CSC 411: Introduction to Machine Learning Lecture 2: Nearest Neighbours

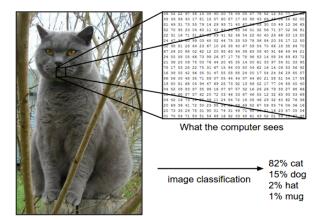
Mengye Ren and Matthew MacKay

University of Toronto

- Today (and for the next 5 weeks) we're focused on supervised learning.
- This means we're given a **training set** consisting of **inputs** and corresponding **labels**
- Machine learning learning a program. Labels are the expected output of the correct program when given the inputs.

Task	Inputs	Labels	
object recognition	image	object category	
image captioning	image	caption	
document classification	text	document category text	
speech-to-text	audio waveform		
:	:	÷	

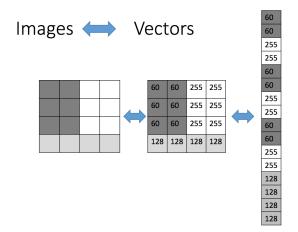
What an image looks like to the computer:



[Image credit: Andrej Karpathy]

- Machine learning algorithms need to handle lots of types of data: images, text, audio waveforms, credit card transactions, etc.
- Common strategy: represent the input as an **input vector** in \mathbb{R}^d
 - **Representation** = mapping to another space that's easy to manipulate
 - Vectors are a great representation since we can do linear algebra!

Can use raw pixels:



Can do much better if you compute a vector of meaningful features.

- Mathematically, our training set consists of a collection of pairs of an input vector x ∈ ℝ^d and its corresponding target, or label, t
 - **Regression**: *t* is a real number (e.g. stock price)
 - **Classification**: *t* is an element of a discrete set $\{1, \ldots, C\}$
 - ▶ These days, *t* is often a highly structured object (e.g. image)
- Denote the training set $\{(\mathbf{x}^{(1)}, t^{(1)}), \dots, (\mathbf{x}^{(N)}, t^{(N)})\}$
 - Note: these superscripts have nothing to do with exponentiation!

Nearest Neighbours

- Suppose we're given a novel input vector **x** we'd like to classify.
- The idea: find the nearest input vector to **x** in the training set and copy its label.
- Can formalize "nearest" in terms of Euclidean distance

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm:

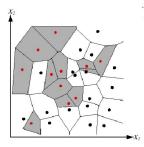
 Find example (x*, t*) (from the stored training set) closest to x. That is:

$$\mathbf{x}^* = \underset{\mathbf{x}^{(i)} \in \text{train. set}}{\operatorname{argmin}} \operatorname{dist}(\mathbf{x}^{(i)}, \mathbf{x})$$

2. Output $y = t^*$

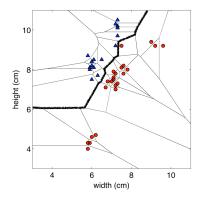
• Note: we don't need to compute the square root. Why?

We can visualize the behavior in the classification setting using a **Voronoi** diagram.

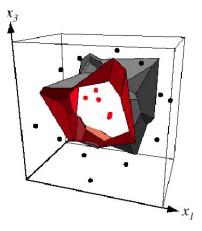


Nearest Neighbours: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned to different categories.

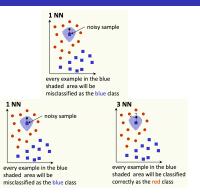


Nearest Neighbours: Decision Boundaries



Example: 3D decision boundary

k-Nearest Neighbours



- Nearest Neighbours sensitive to noise or mis-labeled data ("class noise"). Solution?
- · Smooth by having k nearest Neighbours vote

Algorithm (kNN):

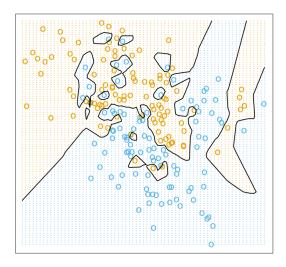
- 1. Find k examples $\{\mathbf{x}^{(i)}, t^{(i)}\}$ closest to the test instance \mathbf{x}
- 2. Classification output is majority class

$$y = \arg \max_{t^{(z)}} \sum_{r=1}^{k} \delta(t^{(z)}, t^{(r)})$$

[Pic by Olga Veksler]

K-Nearest Neighbours

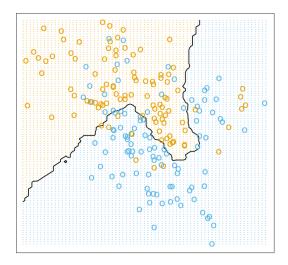
k = 1



[Image credit: "The Elements of Statistical Learning"]

K-Nearest Neighbours

k = 15



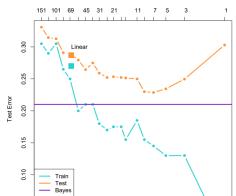
[Image credit: "The Elements of Statistical Learning"]

Tradeoffs in choosing k?

