ > 0, we prove that
given a set of examples-label pairs from the hypercube a fraction
(1− ε) of which can be explained by a halfspace, it is NP-hard to find
a halfspace that correctly labels a fraction (1/2 + δ) of the examples.”

UofT CSC411 2019 Winter Lecture 07 16 / 27



Attempt 1: 0-1 loss

Let’s try the one optimization tool in our arsenal: gradient descent

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

One problem with L0−1: defined in terms of final prediction, which
inherently involves a discontinuity

Instead, define loss in terms of wTx + b directly

Redo notation for convenience: y = wTx + b
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Attempt 2: Linear Regression

We already know how to fit a linear regression model. Can we use
this instead?

y = w>x + b

LSE(y , t) =
1

2
(y − t)2

Doesn’t matter that the targets are actually binary.

For this loss function, it makes sense to make final predictions by
thresholding y at 1

2 (why?)
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Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function, and z is called the
logit.
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Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z , assuming t = 1)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

For z << 0, ∂L
∂z ≈ 0 (check!) =⇒ ∂L

∂wj
≈ 0 =⇒ update to wj is

small

If the prediction is really wrong, shouldn’t you take a large step?
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Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)
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Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:
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Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching loss
functions, but that’s beyond the scope of this course.
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