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Overview

@ We've seen two particular learning algorithms: k-NN and decision trees

@ Next two lectures: combine multiple models into an ensemble which
performs better than the individual members

» Generic class of techniques that can be applied to almost any learning
algorithms...
> ... but are particularly well suited to decision trees

@ Today

» Understanding generalization using the bias/variance decomposition
» Reducing variance using bagging

@ Next lecture

» Making a weak classifier stronger (i.e. reducing bias) using boosting
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Ensemble methods: Overview

@ An ensemble of predictors is a set of predictors whose individual decisions
are combined in some way to predict new examples

» E.g., (possibly weighted) majority vote

@ For this to be nontrivial, the learned hypotheses must differ somehow, e.g.

» Different algorithm

» Different choice of hyperparameters

» Trained on different data

» Trained with different weighting of the training examples

@ Ensembles are usually easy to implement. The hard part is deciding what
kind of ensemble you want, based on your goals.
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@ This lecture: bagging
» Train classifiers independently on random subsets of the training data.

@ Next lecture: boosting

» Train classifiers sequentially, each time focusing on training examples
that the previous ones got wrong.

@ Bagging and boosting serve very different purposes. To understand
this, we need to take a detour to understand the bias and variance of
a learning algorithm.
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Loss Functions

@ A loss function L(y, t) defines how bad it is if, for some example x, the
algorithm predicts y, but the target is actually t.

@ Example: 0-1 loss for classification

0 ify=t
L0—1(y,t)_{1 ify £t

> Averaging the 0-1 loss over the training set gives the training error
rate, and averaging over the test set gives the test error rate.

@ Example: squared error loss for regression
1 2
Lse(y,t) = 5(v = 1)

» The average squared error loss is called mean squared error (MSE).

Uof T CSC411 2019 Winter Lecture 04 5/23



Bias-Variance Decomposition

@ Recall that overly simple models underfit the data, and overly complex
models overfit.
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@ We can quantify this effect in terms of the bias/variance decomposition.

@ Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

@ Suppose the training set D consists of N pairs (x;, t;) sampled independent
and identically distributed (i.i.d.) from a single data generating
distribution pg.¢..

> Let pirain denote the induced distribution over training sets
@ Pick a fixed query point x (denoted with a green x).

@ Consider an experiment where we sample lots of training sets independently
from Ptrain-
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Bias-Variance Decomposition: Basic Setup

@ Let's run our learning algorithm on each training set D, producing a
classifier hp

@ We can compute each classifier's prediction hp(x) = y at the query point x.

@ y is a random variable, where the randomness comes from the choice of
training set

» Disrandom = hp is random = hp(x) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2 fit to dataset 3

query location lots of fits histogram of y

Since y = hp(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets pt;ain
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Bias-Variance Decomposition: Basic Setup

@ Recap of basic setup:

Hypothesis

Learning

Prediction

Test query Loss

@ Assume (for the moment) that ¢ is deterministic given x

@ There is a distribution over the loss at x, with expectation
EDNPtrain[L(hD(x)7 t)]

@ For each query point x, the expected loss is different. We are interested in
quantifying how well our classifier does over the distribution pg.ts, averaging
over training sets: Eyxpy... Dpreain [L(AD(X), T)].
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Bias-Variance Decomposition

@ For now, focus on squared error loss, L(y,t) = 2(y — t)°.

@ We can decompose the expected loss (suppressing distributions x, D drawn
from for compactness):

Exp[(hp(x) = t)°] = Ex p[(hp(x)—Ep[hn(x)] + Ep[hn(x)] — t)?]
= Exp[(hp(x) — Ep[hp(x)])? + (Ep[hp(x)] — t)*+
2(hp(x) — Ep[hp(x)])(Ep[hp(x)] — t)]
= Ex p[(hp(x) — ED[hD(X)])2] + Ex[(Ep[hp(x)] — t)2]

variance bias

@ Bias: On average, how close is our classifier to true target? (corresponds to
underfitting)

@ Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)
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Bias and Variance

@ Throwing darts = predictions for each draw of a dataset
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@ What doesn’t this capture?
@ We average over points x from the data distribution
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Bagging

Now, back to bagging!
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Bagging: Motivation

@ Suppose we could somehow sample m independent training sets
{,Di},{ll from Ptrain-

@ We could then learn a predictor h; := hp, based on each one, and
take the average h= 15" h;.

