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Figure 1: Our approach enables very efficient acquisition and analysis of light transport: to create the relighting results shown above, just
forty low dynamic range photos were used to acquire 700Kpixel×100Kpixel transport matrices. Note the complex shadows cast by the hat
(both sharp and soft), the complex highlights on the hair and the shadows it casts, and the many shadows, caustics and indirect lighting
effects in the glass scene. We used an optical implementation of the Arnoldi algorithm to do both photo acquisition and low-rank matrix
approximation; the entire process (photo capture, matrix reconstruction, relighting) took four minutes on a standard PC for each scene.

Abstract

We present a general framework for analyzing the transport ma-
trix of a real-world scene at full resolution, without capturing many
photos. The key idea is to use projectors and cameras to directly ac-
quire eigenvectors and the Krylov subspace of the unknown trans-
port matrix. To do this, we implement Krylov subspace methods
partially in optics, by treating the scene as a “black box subroutine”
that enables optical computation of arbitrary matrix-vector prod-
ucts. We describe two methods—optical Arnoldi to acquire a low-
rank approximation of the transport matrix for relighting; and opti-
cal GMRES to invert light transport. Our experiments suggest that
good quality relighting and transport inversion are possible from a
few dozen low-dynamic range photos, even for scenes with com-
plex shadows, caustics, and other challenging lighting effects.

1 Introduction

More than forty years ago, analog optical computing—processing
data with light sources, modulators, lenses and detectors—sought
to revolutionize the field of information processing [Leith 2000;
Goodman 2005]. Its key tenet was that the speed and parallelism
of light enables very high data rates, especially for signal process-
ing and pattern recognition tasks [Ambs 2009]. Although the ver-
satility and rapid advance of microprocessors ultimately overshad-
owed optical computing’s early ambitions, the designs studied were
very diverse; examples range from general-purpose optical comput-
ers [Guilfoyle and Stone 1991] to highly specialized ones for matrix
calculations [Athale and Collins 1982; Kumar and Casasent 1981].
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In this work we present a first attempt to apply optical computing
principles to the analysis of light transport in a real-world scene.
Specifically, we show how to efficiently perform numerical compu-
tations on a scene’s unknown transport matrix (eigenvector analy-
sis, low-rank approximation, inversion) by doing part of those com-
putations in the optical domain with projectors and cameras.

The light transport matrix has been gaining attention in computer
graphics as an effective tool for relighting real-world scenes [De-
bevec et al. 2000; Wang et al. 2009]. This matrix allows the photo
of any scene, no matter how complex, to be expressed as a matrix-
vector product [Ng et al. 2003; Sen et al. 2005]:

p = T l (1)

where p is the photo, represented as a column vector of camera
pixels, T is the transport matrix, and l is the scene’s illumination
condition (e.g., pixels in a pattern that is projected onto the scene).
By construction, T takes into account all transport paths from light
sources to camera pixels. Therefore, if we know T, we can render
the scene from the camera’s viewpoint under any illumination con-
dition l—with shadows, caustics and interreflections all included.

Real-world transport matrices pose unique challenges. They can be
extremely large, with over 1011 elements for typical camera and
projector resolutions. Storage and analysis of the full matrix is
therefore infeasible. Moreover, the only way to get information
about T is by multiplying it with a vector, i.e., by illuminating the
scene with vector l and capturing the product, Tl, in a photo.

To deal with these issues, a common methodology emerged for
designing an acquisition pipeline [Sen et al. 2005]: (1) choose a
specific arrangement for cameras and light sources, (2) choose a
scene-independent ensemble of vectors for illumination, (3) design
an algorithm that draws samples from the ensemble, adaptively or
non-adaptively, to illuminate the scene during acquisition, and (4)
choose an algorithm to reconstruct T from captured photos. Un-
fortunately, despite several recent efforts [Fuchs et al. 2007; Wang
et al. 2009; Peers et al. 2009; Sen and Darabi 2009], existing sys-
tems require hundreds or thousands of high dynamic range photos
for complex scenes, can be computationally demanding, and their
performance is hard to characterize in a scene-independent way.

