- 1. A common preprocessing step of many learning algorithms is to normalize each feature to be zero mean and unit variance. Give the formula for the normalized feature \tilde{x}_j as a function of the original feature x_j and the mean μ_j and standard deviation σ_j of that feature.
- 2. We showed that each step of K-means reduces a particular cost function. What is that cost function?
- 3. Suppose your classifier achieves poor accuracy on both the training and test sets. Which would be a better choice to try to improve the performance: bagging or boosting? Justify your answer.
- 4. We showed that AdaBoost can be viewed as minimizing the exponential loss.
 - (a) Give the definition of exponential loss.

 $\mathcal{L}_{\rm E}(y,t) =$

Model 1:

- (b) TRUE or FALSE: there is some value ε such that if the sum of the exponential loss on all the training examples is less than ε , then all the training examples are classified correctly. Justify your answer.
- 5. Recall two linear classification methods we considered:

Model 2:

$$y = \mathbf{w}^{\top} \mathbf{x} + b$$

$$\mathcal{L}_{SE}(y,t) = \frac{1}{2}(y-t)^{2}$$

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

$$y = \sigma(z)$$

$$\mathcal{L}_{SE}(y,t) = \frac{1}{2}(y-t)^{2}$$

Here, σ denotes the logistic function, and the targets t take values in $\{0, 1\}$. Briefly explain our reason for preferring Model 2 to Model 1.

6. Consider a discounted Markov decision process (MDP) with discount parameter γ . It has a transition distribution $\mathcal{P}(\cdot | s, a)$ and deterministic reward function r(s, a). The agent's policy is a deterministic function $\pi : S \to A$.

(a) Give the definition of the state-action value function Q^{π} for a policy π . It should be given in terms of γ and the immediate rewards $R_t = r(S_t, A_t)$ for $t = 0, \ldots, \infty$. You don't need to justify your answer.

$$Q^{\pi}(s,a) =$$

(b) Give the Bellman recurrence for Q^{π} , i.e. the formula expressing $Q^{\pi}(s, a)$ in terms of an expectation over successor states. You don't need to justify your answer.

$$Q^{\pi}(s,a) =$$

7. Consider the following NumPy code for computing cross-entropy loss.

```
def cross_entropy_loss(z, t):
    y = 1 / (1 + np.exp(-z))
    return -t * np.log(y) - (1-t) * np.log(1-y)
```

The formulas for y and \mathcal{L} are correct, but there's something wrong with this code.

- (a) What is wrong with the code? *Hint: what happens when z is large?*
- (b) Provide NumPy code implementing cross_entropy_loss which doesn't have this problem. You may want to use the function np.logaddexp, which takes two arguments a and b and returns $\log(e^a + e^b)$.
- 8. We showed that the Support Vector Machine (SVM) can be viewed as minimizing hinge loss:

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} \mathcal{L}_{\mathrm{H}}(y,t) + \frac{1}{2\gamma} \|\mathbf{w}\|_{2}^{2}$$

where hinge loss is defined as:

$$\mathcal{L}_{\rm H}(y,t) = \max(0,1-ty)$$

(a) TRUE or FALSE: if the total hinge loss is zero, then every training example must be classified correctly. Justify your answer.

(b) Suppose we replace the hinge loss with the following:

$$\mathcal{L}(y,t) = \max(0,-ty)$$

and otherwise keep the soft-margin SVM objective the same. What would go wrong?

9. The Laplace distribution, parameterized by μ and β , is defined as follows:

Laplace
$$(w; \mu, \beta) = \frac{1}{2\beta} \exp\left(-\frac{|w-\mu|}{\beta}\right)$$

Consider a variant of Bayesian linear regression where we assume the prior over the weights \mathbf{w} consists of an independent zero-centered Laplace distribution for each dimension, with shared parameter β :

$$w_j \sim \text{Laplace}(0, \beta)$$

 $t \mid \mathbf{w} \sim \mathcal{N}(t; \mathbf{w}^\top \boldsymbol{\psi}(\mathbf{x}), \sigma)$