@ How does this affect the terms of the expected loss?

» Bias: unchanged, since the averaged prediction has the same
expectation

1 m
Bu 1O = 72 DB ) = B o ()

» Variance: reduced, since we're averaging over independent samples

1 & 1
p Yo, =3 ;\gr[hf(x)] =~ Varlho(x)].
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Bagging: The ldea

@ In practice, we don't have access to the underlying data generating
distribution pgata.

@ |t is expensive to independently collect many datasets.

@ Solution: bootstrap aggregation, or bagging.

> Take a single dataset D with n examples.

» Generate m new datasets, each by sampling n training examples from
D, with replacement.

» Average the predictions of models trained on each of these datasets.
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Bagging: The ldea

@ Problem: the datasets are not independent, so we don't get the 1/m
variance reduction.
» Possible to show that if the sampled predictions have variance o2 and
correlation p, then

1 1
Var | — E hi = —(1-p)o®+ po?.
ar( 2 (x)> (1—p)o” + po

@ lronically, it can be advantageous to introduce additional variability
into your algorithm, as long as it reduces the correlation between
samples.

> Intuition: you want to invest in a diversified portfolio, not just one
stock.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

@ Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

@ When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

@ Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle competitions
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Bayes Optimality

@ Let's return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if t is not deterministic given x? i.e.
have p(t|x)

@ Can no longer measure bias as expected distance from true target, since
there's a distribution over targets!

@ Instead, we'll measure distance from y,.(x) = E[t | x]

» This is the best possible prediction, in the sense that it minimizes the
expected loss
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Bayes Optimality

@ Proof: Start by fixing x. Want to show: argmin, E.[(y — t)?] = y. = E,[t]
(Distribution of t is p(t|x))
Ee(y — )] = Eely® — 2yt + £°]
= 2yE.[t] + ]Et[t2]
= y? — 2yE.[t] + E¢[t]* + Var[t|x]
=y* = 2yy, +y2 + Var[t |x]
= (v = y)? + Var[t| x]

@ The first term is nonnegative, and can be made 0 by setting y = y..

@ The second term doesn't depend on y! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error.

» This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.
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Bayes Optimality

@ We can again decompose the expected loss, this time including t in our
expectation (check this!):

Exp.el(hp(x) — t)°] =
Ex[(Ep[hp(x)] = y:(x))’] + Ex p[(hp(x) = Eplhp(x)])?] + Var[t | x]

bias variance Bayes

@ Contrast if t is not random:

Ex[(Ep[hp(x)] - t)°] + Ex,p[(hp(x) — Ep[hp(x)])’]

bias variance

@ We have no control over the Bayes error! In particular, bagging/boosting do
not help
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Bias/Variance Decomposition: Another Visualization

@ We can visualize this decomposition in output space, where the axes
correspond to predictions on the test examples.

@ If we have an overly simple model (e.g. k-NN with large k), it might
have

> high bias (because it's too simplistic to capture the structure in the
data)

» low variance (because there's enough data to get a stable estimate of
the decision boundary)
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Bias/Variance Decomposition: Another Visualization

e If you have an overly complex model (e.g. k-NN with k = 1), it might
have

> low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)
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Bagging reduces overfitting by averaging predictions.

Used in most competition winners
» Even if a single model is great, a small ensemble usually helps.

Limitations:

» Does not reduce bias.
» There is still correlation between classifiers.

Random forest solution: Add more randomness.
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