Although interest in the transport matrix is relatively recent, very
large matrices have long been a subject of study in numerical linear
algebra. In particular, the family of Krylov subspace methods [Saad



2003] is designed for matrices just like T, i.e., very large and un-
observable matrices that can only be accessed by computing their
product with a vector. These iterative algorithms are well under-
stood and come with explicit accuracy and convergence guarantees.

Here we leverage this body of work for light transport by imple-
menting Krylov subspace methods partially in optics. Our approach
is based on a simple principle: treat the scene as a “black-box sub-
routine” that accepts any non-negative vector l as “input” and re-
turns as “output” the vector’s product, Tl, with the unknown trans-
port matrix. Thus, any efficient numerical method that relies exclu-
sively on matrix-vector products can be readily implemented in op-
tics and used to analyze T. To do the conversion, we just replace all
matrix-vector products with calls to a function that computes them
optically, with illuminate-and-capture operations (Figure 2). This
turns Krylov subspace methods into complete pipelines for analyz-
ing T—as they pursue their numerical objective, they fully specify
how to illuminate the scene and how to process its photos.

Implementing Krylov subspace methods directly in the optical do-
main has several advantages. First, the convergence rate of these
methods depends only on the distribution of T’s singular values,
not its absolute size. This means that T can be analyzed at full
resolution by capturing very few photos. Second, computations are
efficient because the only computationally-expensive step is multi-
plying the full-resolution T with a vector—which we do optically.
Third, optical implementations are straightforward because they
differ from widely-available numerical software in just one step,
i.e., multiplication with T. Last but not least, by moving this multi-
plication to the optical domain we make other computations feasi-
ble on the full-resolution T, beyond mere acquisition—computing
eigenvectors of T, computing products with T’s inverse—without
having to acquire the transport matrix first.

We focus on optical versions of two Krylov subspace methods in
this paper: Arnoldi iteration to acquire a low-rank approximation
of T for relighting (Section 3); and generalized minimal residual
(GMRES) to invert light transport (Section 4). In the following we
assume that illumination vectors in Equation 1 have m elements
and photos have n pixels, i.e., T is an n×m matrix.

2 Computing with Light

2.1 A Simple Example: Optical Power Iteration

We begin by showing how to implement power iteration in op-
tics. Power iteration is a simple numerical algorithm for estimating
the principal eigenvector of a square matrix with distinct eigenval-
ues [Trefethen and Bau 1997]. When implemented optically, it es-
timates the principal eigenvector of T without advance knowledge
of the matrix and without directly capturing any of its elements.

Power iteration uses the fact that the sequence l,Tl,T2l,T3l, . . .
converges to T’s principal eigenvector for almost any initial vector
l. The algorithm simply generates this sequence for a fixed number
of iterations using the boxed matrix-vector product on the left:

Algorithm 1 The power iteration algorithm.

Numerical Implementation:

In: matrix T, iterations K
Out: principal eigenvector of T

1: l1 = random vector

2: for k = 1 to K

3: pk = Tlk

4: lk+1 = pk/‖pk‖2

5: return lk+1

Optical Implementation:

In: iterations K
Out: principal eigenvector of T

l1 = positive vector

for k = 1 to K

illuminate scene with vector lk
capture photo & store in pk

lk+1 = pk/‖pk‖2

return lk+1

Implementing power iteration in optics amounts to replacing this
product with the illuminate-and-capture operation shown on the
right. This is possible when the transport matrix is square, i.e.,
when illumination vectors and captured photos are the same size.
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Figure 2: Principle of optical computing for light transport. To
analyze an unknown transport matrix T, we use standard numeri-
cal methods with just one modification. As they execute, whenever
they must compute T’s product with a vector l, we call a function
that computes this product optically by illuminating the scene with
l and capturing photos. Camera-projector arrangements. We use
three degrees of freedom in our arrangements: number of distinct
viewpoints (one or two); ability to compute products with Tt (yes
or no); and type of illumination, i.e., projecting patterns directly
onto the scene as in (a), or displaying them on a screen, as in (b).
Four of the eight possible arrangements are shown above. How
scenes and light sources affect T’s rank and sparsity. Suppose
the scene in (a) and (b) is the same convex Lambertian object. Dis-
playing a pattern directly onto the object, as in (a), will transfer it
to the photo in the form of a distorted texture; this means that T
has maximal rank and sparsity, and can be acquired by structured-
light scanning [Salvi et al. 2004]. Displaying the same pattern on a
screen, as in (b), transfers only low frequencies to the camera in the
form of shading; T is now a dense low-rank matrix whose acqui-
sition is equivalent to photometric stereo [Basri and Jacobs 2003].
General scenes make acquisition much more challenging by bridg-
ing the gap between these two extremes, i.e., by reducing rank and
sparsity in (a) and increasing them in (b). Note that T’s properties
in (a) and (b) would be reversed if the object was a perfect mirror.

