
CSC411 Winter 2019 Practice Solutions

1.

x̃j =
xj − µj
σj

2. the average squared distance from the data points to their assigned cluster centers

3. You’d use boosting. Bagging is meant to reduce variance, whereas boosting is meant
to reduce the bias.

4.
LE(y, t) = exp(−ty)

Choose ε = 1. If the total loss is less than 1, then it must be less than 1 for each
example. By inspection, the loss can only be less than 1 if the example is correctly
classified.

5. Because the predictions are unbounded for Model 1, confident correct answers can be
highly penalized. Model 2 avoids this effect.

6.

Qπ(s, a) = E

[
∞∑
t=0

γtRt

∣∣∣S0 = s, A0 = a

]
Qπ(s, a) = r(s, a) + γEs′∼P(s′|s,a) [Qπ(s′, π(s′))]

7. If z is large enough, then y is numerically 1, and np.log(1-y) returns −∞. Code to
fix it:

def cross_entropy_loss(z, t):

return t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

8. (a) TRUE. The hinge loss can only be zero if the example satisfies the margin con-
straint, and hence is classified correctly. This must be true for every example if
the total hinge loss is zero.

(b) The loss is minimized by y = 0, which can be achieved with w = 0. Since this
also minimizes the regularizer, it will choose w = 0.

1

CSC411 Winter 2019 Practice Solutions

9.
1

β

∑
j

|wj|+
1

2σ2

∑
i

(t(i) −w>ψ(x(i)))2

The Laplace prior will encourage sparsity in the weights, since it corresponds to the
L1 norm.

10.

zi = φ′(zi)yi

hj = wijzi

wij = hjzi

11. E.g., a = 75, b = 25

12. Pick the first k columns of Q. For the derivation, see Lecture 12.

Sketch for other part

• Cov(z) = UT Cov(x)U

• Use the spectral decomposition of Σ

• Use UTQ =
(
I 0

)
13. (a)

log p(Dcomplete) =
N∑
i=1

p(x(i), z(i))

=
N∑
i=1

(1− z(i))
[
log(1− θ) + logN (x(i);µ, σ0)

]
+ z(i)

[
log θ + logN (x(i);µ, σ1)

]
(b)

r(i) =
θN (x(i);µ, σ1)

(1− θ)N (x(i);µ, σ0) + θN (x(i);µ, σ1)

(c)

N∑
i=1

(1− r(i))
[
log(1− θ) + logN (x(i);µ, σ0)

]
+ r(i)

[
log(θ) + logN (x(i);µ, σ1)

]
2

CSC411 Winter 2019 Practice Solutions

(d) Considering only the parts of the objective which contain µ, we must maximize:

N∑
i=1

(1− r(i))
(
−(x(i) − µ)2

2σ2
0

)
+ r(i)

(
−(x(i) − µ)2

2σ2
1

)
Differentiating with respect to µ and setting to zero:

0 =
N∑
i=1

(1− r(i))
(
x(i) − µ
σ2
0

)
+ r(i)

(
x(i) − µ
σ2
1

)
After some rearranging, we get:

µ =

1
σ2
0

∑N
i=1(1− r(i))x(i) + 1

σ2
1

∑N
i=1 r

(i)x(i)

1
σ2
0

∑N
i=1(1− r(i)) + 1

σ2
1

∑N
i=1 r

(i)

(e) Considering only the parts of the objective which contain σ1, we must maximize:

N∑
i=1

r(i)
[
− log(σ1) +

(
−(x(i) − µ)2

2σ2
1

)]
Differentiating with respect to σ1 and setting to 0:

0 =
N∑
i=1

r(i)
[
− 1

σ1
+

(
(x(i) − µ)2

σ3
1

)]
After some rearranging, we get:

σ2
1 =

∑N
i=1 r

(i)(x(i) − µ)2∑N
i=1 r

(i)

3

