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Overview

We’ve seen two particular learning algorithms: k-NN and decision trees

Next two lectures: combine multiple models into an ensemble which
performs better than the individual members

I Generic class of techniques that can be applied to almost any learning
algorithms...

I ... but are particularly well suited to decision trees

Today

I Understanding generalization using the bias/variance decomposition
I Reducing variance using bagging

Next lecture

I Making a weak classifier stronger (i.e. reducing bias) using boosting
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Ensemble methods: Overview

An ensemble of predictors is a set of predictors whose individual decisions
are combined in some way to predict new examples

I E.g., (possibly weighted) majority vote

For this to be nontrivial, the learned hypotheses must differ somehow, e.g.

I Different algorithm
I Different choice of hyperparameters
I Trained on different data
I Trained with different weighting of the training examples

Ensembles are usually easy to implement. The hard part is deciding what
kind of ensemble you want, based on your goals.
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Agenda

This lecture: bagging
I Train classifiers independently on random subsets of the training data.

Next lecture: boosting
I Train classifiers sequentially, each time focusing on training examples

that the previous ones got wrong.

Bagging and boosting serve very different purposes. To understand
this, we need to take a detour to understand the bias and variance of
a learning algorithm.
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Loss Functions

A loss function L(y , t) defines how bad it is if, for some example x , the
algorithm predicts y , but the target is actually t.

Example: 0-1 loss for classification

L0−1(y , t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training error
rate, and averaging over the test set gives the test error rate.

Example: squared error loss for regression

LSE(y , t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error (MSE).
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance decomposition.

Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of N pairs (xi , ti ) sampled independent
and identically distributed (i.i.d.) from a single data generating
distribution pdata.

I Let ptrain denote the induced distribution over training sets

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets independently
from ptrain.
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Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set D, producing a
classifier hD

We can compute each classifier’s prediction hD(x) = y at the query point x.

y is a random variable, where the randomness comes from the choice of
training set

I D is random =⇒ hD is random =⇒ hD(x) is random
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = hD(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets ptrain
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Bias-Variance Decomposition: Basic Setup

Recap of basic setup:
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Assume (for the moment) that t is deterministic given x

There is a distribution over the loss at x, with expectation
ED∼ptrain [L(hD(x), t)].

For each query point x, the expected loss is different. We are interested in
quantifying how well our classifier does over the distribution pdata, averaging
over training sets: Ex∼pdata,D∼ptrain [L(hD(x), t)].
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Bias-Variance Decomposition

For now, focus on squared error loss, L(y , t) = 1
2 (y − t)2.

We can decompose the expected loss (suppressing distributions x, D drawn
from for compactness):

Ex,D[(hD(x)− t)2] = Ex,D[(hD(x)−ED[hD(x)] + ED[hD(x)]− t)2]

= Ex,D[(hD(x)− ED[hD(x)])2 + (ED[hD(x)]− t)2+

2(hD(x)− ED[hD(x)])(ED[hD(x)]− t)]

= Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

Bias: On average, how close is our classifier to true target? (corresponds to
underfitting)

Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)
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Bias and Variance

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution
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Bagging

Now, back to bagging!
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Bagging: Motivation

Suppose we could somehow sample m independent training sets
{Di}mi=1 from ptrain.

We could then learn a predictor hi := hDi
based on each one, and

take the average h = 1
m

∑m
i=1 hi .

How does this affect the terms of the expected loss?
I Bias: unchanged, since the averaged prediction has the same

expectation

E
D1,...,Dm

iid∼ptrain
[h(x)] =

1

m

m∑
i=1

EDi∼ptrain [hi (x)] = ED∼ptrain [hD(x)]

I Variance: reduced, since we’re averaging over independent samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi (x)] =
1

m
Var
D

[hD(x)].
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Bagging: The Idea

In practice, we don’t have access to the underlying data generating
distribution pdata.

It is expensive to independently collect many datasets.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples from
D, with replacement.

I Average the predictions of models trained on each of these datasets.
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Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the 1/m
variance reduction.

I Possible to show that if the sampled predictions have variance σ2 and
correlation ρ, then

Var

(
1

m

m∑
i=1

hi (x)

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional variability
into your algorithm, as long as it reduces the correlation between
samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions
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Bayes Optimality

Let’s return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if t is not deterministic given x? i.e.
have p(t|x)

Can no longer measure bias as expected distance from true target, since
there’s a distribution over targets!

Instead, we’ll measure distance from y∗(x) = E[t | x]

I This is the best possible prediction, in the sense that it minimizes the
expected loss

UofT CSC411 2019 Winter Lecture 04 18 / 23



Bayes Optimality

Proof: Start by fixing x. Want to show: argminy Et [(y − t)2] = y∗ = Et [t]
(Distribution of t is p(t|x))

Et [(y − t)2] = Et [y
2 − 2yt + t2]

= y2 − 2yEt [t] + Et [t
2]

= y2 − 2yEt [t] + Et [t]2 + Var[t | x]

= y2 − 2yy∗ + y2
∗ + Var[t | x]

= (y − y∗)
2 + Var[t | x]

The first term is nonnegative, and can be made 0 by setting y = y∗.

The second term doesn’t depend on y ! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error.

I This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.
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Bayes Optimality

We can again decompose the expected loss, this time including t in our
expectation (check this!):

Ex,D,t [(hD(x)− t)2] =

Ex[(ED[hD(x)]− y∗(x))2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+ Var[t | x]︸ ︷︷ ︸
Bayes

Contrast if t is not random:

Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

We have no control over the Bayes error! In particular, bagging/boosting do
not help
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Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the axes
correspond to predictions on the test examples.
If we have an overly simple model (e.g. k-NN with large k), it might
have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate of
the decision boundary)
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Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. k-NN with k = 1), it might
have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners
I Even if a single model is great, a small ensemble usually helps.

Limitations:
I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.
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