Optical implementation turns the power iteration algorithm into an
illumination procedure with a feedback loop. The procedure re-
peatedly captures a photo, converts it to a unit vector, and uses it to
illuminate the scene. See Figure 3 for a diagram of this procedure.
Figure 4 shows an example of using it to compute the principal
eigenvector of the full-resolution transport matrix for a real scene.

Although very simple algorithmically, optical power iteration high-
lights an important point about our general approach: the efficiency
of image acquisition is directly related to the convergence proper-
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Figure 3: Power iteration with a projector and a camera.
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Figure 4: Optical power iteration in action. We used the coax-
ial arrangement of Figure 2(c) for this example, where a camera
and a projector share the same viewpoint and T is symmetric. We
started with a constant illumination vector l1, shown above, so the
first photo of the scene was captured under constant illumination.
That photo became the next illumination vector, l2, also shown
above. The illumination vectors change very little after about 50
captured photos, indicating that a good approximation of T’s prin-
cipal eigenvector has already been found.

ties of the underlying numerical algorithm—the faster it converges,
the fewer photos its optical implementation needs to capture.

From a numerical standpoint, power iteration is not an efficient al-
gorithm for computing eigenvectors. It computes just one eigenvec-
tor, albeit the principal one, and the approximation error decreases
by a factor of |λ2|/|λ1| at each iteration, where λ1, λ2 are the top
two eigenvalues of T [Trefethen and Bau 1997]. The algorithm
may converge very slowly when T’s top two eigenvalues are sim-
ilar, and may not converge at all if they are identical. Naturally,
these limitations are shared by its optical counterpart.

To analyze light transport efficiently, we focus on much more effi-
cient numerical algorithms from the class of Krylov subspace meth-
ods, discussed below.

2.2 Optical Krylov Subspace Methods

Krylov subspace methods represent some of the most important
iterative algorithms for solving large linear systems [Saad 2003].
Their relevance for light transport comes from the existence of
powerful methods for analyzing large sparse matrices, like T, be
it square or rectangular, and symmetric or non-symmetric.

Briefly, the Krylov subspace of dimension k is the span of vectors
produced by power iteration after k steps:

l1 l2 l3 · · · lk+1

m m m

Tl1 T2l1 · · · Tkl1

. (2)

While individual algorithms differ in their specifics, Krylov sub-
space methods take an initial vector l1 as input and, in their k-th
iteration, compute a vector in the Krylov subspace of dimension k.

The important characteristic of these methods is that they do not
require direct access to the elements of T; all they need is the abil-
ity to multiply T, and potentially its transpose, with a vector. This
makes them readily implementable in optics.

Optical matrix-vector products for general vectors Unlike
power iteration, general Krylov subspace methods require multi-
plying T with vectors that may contain negative elements. Even
though we cannot illuminate the scene with negative light, imple-
menting such products optically is straightforward. We follow the
approach outlined by Goodman [2005], and express a general vec-
tor l as the difference of two non-negative vectors lp and ln:

l = l
p − l

n
(3)

T l = (T l
p)− (T l

n) . (4)

To implement Equation 4 optically, we use two illuminate-and-
capture operations: one to compute Tlp and one to compute Tln.
We then subtract the two captured photos to get the product with l.

Symmetric vs. non-symmetric transport matrices The con-
vergence behavior of Krylov subspace methods like GMRES de-
pends quite significantly on whether or not T is a symmetric ma-
trix [Liesen and Tichy 2004]. In this paper we restrict ourselves
to the symmetric case, where convergence is well understood, by
choosing appropriate projector-camera arrangements.