- Small k
 - Good at capturing fine-grained patterns
 - May overfit, i.e. be sensitive to random idiosyncrasies in the training data
- Large k
 - Makes stable predictions by averaging over lots of examples
 - May **underfit**, i.e. fail to capture important regularities
- Rule of thumb: k < sqrt(n), where *n* is the number of training examples

K-Nearest Neighbours

- We would like our algorithm to generalize to data it hasn't before.
- We can measure the **generalization error** (error rate on new examples) using a **test set**.

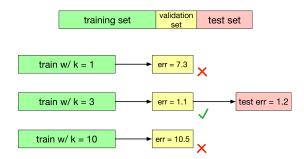


k - Number of Nearest Neighbors

[Image credit: "The Elements of Statistical Learning"]

Validation and Test Sets

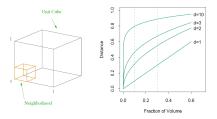
- *k* is an example of a **hyperparameter**, something we can't fit as part of the learning algorithm itself
- We can tune hyperparameters using a validation set:



• The test set is used only at the very end, to measure the generalization performance of the final configuration.

The Curse of Dimensionality

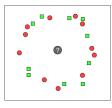
- Low-dimensional visualizations are misleading! In high dimensions, "most" points are far apart.
- If we want the nearest Neighbour to be closer than *ϵ*, how many points do we need to guarantee it?
- The volume of a single ball of radius ϵ is $\mathcal{O}(\epsilon^d)$
- The total volume of $[0, 1]^d$ is 1.
- Therefore $\mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^d\right)$ balls are needed to cover the volume.



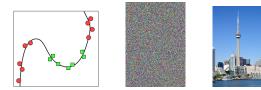
[Image credit: "The Elements of Statistical Learning"]

The Curse of Dimensionality

• In high dimensions, "most" points are approximately the same distance.

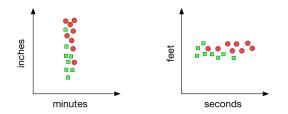


• Saving grace: some datasets (e.g. images) may have low **intrinsic dimension**, i.e. lie on or near a low-dimensional manifold. So nearest Neighbours sometimes still works in high dimensions.



Normalization

- Nearest Neighbours can be sensitive to the ranges of different features.
- Often, the units are arbitrary:



Simple fix: normalize each dimension to be zero mean and unit variance.
 I.e., compute the mean μ_i and standard deviation σ_i, and take

$$\tilde{x}_j = \frac{x_j - \mu_j}{\sigma_j}$$

• Caution: depending on the problem, the scale might be important!

- Number of computations at training time: 0
- Number of computations at **test time**, per query (naïve algorithm)
 - Calculuate D-dimensional Euclidean distances with N data points: *O*(ND)
 - Sort the distances: $\mathcal{O}(N \log N)$
- This must be done for *each* query, which is very expensive by the standards of a learning algorithm!
- Need to store the entire dataset in memory!
- Tons of work has gone into algorithms and data structures for efficient nearest Neighbours with high dimensions and/or large datasets.

Example: Digit Classification

• Decent performance when lots of data

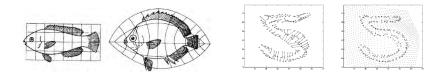
0123456789

•	Yann LeCunn – MNIST Digit	Test Error Rate (%)	
	Recognition	Linear classifier (1-layer NN)	12.0
	 Handwritten digits 	K-nearest-neighbors, Euclidean	5.0
	 28x28 pixel images: d = 784 60,000 training samples 	K-nearest-neighbors, Euclidean, deskewed	2.4
		K-NN, Tangent Distance, 16x16	1.1
		K-NN, shape context matching	0.67
	 10,000 test samples 	1000 RBF + linear classifier	3.6
	Nearest neighbour is competitive	SVM deg 4 polynomial	1.1
		2-layer NN, 300 hidden units	4.7
		2-layer NN, 300 HU, [deskewing]	1.6
		LeNet-5. [distortions]	0.8

Boosted LeNet-4, [distortions]

0.7

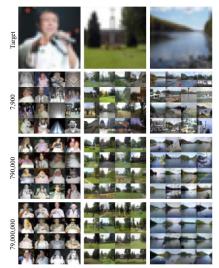
- KNN can perform a lot better with a good similarity measure.
- Example: shape contexts for object recognition. In order to achieve invariance to image transformations, they tried to warp one image to match the other image.
 - Distance measure: average distance between corresponding points on warped images
- Achieved 0.63% error on MNIST, compared with 3% for Euclidean KNN.
- Competitive with conv nets at the time, but required careful engineering.



[Belongie, Malik, and Puzicha, 2002. Shape matching and object recognition using shape contexts.]

Example: 80 Million Tiny Images

- 80 Million Tiny Images was the first extremely large image dataset. It consisted of color images scaled down to 32 × 32.
- With a large dataset, you can find much better semantic matches, and KNN can do some surprising things.
- Note: this required a carefully chosen similarity metric.



[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]

Example: 80 Million Tiny Images

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]

UofT

CSC411 2019 Winter Lecture 02

- Simple algorithm that does all its work at test time in a sense, no learning!
- Can control the complexity by varying k
- Suffers from the Curse of Dimensionality
- Next time: decision trees, another approach to regression and classification