
CSC 411: Introduction to Machine Learning
Lecture 6: Linear Regression

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 06 1 / 39



UofT CSC411 2019 Winter Lecture 06 2 / 39



Overview

So far, we’ve talked about procedures for learning.

KNN, decision trees, bagging, boosting

For the remainder of this course, we’ll take a more modular approach:

choose a model describing the relationships between variables of
interest
define a loss function quantifying how bad is the fit to the data
choose a regularizer saying how much we prefer different candidate
explanations
fit the model, e.g. using an optimization algorithm

By mixing and matching these modular components, your ML skills
become combinatorially more powerful!

UofT CSC411 2019 Winter Lecture 06 3 / 39



Problem Setup

Want to predict a scalar t as a function of a scalar x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called inputs, and the t(i) are called targets.

UofT CSC411 2019 Winter Lecture 06 4 / 39



Problem Setup

Model: y is a linear function of x :

y = wx + b

y is the prediction

w is the weight

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses

UofT CSC411 2019 Winter Lecture 06 5 / 39



Problem Setup

Loss function: squared error (says how bad the fit is)

L(y , t) = 1
2(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
wx (i) + b − t(i)

)2

UofT CSC411 2019 Winter Lecture 06 6 / 39



Problem Setup

UofT CSC411 2019 Winter Lecture 06 7 / 39



Problem setup

Suppose we have multiple inputs x1, . . . , xD . This is referred to as
multivariable regression.

This is no different than the single input case, just harder to visualize.

Linear model:
y =

∑
j

wjxj + b

UofT CSC411 2019 Winter Lecture 06 8 / 39



Vectorization

Computing the prediction using a for loop:

For-loops in Python are slow, so we vectorize algorithms by
expressing them in terms of vectors and matrices.

w = (w1, . . . ,wD)> x = (x1, . . . , xD)

y = w>x + b

This is simpler and much faster:

UofT CSC411 2019 Winter Lecture 06 9 / 39



Vectorization

Why vectorize?

The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!

Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries
Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

UofT CSC411 2019 Winter Lecture 06 10 / 39



Vectorization

We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y

UofT CSC411 2019 Winter Lecture 06 11 / 39



Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
‖y − t‖2

In Python:

UofT CSC411 2019 Winter Lecture 06 12 / 39



Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.

UofT CSC411 2019 Winter Lecture 06 13 / 39



Direct solution

Partial derivatives: derivatives of a multivariate function with
respect to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1

UofT CSC411 2019 Winter Lecture 06 14 / 39



Direct solution

Chain rule for derivatives:

∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂J
∂b

=
1

N

N∑
i=1

y (i) − t(i)

UofT CSC411 2019 Winter Lecture 06 15 / 39



Direct solution

The minimum must occur at a point where the partial derivatives are
zero.

∂J
∂wj

= 0
∂J
∂b

= 0.

If ∂J /∂wj 6= 0, you could reduce the cost by changing wj .

This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

Optimal weights:
w = (X>X)−1X>t

Linear regression is one of only a handful of models in this course that
permit direct solution.

UofT CSC411 2019 Winter Lecture 06 16 / 39



Gradient Descent

Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

UofT CSC411 2019 Winter Lecture 06 17 / 39



Gradient descent

Observe:

if ∂J /∂wj > 0, then increasing wj increases J .
if ∂J /∂wj < 0, then increasing wj decreases J .

The following update decreases the cost function:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.

We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

UofT CSC411 2019 Winter Lecture 06 18 / 39



Gradient descent

This gets its name from the gradient:

∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∂J
∂w

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

UofT CSC411 2019 Winter Lecture 06 19 / 39



Gradient descent

Visualization:

[Slide credit: Guerzhoy]
UofT CSC411 2019 Winter Lecture 06 20 / 39



Gradient descent

Visualization:

[Slide credit: Guerzhoy]
UofT CSC411 2019 Winter Lecture 06 21 / 39



Gradient descent

[Slide credit: Guerzhoy]
UofT CSC411 2019 Winter Lecture 06 22 / 39



Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

UofT CSC411 2019 Winter Lecture 06 23 / 39



Feature mappings

Suppose we want to model the following data

x

t

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

One option: fit a low-degree polynomial; this is known as polynomial
regression

y = w3x
3 + w2x

2 + w1x + w0

Do we need to derive a whole new algorithm?

UofT CSC411 2019 Winter Lecture 06 24 / 39



Feature mappings

We get polynomial regression for free!

Define the feature map

ψ(x) =


1
x
x2

x3


Polynomial regression model:

y = w>ψ(x)

All of the derivations and algorithms so far in this lecture remain
exactly the same!

UofT CSC411 2019 Winter Lecture 06 25 / 39



Fitting polynomials

y = w0

x

t

M = 0

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC411 2019 Winter Lecture 06 26 / 39



Fitting polynomials

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC411 2019 Winter Lecture 06 27 / 39



Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC411 2019 Winter Lecture 06 28 / 39



Fitting polynomials

y = w0 + w1x + w2x
2 + w3x

3 + . . .+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC411 2019 Winter Lecture 06 29 / 39



Generalization

Underfitting : model is too simple — does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : model is too complex — fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1

UofT CSC411 2019 Winter Lecture 06 30 / 39



Generalization

Training and test error as a function of # training examples and #
parameters:

UofT CSC411 2019 Winter Lecture 06 31 / 39



Regularization

The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

But restricting the size of the model is a crude solution, since you’ll
never be able to learn a more complex model, even if the data
support it.

Another approach: keep the model large, but regularize it

Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another

UofT CSC411 2019 Winter Lecture 06 32 / 39



L2 Regularization

Observation: polynomials that overfit often have large coefficients.

y = 0.1x5 + 0.2x4 + 0.75x3 − x2 − 2x + 2

y = −7.2x5 + 10.4x4 + 24.5x3 − 37.9x2 − 3.6x + 12

So let’s try to keep the coefficients small.

UofT CSC411 2019 Winter Lecture 06 33 / 39



L2 Regularization

Another reason we want weights to be small:

Suppose inputs x1 and x2 are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

w =

(
1
1

)
w =

(
−9
11

)
But the second network might make weird predictions if the test
distribution is slightly different (e.g. x1 and x2 match less closely).

UofT CSC411 2019 Winter Lecture 06 34 / 39



L2 Regularization

We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

R(w) = 1
2‖w‖

2 =
1

2

∑
j

w2
j .

Note: to be pedantic, the L2 norm is Euclidean distance, so we’re really
regularizing the squared L2 norm.

The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

Jreg = J + λR = J +
λ

2

∑
j

w2
j

Here, λ is a hyperparameter that we can tune using a validation set.

UofT CSC411 2019 Winter Lecture 06 35 / 39



L2 Regularization

The geometric picture:

UofT CSC411 2019 Winter Lecture 06 36 / 39



L2 Regularization

Recall the gradient descent update:

w← w − α∂J
∂w

The gradient descent update of the regularized cost has an interesting
interpretation as weight decay:

w← w − α
(
∂J
∂w

+ λ
∂R
∂w

)
= w − α

(
∂J
∂w

+ λw

)
= (1− αλ)w − α∂J

∂w

UofT CSC411 2019 Winter Lecture 06 37 / 39



L1 vs. L2 Regularization

The L1 norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

We can design regularizers based on whatever property we’d like to encourage.

— Bishop, Pattern Recognition and Machine Learning

UofT CSC411 2019 Winter Lecture 06 38 / 39



Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the optimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer

UofT CSC411 2019 Winter Lecture 06 39 / 39