There are two general ways to enforce symmetry when implement-
ing Krylov subspace methods in optics. The first is to make sure
that T itself is symmetric. This can be done with the coaxial
arrangement of Figure 2(c). This configuration takes advantage
of Helmholtz reciprocity and is quite common [Seitz et al. 2005;
Zhang and Nayar 2006]. It is also quite limited because it does not
allow any viewpoint variations between the projector and camera.

A second way to enforce symmetry is to apply the methods to a
different matrix whose symmetry is guaranteed:

T
∗ = T

t
T . (5)

Optically multiplying T∗ with a vector, however, involves matrix-
vector products with both T and its transpose:

T
∗

l = T
t (T l) . (6)

A single camera-projector pair is not enough to compute both prod-
ucts optically. For this, we use the arrangement of Garg et al. [2006]
shown in Figure 2(d). This arrangement uses two camera-projector
pairs and enables two distinct project-and-capture operations: one
for computing Tl (“illuminate from left, capture from right”) and
one for computing Ttr (“illuminate from right, capture from left”).

Arnoldi and GMRES Krylov subspace methods come in many
flavors depending on the numerical objective (eigenvalue estima-
tion, solution of linear systems, etc.); type of matrix (symmetric,
non-symmetric, positive definite, etc.); and error tolerance. We ex-
plore two of these methods here: Arnoldi iteration for efficiently
acquiring a low-rank approximation of T, and generalized minimal
residual (GMRES) for inverting light transport.

When implemented in optics, Arnoldi and GMRES follow the same
basic loop as optical power iteration. They capture a photo, process
it, project the result back onto the scene, and repeat for a fixed num-
ber of iterations. Both methods differ from power iteration in just
three steps. These differences are summarized in Table 1.



Algorithm Numerical objective Step 1 Step 4 Step 5

Power iteration estimate principal l1 = positive vector lk+1 = pk/‖pk‖2 return lk+1

(Section 2.1) eigenvector of T

Arnoldi compute rank-K l1 = non-zero vector lk+1 = ortho(l1, . . . , lk,pk) return [p1 · · ·pK ][l1 · · · lK ]t

(Section 3) approximation of T lk+1 = lk+1/‖lk+1‖2

Generalized minimal find vector l such that l1 = target photo p lk+1 = ortho(l1, . . . , lk,pk) return [l1 · · · lK ][p1 · · ·pK ]+p

residual (Section 4) p = T l lk+1 = lk+1/‖lk+1‖2

Table 1: The two Krylov subspace methods we implement in this paper, along with their differences from power iteration. In the numerical
steps listed above, the function ortho() projects the last vector in its parameter list onto the orthogonal subspace of the rest; [ ]+ denotes the
matrix pseudoinverse. See the relevant sections for a discussion of the algorithms and their optical implementation.

3 Optical Arnoldi for Transport Acquisition

We now show how to efficiently capture low-rank approximations
of full-resolution transport matrices with the Arnoldi method.

The Arnoldi method can be thought of as a much more efficient
version of power iteration. At the k-th iteration, the algorithm has
enough information to estimate the top k eigenvectors (or singular
vectors) of a matrix rather than just one of them. Unlike power
iteration, Arnoldi does not estimate these eigenvectors directly. It
generates a sequence of orthogonal vectors, l1, . . . , lk, whose span
approximates the span of the top k eigenvectors. This approxima-
tion, which tightens as k increases, makes it possible to compute
a rank-k approximation of the matrix without direct access to its
elements. We refer the reader to Saad [2003] for the basic theory
behind the Arnoldi method and to [Greenbaum and Trefethen 1994;
Simon and Zha 2000] for a convergence analysis and detailed error
bounds on the rank-k approximation it enables.1

Two optical implementations of Arnoldi are shown in Algorithm 2,
one for symmetric and one for non-symmetric T. For a symmetric
T, the implementation amounts to substituting three steps in power
iteration’s optical implementation with the corresponding steps
from Table 1. Because the vectors generated by Arnoldi contain
negative values, we use two illuminate-and-capture operations per
matrix-vector product, one for their positive and one for their neg-
ative component. The optical implementation for non-symmetric
transport matrices uses two sets of illuminate-and-capture opera-
tions, applied to T and Tt respectively, in order to implement
Equation 6. Therefore, we capture four photos per Arnoldi iteration
when T is non-symmetric. Figure 5 shows the schematic diagram
for this case and Figure 6 shows an example run.

