
CSC 411: Introduction to Machine Learning
Lecture 4: Ensemble I

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 04 1 / 23



Overview

We’ve seen two particular learning algorithms: k-NN and decision trees

Next two lectures: combine multiple models into an ensemble which
performs better than the individual members

I Generic class of techniques that can be applied to almost any learning
algorithms...

I ... but are particularly well suited to decision trees

Today

I Understanding generalization using the bias/variance decomposition
I Reducing variance using bagging

Next lecture

I Making a weak classifier stronger (i.e. reducing bias) using boosting

UofT CSC411 2019 Winter Lecture 04 2 / 23



Ensemble methods: Overview

An ensemble of predictors is a set of predictors whose individual decisions
are combined in some way to predict new examples

I E.g., (possibly weighted) majority vote

For this to be nontrivial, the learned hypotheses must differ somehow, e.g.

I Different algorithm
I Different choice of hyperparameters
I Trained on different data
I Trained with different weighting of the training examples

Ensembles are usually easy to implement. The hard part is deciding what
kind of ensemble you want, based on your goals.

UofT CSC411 2019 Winter Lecture 04 3 / 23



Agenda

This lecture: bagging
I Train classifiers independently on random subsets of the training data.

Next lecture: boosting
I Train classifiers sequentially, each time focusing on training examples

that the previous ones got wrong.

Bagging and boosting serve very different purposes. To understand
this, we need to take a detour to understand the bias and variance of
a learning algorithm.

UofT CSC411 2019 Winter Lecture 04 4 / 23



Loss Functions

A loss function L(y , t) defines how bad it is if, for some example x , the
algorithm predicts y , but the target is actually t.

Example: 0-1 loss for classification

L0−1(y , t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training error
rate, and averaging over the test set gives the test error rate.

Example: squared error loss for regression

LSE(y , t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error (MSE).

UofT CSC411 2019 Winter Lecture 04 5 / 23



Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance decomposition.

Bias and variance of what?

UofT CSC411 2019 Winter Lecture 04 6 / 23



Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of N pairs (xi , ti ) sampled independent
and identically distributed (i.i.d.) from a single data generating
distribution pdata.

I Let ptrain denote the induced distribution over training sets

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets independently
from ptrain.

UofT CSC411 2019 Winter Lecture 04 7 / 23



Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set D, producing a
classifier hD

We can compute each classifier’s prediction hD(x) = y at the query point x.

y is a random variable, where the randomness comes from the choice of
training set

I D is random =⇒ hD is random =⇒ hD(x) is random

UofT CSC411 2019 Winter Lecture 04 8 / 23



Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y = hD(x) is a random variable, we can talk about its expectation,
variance, etc. over the distribution of training sets ptrain

UofT CSC411 2019 Winter Lecture 04 9 / 23



Bias-Variance Decomposition: Basic Setup

Recap of basic setup:

!"#$

{ &((), +(() }

&, +

Training set

Test query

Data
Sa

m
pl

e

Sam
ple

ℎ
Learning

. Prediction

Hypothesis

&

/
Loss

+

Assume (for the moment) that t is deterministic given x

There is a distribution over the loss at x, with expectation
ED∼ptrain [L(hD(x), t)].

For each query point x, the expected loss is different. We are interested in
quantifying how well our classifier does over the distribution pdata, averaging
over training sets: Ex∼pdata,D∼ptrain [L(hD(x), t)].

UofT CSC411 2019 Winter Lecture 04 10 / 23



Bias-Variance Decomposition

For now, focus on squared error loss, L(y , t) = 1
2 (y − t)2.

We can decompose the expected loss (suppressing distributions x, D drawn
from for compactness):

Ex,D[(hD(x)− t)2] = Ex,D[(hD(x)−ED[hD(x)] + ED[hD(x)]− t)2]

= Ex,D[(hD(x)− ED[hD(x)])2 + (ED[hD(x)]− t)2+

2(hD(x)− ED[hD(x)])(ED[hD(x)]− t)]

= Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

Bias: On average, how close is our classifier to true target? (corresponds to
underfitting)

Variance: How widely dispersed are our predictions as we generate new
datasets? (corresponds to overfitting)

UofT CSC411 2019 Winter Lecture 04 11 / 23



Bias and Variance

Throwing darts = predictions for each draw of a dataset

What doesn’t this capture?

