
CSC411 Winter 2019 Practice Questions

1. A common preprocessing step of many learning algorithms is to normalize each feature
to be zero mean and unit variance. Give the formula for the normalized feature x̃j as a
function of the original feature xj and the mean µj and standard deviation σj of that
feature.

2. We showed that each step of K-means reduces a particular cost function. What is that
cost function?

3. Suppose your classifier achieves poor accuracy on both the training and test sets.
Which would be a better choice to try to improve the performance: bagging or boost-
ing? Justify your answer.

4. We showed that AdaBoost can be viewed as minimizing the exponential loss.

(a) Give the definition of exponential loss.

LE(y, t) =

(b) TRUE or FALSE: there is some value ε such that if the sum of the exponential
loss on all the training examples is less than ε, then all the training examples are
classified correctly. Justify your answer.

5. Recall two linear classification methods we considered:

Model 1:

y = w>x + b

LSE(y, t) = 1
2
(y − t)2

Model 2:

z = w>x + b

y = σ(z)

LSE(y, t) = 1
2
(y − t)2

Here, σ denotes the logistic function, and the targets t take values in {0, 1}. Briefly
explain our reason for preferring Model 2 to Model 1.

6. Consider a discounted Markov decision process (MDP) with discount parameter γ. It
has a transition distribution P(· | s, a) and deterministic reward function r(s, a). The
agent’s policy is a deterministic function π : S → A.
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(a) Give the definition of the state-action value function Qπ for a policy π. It should
be given in terms of γ and the immediate rewards Rt = r(St, At) for t = 0, . . . ,∞.
You don’t need to justify your answer.

Qπ(s, a) =

(b) Give the Bellman recurrence for Qπ, i.e. the formula expressing Qπ(s, a) in terms
of an expectation over successor states. You don’t need to justify your answer.

Qπ(s, a) =

7. Consider the following NumPy code for computing cross-entropy loss.

def cross_entropy_loss(z, t):

y = 1 / (1 + np.exp(-z))

return -t * np.log(y) - (1-t) * np.log(1-y)

The formulas for y and L are correct, but there’s something wrong with this code.

(a) What is wrong with the code? Hint: what happens when z is large?

(b) Provide NumPy code implementing cross_entropy_loss which doesn’t have this
problem. You may want to use the function np.logaddexp, which takes two
arguments a and b and returns log(ea + eb).

8. We showed that the Support Vector Machine (SVM) can be viewed as minimizing
hinge loss:

min
w,b

N∑
i=1

LH(y, t) +
1

2γ
‖w‖22

where hinge loss is defined as:

LH(y, t) = max(0, 1− ty)

(a) TRUE or FALSE: if the total hinge loss is zero, then every training example must
be classified correctly. Justify your answer.
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(b) Suppose we replace the hinge loss with the following:

L(y, t) = max(0,−ty)

and otherwise keep the soft-margin SVM objective the same. What would go
wrong?

9. The Laplace distribution, parameterized by µ and β, is defined as follows:

Laplace(w;µ, β) =
1

2β
exp

(
−|w − µ|

β

)
.

Consider a variant of Bayesian linear regression where we assume the prior over the
weights w consists of an independent zero-centered Laplace distribution for each di-
mension, with shared parameter β:

wj ∼ Laplace(0, β)

t |w ∼ N (t; w>ψ(x), σ)

For reference, the Gaussian PDF is:

N (x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

(a) Suppose you have a labeled training set {(x(i), t(i))}Ni=1. Give the cost function
you would minimize to find the MAP estimate of w. (It should be expressed in
terms of mathematical operations.)

(b) Based on your answer to part (a), how might the MAP solution for a Laplace
prior differ from the MAP solution if you use a Gaussian prior?

10. Consider one layer of a multilayer perceptron (MLP), whose computations are defined
as follows:

zi =
∑
j

wijhj + bi

yi = φ(zi),

where φ is a nonlinear activation function, hj denotes the input to this layer (i.e. the
previous layer’s hidden units), and yi denotes the output of this layer.

Give the backprop rules for zi, hj and wij in terms of the error signal yi. You can use
φ′ to denote the derivative of φ.
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zi =

hj =

wij =

11. Recall that the beta distribution is defined by

Beta(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1,

where Γ is the gamma function. Give values of a and b such that the distribution is
highly concentrated around θ = 0.75.

Hint: If you’ve forgotten the shape of the distribution, you can find the mode as a
function of a and b by differentiating the log density.

a =

b =

12. Recall that the optimal PCA subspace can be determined from the eigendecomposition
of the empirical covariance matrix Σ = Cov(x). Also recall that the eigendecomposi-
tion can be expressed in terms of the following spectral decomposition of Σ:

Σ = QΛQ>,

where Q is an orthogonal matrix and Λ is a digonal matrix. Assume the eigenalues
are sorted from largest to smallest. You may assume all of the eigenvalues are distinct.

(a) If you’ve already computed the eigendecomposition (i.e. Q and Λ), how do you
obtain the orthogonal basis U for the optimal PCA subspace?

(b) The PCA code vector for a data point x is given by z = U>(x−µ). Show that the
dimensions of z are uncorrelated. (Hint: start by finding a formula for Cov(z).)
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13. In this question, you will derive the E-M update rules for a univariate Gaussian mixture
model (GMM) with two mixture components. Unlike the GMMs we covered in the
course, the mean µ will be shared between the two mixture components, but each com-
ponent will have its own standard deviation σk. The mixture component is indicated
by a latent variable z ∈ {0, 1}. The model is defined as follows:

z ∼ Bernoulli(θ)

x | z = k ∼ N (µ, σk) for k ∈ {0, 1}

The parameters of the model are θ, µ, σ0, and σ1. Suppose we observe a dataset
{x(i)}Ni=1.

For reference, the PDF of the Gaussian distribution is as follows:

N (x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(a) Write the complete data log-likelihood for this model.

(b) In the E-step, for each data point x(i), we need to compute the posterior prob-
ability r(i) = Pr(z(i) = 1 |x(i)). Give the formula for r(i). In your formula, you
may use N (x(i);µ, σ) to denote the Gaussian PDF, rather than writing it out
explicitly.

r(i) =

(c) Write out the expected complete data loglikelihood i.e. the objective that is to
be maximized in the M-step. It should be expressed in terms of the r(i) and the
Gaussian PDF N (x(i);µ, σ).

(d) Derive the M-step update rule for µ by maximizing this objective with respect to
µ. (In this step, the σk are fixed to their previous values.)

(e) Derive the M-step update rule for σ1 by maximizing the objective with respect to
σ1. (In this step, assume µ is fixed to its previous value.)
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