Algorithm 2 Optical Arnoldi for rank-K transport acquisition.

For symmetric T:

In: iterations K
Out: rank-K approximation of T

1: l1 = non-zero vector

2: for k = 1 to K

3:
illuminate with l

p

k
and lnk

capture photos p
p

k
and pn

k

pk = p
p

k
− pn

k

4: lk+1 = ortho(l1, . . . , lk,pk)
lk+1 = lk+1/‖lk+1‖2

5: return [p1 · · ·pK ][l1 · · · lK ]t

For non-symmetric T:

In: iterations K
Out: rank-K approximation of T

l1 = non-zero vector

for k = 1 to K

left-illuminate with l
p

k
and lnk

right-capture photos d
p

k
and dn

k

dk = d
p

k
− dn

k

rk = dk/‖dk‖2

right-illuminate with r
p

k
and rnk

left-capture photos s
p

k
and snk

sk = s
p

k
− snk

lk+1 = ortho(l1, . . . , lk, sk)
lk+1 = lk+1/‖lk+1‖2

return [d1 · · ·dK ][l1 · · · lK ]t

1Note that another often-used method, Lanczos, is the Arnoldi method

optimized for symmetric matrices.
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Figure 5: Arnoldi with two projectors and two cameras.
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Figure 6: Optical Arnoldi in action for the hat scene rendered
in Figure 1. We used the non-symmetric configuration in Fig-
ure 11(top), with the left pair behind a display screen. The photos
and illumination vectors contain both positive (red) and negative
(blue) values. We started with a constant positive left illumination
vector (l1) so the first photo captured with the right camera (d1)
was positive as well. This photo was then projected onto the scene
with the right projector. Note that since the left camera views the
scene from behind the display screen, which is essentially a dif-
fuser, its photos contain mainly low frequencies (s1). We produced
the relighting result in Figure 1 by estimating a low-rank T from
ten Arnoldi iterations (i.e., 40 low dynamic range photos).

The optical Arnoldi algorithm can be thought of as building two
bases simultaneously: an orthogonal basis for the subspace of il-
lumination vectors and a basis for the subspace of photos. For a
symmetric T, the illumination basis contains all vectors the algo-
rithm used to illuminate the scene; the photo basis contains all pho-
tos it captured. In the non-symmetric case, the illumination basis



contains the left-illumination vectors (first row of Figure 6) and the
photo basis the right-captured photos (second row of Figure 6). The
matrix itself, returned in the algorithm’s last step, just multiplies
these two bases together.

Scene relighting To render a scene under a novel illumination
vector l, we rewrite Equation 1 in terms of the captured illumination
and photo bases. The equation for the non-symmetric case becomes

p = [d1 · · ·dK ][l1 · · · lK ]t l . (7)

This equation can be thought of as a two-step relighting procedure:
first we compute l’s coordinates in the left-illumination basis by
projecting l onto it; then we linearly combine the right-captured
photos to obtain the relighting result, p.

3.1 Relation to Prior Work on Transport Acquisition

We discuss related work from a numerical perspective in terms of
four properties—T’s rank, sparsity, row space, and symmetry.

An important distinction between methods is the rank and sparsity
of matrices they acquire. As we illustrate in Figure 2, this distinc-
tion is implicit in the choice of a light source and scene. Techniques
geared toward sparse high-rank matrices [Sen et al. 2005; Garg
et al. 2006; Peers and Dutré 2005] rely on T’s ability to transfer
both high and low frequencies from the illumination domain to the
camera domain; techniques acquiring dense low-rank matrices [De-
bevec et al. 2000; Fuchs et al. 2007; Wang et al. 2009] assume that
high-frequency illumination does not propagate to the camera do-
main. Optical Arnoldi is primarily applicable to dense low-rank
matrices. These are often representative of natural settings, where
illumination comes from point or area sources and where mirror re-
flection and sharp shadows usually do not dominate light transport.