We average over points x from the data distribution

UofT CSC411 2019 Winter Lecture 04 12 / 23



Bagging

Now, back to bagging!

UofT CSC411 2019 Winter Lecture 04 13 / 23



Bagging: Motivation

Suppose we could somehow sample m independent training sets
{Di}mi=1 from ptrain.

We could then learn a predictor hi := hDi
based on each one, and

take the average h = 1
m

∑m
i=1 hi .

How does this affect the terms of the expected loss?
I Bias: unchanged, since the averaged prediction has the same

expectation

E
D1,...,Dm

iid∼ptrain
[h(x)] =

1

m

m∑
i=1

EDi∼ptrain [hi (x)] = ED∼ptrain [hD(x)]

I Variance: reduced, since we’re averaging over independent samples

Var
D1,...,Dm

[h(x)] =
1

m2

m∑
i=1

Var
Di

[hi (x)] =
1

m
Var
D

[hD(x)].

UofT CSC411 2019 Winter Lecture 04 14 / 23



Bagging: The Idea

In practice, we don’t have access to the underlying data generating
distribution pdata.

It is expensive to independently collect many datasets.

Solution: bootstrap aggregation, or bagging.

I Take a single dataset D with n examples.

I Generate m new datasets, each by sampling n training examples from
D, with replacement.

I Average the predictions of models trained on each of these datasets.

UofT CSC411 2019 Winter Lecture 04 15 / 23



Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the 1/m
variance reduction.

I Possible to show that if the sampled predictions have variance σ2 and
correlation ρ, then

Var

(
1

m

m∑
i=1

hi (x)

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional variability
into your algorithm, as long as it reduces the correlation between
samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.

UofT CSC411 2019 Winter Lecture 04 16 / 23



Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions

UofT CSC411 2019 Winter Lecture 04 17 / 23



Bayes Optimality

Let’s return to quantifying expected loss and make the situation slightly
more complicated (and realistic): what if t is not deterministic given x? i.e.
have p(t|x)

Can no longer measure bias as expected distance from true target, since
there’s a distribution over targets!

Instead, we’ll measure distance from y∗(x) = E[t | x]

I This is the best possible prediction, in the sense that it minimizes the
expected loss

UofT CSC411 2019 Winter Lecture 04 18 / 23



Bayes Optimality

Proof: Start by fixing x. Want to show: argminy Et [(y − t)2] = y∗ = Et [t]
(Distribution of t is p(t|x))

Et [(y − t)2] = Et [y
2 − 2yt + t2]

= y2 − 2yEt [t] + Et [t
2]

= y2 − 2yEt [t] + Et [t]2 + Var[t | x]

= y2 − 2yy∗ + y2
∗ + Var[t | x]

= (y − y∗)
2 + Var[t | x]

The first term is nonnegative, and can be made 0 by setting y = y∗.

The second term doesn’t depend on y ! Corresponds to the inherent
unpredictability, or noise, of the targets, and is called the Bayes error.

I This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.

UofT CSC411 2019 Winter Lecture 04 19 / 23



Bayes Optimality

We can again decompose the expected loss, this time including t in our
expectation (check this!):

Ex,D,t [(hD(x)− t)2] =

Ex[(ED[hD(x)]− y∗(x))2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

+ Var[t | x]︸ ︷︷ ︸
Bayes

Contrast if t is not random:

Ex[(ED[hD(x)]− t)2]︸ ︷︷ ︸
bias

+Ex,D[(hD(x)− ED[hD(x)])2]︸ ︷︷ ︸
variance

We have no control over the Bayes error! In particular, bagging/boosting do
not help

UofT CSC411 2019 Winter Lecture 04 20 / 23



Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the axes
correspond to predictions on the test examples.
If we have an overly simple model (e.g. k-NN with large k), it might
have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate of
the decision boundary)

UofT CSC411 2019 Winter Lecture 04 21 / 23



Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. k-NN with k = 1), it might
have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)

UofT CSC411 2019 Winter Lecture 04 22 / 23



Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners
I Even if a single model is great, a small ensemble usually helps.

Limitations:
I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.

UofT CSC411 2019 Winter Lecture 04 23 / 23


