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Overview

o Classification: predicting a discrete-valued target
e Binary classification: predicting a binary-valued target
@ Examples
o predict whether a patient has a disease, given the presence or absence

of various symptoms
o classify e-mails as spam or non-spam
o predict whether a financial transaction is fraudulent
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Overview

Binary linear classification
o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}

e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

o linear: model is a linear function of x, followed by a threshold:

z=w'x+b

1 ifz>r
Y=1o0 ifz<r
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp

Eliminating the bias

@ Add a dummy feature xg which always takes the value 1. The weight
wp is equivalent to a bias (i.e. wp = b)
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp

Eliminating the bias

@ Add a dummy feature xg which always takes the value 1. The weight
wp is equivalent to a bias (i.e. wp = b)

Simplified model

V4

WTX
1 ifz>0
Y7o

ifz<0
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@ Let’s consider some simple examples to examine the properties of our
model

@ Forget about generalization and suppose we just want to learn
Boolean functions
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NOT
X0 X1 |t
1 011
1 110

@ This is our “training set”

@ What conditions are needed on wy, w; to classify all examples?
o When x; =0, need: woxg + wixg >0 < wy >0
o When x; = 1, need: woxg + wix; <0 < wop+wy; <0

@ Example solution: wg =1, w; = —2

@ Is this the only solution?
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AND
Xop X1 Xo | t
10 010
1 0 1|0
11 010
11 11
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AND
Xop X1 Xo | t
1 0 0 0 need: wp <0
1 0 110
11 010
1 1 1|1
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AND
Xop X1 Xo | t
1 0 olo need: wp <0
1 0 110 need: wp + wr <0
11 010
1 1 1|1
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AND
Xop X1 Xo | t
1 0 olo need: wyp <0
1 0 110 need: wp + wr <0
11 010 need: wo+w; <0
1 1 111
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AND
Xop X1 Xo | t
1 0 olo need: wyp <0
1 0 110 need: wp + wr <0
11 010 need: wo+w; <0
1 1 111

need: wp+ wy + wy >0
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AND

Xop X1 Xo | t
1 0 olo need: wyp <0
1 0 110 need: wp + wr <0
11 010 need: wp + wy <0
11 11 .

need: wp+ wy + wy >0
Example solution: wg = —1.5, wy =1, wpo =1
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The Geometric Picture

Input Space, or Data Space for NOT example

T

@ Training examples are points
@ Hypotheses w can be represented by half-spaces
Hy ={x:w'x>0}, H. = {x:w'x <0}
e The boundaries of these half-spaces pass through the origin (why?)
o The boundary is the decision boundary: {x:w’x =0}
e In 2-D, it's a line, but think of it as a hyperplane

o If the training examples can be separated by a linear decision rule,
they are linearly separable.
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The Geometric Picture

Weight Space

wo >0

Wo wo +wy <0

Hypotheses w are points

Each training example x specifies a half-space w must lie in to be
correctly classified

@ For NOT example:

e xp=1,x=0,t=1 = (wp,wy) € {w:wy >0}

o xg=1x=1t=0 = (wy,w1) €{w:wp+w <0}

@ The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

@ The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.

e The origin in our visualization may not have all coordinates set to 0!
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The Geometric Picture

Visualizations of the AND example

Data Space Weight Space

¢w2

%
wy
-

Slice for xg = 1 Slice for wg = —1

@ Recall constraints:
e wy <0
e Wo+wr <0
o wp+wy <0
o wo+wy+w >0
@ Why are only 3 constraints shown?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Proof coming next lecture...
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Overview

@ Recall: binary linear classifiers. Targets t € {0,1}
z=w'x+b
1 ifz>0
Y10 ifz<o
@ How can we find good values for w, b?
o If training set is separable, we can solve for w, b using linear

programming

o If it's not separable, the problem is harder
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Loss functions

@ Instead: define loss function then try to minimize the resulting cost
function

@ Recall: cost is loss averaged over the training set

@ Seemingly obvious loss function: 0-1 loss

Lo-1(y,t) = { (1) 1£§;;
=1y # ]
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Attempt 1: 0-1 loss

@ As always, the cost J is the average loss over training examples; for
0-1 loss, this is the error rate:

N
1 i i

@ Visualization of cost function in weight space for 3 examples:

() - N

Uof T CSC411 2019 Winter Lecture 07 15 /27



Attempt 1: 0-1 loss

@ Problem: how to optimize? In general, a hard problem

@ (Guruswami and Raghavendra) “For arbitrary €, > 0, we prove that
given a set of examples-label pairs from the hypercube a fraction
(1 — €) of which can be explained by a halfspace, it is NP-hard to find
a halfspace that correctly labels a fraction (1/2 + §) of the examples.”
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Attempt 1: 0-1 loss

@ Let’s try the one optimization tool in our arsenal: gradient descent

@ Chain rule:
OLo—1 _ 0Ly Oz

ow; 0z ow;
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Attempt 1: 0-1 loss

@ Let’s try the one optimization tool in our arsenal: gradient descent

@ Chain rule:
OLo—1 _ 0Ly Oz

ow; 0z ow;

@ But 0Ly_1/0z is zero everywhere it's defined!

10

2o -1s 1o -05 0o 05 10 15 20
z

o 0Ly_1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
e The gradient descent update is a no-op.
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Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

@ One problem with L£y_1: defined in terms of final prediction, which
inherently involves a discontinuity

o Instead, define loss in terms of w’x + b directly
o Redo notation for convenience: y =w'x + b
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Attempt 2: Linear Regression

@ We already know how to fit a linear regression model. Can we use
this instead?

y = wix+b
1
Lsp(y, t) = 5(}’ —t)

@ Doesn't matter that the targets are actually binary.

@ For this loss function, it makes sense to make final predictions by
thresholding y at % (why?)
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Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with high
confidence!

o If t =1, it's more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or os
S-shaped, function: 0
1 0.2

O-(Z) B ]‘ + e—Z 00— = 0 2 I3

@ A linear model with a logistic nonlinearity is known as log-linear:

z=w'x+b

y =0(2)
1
Lsp(y,t) = E(y —1)%.
@ Used in this way, o is called an activation function, and z is called the

logit.
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Attempt 3: Logistic Activation Function

The problem:

(plot of Lgg as a function of z, assuming t = 1)

loss

0.5

0.4
0.3
0.2
0.1
0.0
-0.1

oL  OL Oz

ow; = 0z ow,
oL

Wj<—Wj—a6—Wj
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Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z, assuming t = 1)

0.5 i
0.4
0.3 8£ . 8£ 82

g o2 ow; - 0z ow;
0.1
0.0 - oL
_ Wi wj—a
0.1 (9WJ
02153

@ For z << 0, 2 ~ 0 (check!) = 25 ~0 = update to w; is
' 0z : ow; J

small

@ If the prediction is really wrong, shouldn't you take a large step?
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

@ Cross-entropy loss captures this intuition:

5

IS

w

| —logy ift=1
ECE(y’t)_{ —log(l—y) ift=0

= —tlogy — (1 —t)log(1 —y)

cross-entropy loss
N
“
I
=
~
I
o

[

[==)
o

0.2 0.4 0.6 0.8 1.0
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Logistic Regression

Logistic Regression:

3.0 — logistic + CE
2.5
z=w'x+b 2.0
y=0(2) s
1 1.0
1 + e~ 7 05

Lep = —tlogy — (1 —t)log(l—y) . I
3 2 1 o 1 2 3

[[gradient derivation in the notes]]
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Logistic Regression

@ Problem: what if t =1 but you're really confident it's a negative
example (z < 0)?

e If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y =0(2) =y=0
Lcg = —tlogy — (1 —t)log(1—y) = computes log0
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Logistic Regression

@ Problem: what if t =1 but you're really confident it's a negative
example (z < 0)?

e If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y =0(z) =y=~0
Lcg = —tlogy — (1 —t)log(1—y) = computes log0

@ Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

Lron(z,t) = Lop(0(2), t) = tlog(1 + e~%) + (1 — ) log(1 + ¢7)

@ Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:

3.0 —— zero-one
—— least squares

2.5 —— logistic + LS
—— logistic + CE

2.0
815
1.0
0.5
00— 1 o 1 2 3
z
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Logistic Regression

Comparison of gradient descent updates:
@ Linear regression:

N

o Logistic regression:
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Logistic Regression

Comparison of gradient descent updates:
@ Linear regression:

w e w— L300yl

o Logistic regression:
a N
_ = (1) — #(1)y ()
Ay E_l (y t) x

@ Not a coincidence! These are both examples of matching loss
functions, but that's beyond the scope of this course.
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