The choice of illumination ensemble used to acquire the transport
matrix is critical because it controls the basis for T’s row space. To
maximize efficiency, this ensemble should allow accurate recon-
struction of T’s rows from as few illumination vectors as possible.
Many ensembles have been used for this purpose, including Haar
wavelets [Peers and Dutré 2003], Hadamard patterns [Schechner
et al. 2007] and single-source illuminations [Fuchs et al. 2007]. For
instance, Wang et al. [2009] use the low-rank configuration in Fig-
ure 2(b) and single-source illumination vectors to reconstruct T’s
rows with the kernel Nyström method. These ensembles have been
scene independent in all previous work on transport acquisition.2

For low-rank matrices, no scene-independent ensemble is optimal.
The optimal ensemble under the Frobenius norm is scene dependent
and consists of T’s singular vectors [Trefethen and Bau 1997]. This
is precisely the ensemble optical Arnoldi approximates.

Garg et al. [2006] and Wang et al. [2009] used coaxial camera-
projector arrangements to exploit the fact that knowing a subset
of both rows and columns of T makes it easier to reconstruct the
rest. Numerically, however, symmetry has much more fundamen-
tal effect on a matrix, as it affects its eigenstructure. While we use
similar camera-projector arrangements, our choices are guided pri-
marily by numerical convergence considerations.

Sen et al. [2009] and Peers et al. [2009] recently used compressed
sensing techniques to reconstruct individual rows of T. These
methods are complementary to our own, as they apply to a dif-
ferent matrix class—sparse, high-rank matrices—for which a low-
rank approximation might lead to rendering artifacts. The scene-
independent ensembles of these methods, however, are inefficient

2Although techniques have been proposed for sampling vectors from

within an ensemble in a scene-dependent way (e.g., [Fuchs et al. 2007]),

the ensemble itself is fixed and independent of the scene.

for capturing dense low-rank matrices. They are also very expen-
sive computationally and depend on the size of T. Here, by seek-
ing to maximize the “information content” of each captured photo,
optical Arnoldi makes the number of iterations required for conver-
gence dependent on T’s singular value distribution, not its size.

Computing transport eigenvectors Eigenvectors and singular
vectors of real-world transport matrices have been used for com-
pression [Matusik et al. 2002] and to accelerate rendering [Maha-
jan et al. 2007]. In all cases, they were computed after acquiring T.
With optical Arnoldi, we analyze light transport in reverse: we first
construct a basis that approximates the span of the top K transport
eigenvectors, and then use that basis to reconstruct the matrix.

4 Optical GMRES for Inverse Transport

We now consider an optical solution to the following problem. We
are given a target photo p and seek an illumination vector l that
produces it. Mathematically, this can be expressed as a solution to
Equation 1 where the unknown is l, not p.

Generalized minimal residual (GMRES) is a Krylov subspace
method that iteratively solves this problem for unobservable matri-
ces without inverting them, using just matrix-vector products [Saad
2003]. As shown in Table 1, the method is almost identical to
Arnoldi: the only difference is its initial vector (it is always p) and
its return value, which is a solution to the least-squares problem:

l = argmin
x

∥

∥

∥
[p1 · · ·pK ][l1 · · · lK ]tx− p

∥

∥

∥

2

, (8)

where pk and lk are computed in the kth Arnoldi iteration. In
essence, GMRES builds a rank-K approximation of T and then
inverts it to compute l.

Despite its apparent simplicity, GMRES is an extremely powerful
algorithm. It applies to any matrix (low-rank, high-rank, dense,
sparse, etc.) and converges rapidly for arbitrary non-singular sym-
metric matrices [Liesen and Tichy 2004]. Intuitively, GMRES does
this by “exploring” only a portion of T’s row space, i.e., the sub-
space that is precisely suitable for inverting the initial vector p.

The optical implementation of GMRES is identical to Arnoldi’s.
We simply run optical Arnoldi with a photo p as the initial illumina-
tion vector and, after the algorithm terminates, we solve Equation 8
computationally (Step 5 of GMRES in Table 1).3

In principle, it should be possible to use optical GMRES to invert
light transport efficiently for any full-rank transport matrix, regard-
less of sparsity and size. This, for instance, would allow us to infer
the illumination that produced a given photo of a scene, even when
both the scene and the illumination are very complex. Figures 7, 8
and Section 6.2 show initial demonstrations of such a capability on
both high-rank and low-rank matrices, at high resolution.