For reference, the Gaussian PDF is:

$$\mathcal{N}(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- (a) Suppose you have a labeled training set $\{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{N}$. Give the cost function you would minimize to find the MAP estimate of \mathbf{w} . (It should be expressed in terms of mathematical operations.)
- (b) Based on your answer to part (a), how might the MAP solution for a Laplace prior differ from the MAP solution if you use a Gaussian prior?
- 10. Consider one layer of a multilayer perceptron (MLP), whose computations are defined as follows:

$$z_i = \sum_j w_{ij} h_j + b_i$$
$$y_i = \phi(z_i),$$

where ϕ is a nonlinear activation function, h_j denotes the input to this layer (i.e. the previous layer's hidden units), and y_i denotes the output of this layer.

Give the backprop rules for $\overline{z_i}$, $\overline{h_j}$ and $\overline{w_{ij}}$ in terms of the error signal $\overline{y_i}$. You can use ϕ' to denote the derivative of ϕ .

 $\overline{z_i} =$ $\overline{h_j} =$ $\overline{w_{ij}} =$

11. Recall that the beta distribution is defined by

Beta
$$(\theta; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1},$$

where Γ is the gamma function. Give values of a and b such that the distribution is highly concentrated around $\theta = 0.75$.

Hint: If you've forgotten the shape of the distribution, you can find the mode as a function of a and b by differentiating the log density.

$$a =$$

 $b =$

12. Recall that the optimal PCA subspace can be determined from the eigendecomposition of the empirical covariance matrix $\Sigma = \text{Cov}(\mathbf{x})$. Also recall that the eigendecomposition can be expressed in terms of the following spectral decomposition of Σ :

$$\Sigma = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top},$$

where \mathbf{Q} is an orthogonal matrix and $\mathbf{\Lambda}$ is a digonal matrix. Assume the eigendues are sorted from largest to smallest. You may assume all of the eigenvalues are distinct.

- (a) If you've already computed the eigendecomposition (i.e. \mathbf{Q} and $\mathbf{\Lambda}$), how do you obtain the orthogonal basis \mathbf{U} for the optimal PCA subspace?
- (b) The PCA code vector for a data point \mathbf{x} is given by $\mathbf{z} = \mathbf{U}^{\top}(\mathbf{x} \boldsymbol{\mu})$. Show that the dimensions of \mathbf{z} are uncorrelated. (Hint: start by finding a formula for $\text{Cov}(\mathbf{z})$.)

13. In this question, you will derive the E-M update rules for a univariate Gaussian mixture model (GMM) with two mixture components. Unlike the GMMs we covered in the course, the mean μ will be shared between the two mixture components, but each component will have its own standard deviation σ_k . The mixture component is indicated by a latent variable $z \in \{0, 1\}$. The model is defined as follows:

$$z \sim \text{Bernoulli}(\theta)$$
$$x \mid z = k \sim \mathcal{N}(\mu, \sigma_k) \quad \text{for } k \in \{0, 1\}$$

The parameters of the model are θ , μ , σ_0 , and σ_1 . Suppose we observe a dataset $\{x^{(i)}\}_{i=1}^N$.

For reference, the PDF of the Gaussian distribution is as follows:

$$\mathcal{N}(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- (a) Write the complete data log-likelihood for this model.
- (b) In the E-step, for each data point $x^{(i)}$, we need to compute the posterior probability $r^{(i)} = \Pr(z^{(i)} = 1 | x^{(i)})$. Give the formula for $r^{(i)}$. In your formula, you may use $\mathcal{N}(x^{(i)}; \mu, \sigma)$ to denote the Gaussian PDF, rather than writing it out explicitly.

$$r^{(i)} =$$

- (c) Write out the expected complete data loglikelihood i.e. the objective that is to be maximized in the M-step. It should be expressed in terms of the $r^{(i)}$ and the Gaussian PDF $\mathcal{N}(x^{(i)}; \mu, \sigma)$.
- (d) Derive the M-step update rule for μ by maximizing this objective with respect to μ . (In this step, the σ_k are fixed to their previous values.)
- (e) Derive the M-step update rule for σ_1 by maximizing the objective with respect to σ_1 . (In this step, assume μ is fixed to its previous value.)