For singular transport matrices two possibilities exist: there may be
many different illuminations that can produce a given photo (Equa-
tion 1 has multiple solutions) or none at all (Equation 1 is infea-
sible). When many solutions exist, optical GMRES can efficiently
return one of them, although not necessarily the one used to pro-
duce the original photo. When no solutions exist, it will return the
best-possible approximation lying within the rank-K subspace it
built. Its convergence behavior in this case is unclear, however.

3 The solution to Equation 8 may contain negative elements. Although

we just clamp them to zero, another approach is to add a non-negativity

constraint and solve the equation using MATLAB’s lsqnonneg() function).
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Figure 7: Inverse light transport for a high-rank T. A top view
of our setup is shown in (a). We placed a fresnel lens and an LCD
backlight diffuser (both circled) in front of two camera-projector
pairs to create the arrangement of Figure 2(d). We then displayed
the SIGGRAPH logo onto the scene with the right projector and
captured a photo with the left camera. A top view of the scene under
this illumination is shown in (c) and the captured photo in (d). Note
the evidence of complex low-rank and high-rank transport in this
photo (diffused regions and distorted/replicated/broken-up logo, re-
spectively). We then provided the photo in (d)—with no additional
information—to optical GMRES to test its ability to reassemble the
logo we actually displayed. The result of optical GMRES is shown
in (e): the logo is reconstructed successfully although some ringing
exists. It took 20 iterations of optical GMRES, i.e., 80 low dynamic
range photos, to get this result. Displaying the image in (e) onto
the scene with the right projector produces a left-camera photo that
is indistinguishable from the one in (d). The difference between
those two photos, amplified 50×, is shown in (f). This suggests T
is mildly singular, confirming the ringing.

4.1 Relation to Prior Work on Inverse Transport

Implicit in all prior work is the assumption that to invert light trans-
port we must first acquire T. Grossberg et al. [2004] consider this
problem under the assumption of no indirect transport. This makes
T maximally sparse and full rank, and therefore easy to capture and
invert. To deal with non-negligible (but still small) indirect illu-
mination, Wetzstein and Bimber [2007] capture the full-resolution
T, enforce sparsity by thresholding, and invert it with a sparse-
system solver. For more significant indirect lighting effects, Ng et
al. [2009] and Bai et al. [2010] rely either on low-resolution or on
sparse transport matrices to make brute-force acquisition tractable.
In other applications, Zhang and Nayar [2006] compute T−1 to
account for projector defocus and Seitz et al. [2005] use it to de-
compose an image of a Lambertian scene into the contribution of
individual light bounces. Both approaches rely on low-resolution
transport matrices and brute-force acquisition.

Here we show that acquiring T is not necessary as long as we pur-
sue a more modest goal—rather than solve inverse light transport
for every possible input photo, which is equivalent to computing

l1 l5 l10

d1 d5 d10

s1 s5 s10

Figure 8: Optical GMRES in action for the inverse transport task
of Figure 7. Although GMRES operates in full color, we show only
the red channel with its positive (red) and negative (blue) compo-
nents. Note that the algorithm begins by displaying the input photo
in Figure 7(d) with the left projector. The last row shows the solu-
tion computable by GMRES after the corresponding iteration.

T−1 and hard, we use optical GMRES to solve it for specific ones,
which is much easier. Moreover, GMRES can be generalized to
handle many input vectors/photos at a time [Gutknecht 2007].

5 Implementation

Cameras and projectors We use either one or two coaxial
camera-projector pairs, each composed of an NEC LT30 DLP pro-
jector, a beamsplitter, and a Canon EOS 5D MarkII camera with a
50mm f1.2L lens, chosen for its light-gathering abilities. Since we
capture RAW photos, we consider their response to be linear. The
projectors are calibrated geometrically and radiometrically relative
to the cameras. See Figures 7a and 11a for typical arrangements.

We operate each projector at 85Hz and capture photos with a
1/13sec exposure time at ISO100. The only exception is when tak-
ing photos of the display screen, which is typically quite dim, where
we use ISO200 instead (e.g., for the left camera in Figure 11a).4

We capture only low dynamic range photos and use a fixed expo-
sure level for each run of our algorithms. To control it, we adjust
the lens aperture and the maximum intensity of projector pixels so
that photos taken under maximum illumination have an intensity at
most 80% of the maximum possible. Beyond arranging the cam-
eras and projectors; adjusting exposure; choosing a photo resolu-
tion; and choosing the number K of Arnoldi iterations, there are no
user-tunable parameters in our implementation. To minimize defo-
cus in all experiments, we kept the scene within the camera’s depth
of field as much as possible.

Optical Arnoldi Numerical packages for large matrices typically
allow the matrix-vector calculation function to be passed as a pa-
rameter. To acquire T, we simply pass a function that implements
matrix-vector products with two illuminate-and-capture operations.
For example, acquisition of a symmetric T with the PROPACK
package [Larsen ] for MATLAB amounts to one line of code:

[V,D] = LANEIG(opt-prod, n, k, ”LM”)

4 To increase contrast even further for photos of the screen, one can block

the aperture of the “inactive” projector (i.e., left projector in Figure 11a).



where opt-prod() is a function that computes optical vector products
with T and LANEIG() solves the eigenvalue problem5 Tv = λv.
The implementation for a non-symmetric T is similar:

[U,S,V] = LANSVD(opt-prod, opt-prod-t,m, n, k, ”L”)

where opt-prod-t() computes optical vector products with Tt and
LANSVD() performs singular value decomposition. We do not ac-
tually use the output of these routines in our implementation; we
simply store to disk all illumination vectors and all photos captured
during the routines’ execution. For relighting, we use Equation 7.

Optical matrix-vector products Our implementation essentially
amounts to implementing the opt-prod() and opt-prod-t() functions
for use in MATLAB. Given an illumination vector supplied by
MATLAB, we reshape it into a 2D image and divide it by the max-
imum absolute pixel value to bring it to the range [−1, 1]. We then
implement Equation 4 directly, by splitting the vector into its posi-
tive and negative components; multiplying each component by the
maximum intensity of projector pixels; capturing one photo per dis-
played component; and taking the difference of the two photos. The
differencing operation automatically eliminates contributions from
ambient light and the projector’s black level.

Since demosaicing large RAW photos is computationally expen-
sive, we capture and store them on disk but do not return them as
vectors to MATLAB. Instead, we return the 362 × 234 thumbnail
images contained in the RAW files, which are linear, demosaiced,
and small enough to fit in main memory. Steps 3 and 4 of optical
Arnoldi and GMRES thus operate on a (362× 234)2 version of T.

High-resolution acquisition and relighting Even though the il-
lumination vectors in Steps 3 and 4 of optical Arnoldi are computed
from low-resolution thumbnails, the RAW photos we capture do
enable high-resolution acquisition and relighting. For relighting in
the non-symmetric case, we simply replace in Equation 7 the low-
resolution basis for T’s photo subspace with a high-resolution one:

p = [d1
h · · ·dK

h][l1 · · · lK ]t l (9)

where dk
h is the RAW photo captured in the k-th Arnoldi iteration.

To reconstruct a high-resolution T, we replace the matrix returned
in Step 5 of the algorithm with the matrix in Equation 9.6

Color handling Mismatches in the spectral response of projec-
tors and cameras can lead to cross-talk between color channels.
To avoid such issues in the Arnoldi method, the scene is lit with
monochrome illumination by converting each illumination vector to
grayscale prior to projection. For GMRES, we capture each color
channel with a separate illuminate-and-capture operation.

Timings Our entire relighting pipeline consists of running optical
Arnoldi for K iterations, demosaicing the high-resolution photos it
captured, and computing the relit images with Equation 9. We use
an Apple iMac with a 2.8Ghz Intel Core i7 processor and 16 GB
of memory for all capture, processing and display. Optical Arnoldi
for a non-symmetric T runs at a rate of 12 seconds per iteration,
including all processing and photo acquisition. Demosaicing runs at
a similar rate, about 12 seconds to process the positive and negative
components of dk captured in each iteration. We use an image
resolution of 1080× 720 for all relighting results in the paper, with
each image taking 0.3×K seconds to compute.

5Strictly speaking, LANEIG() and LANSVD() use the Lanczos method.
6While thumbnails make each Arnoldi iteration more efficient, comput-

ing illumination vectors directly from demosaiced RAW photos may lead to

lower reconstruction error for a given number of iterations.

6 Results

6.1 Acquiring Transport Matrices with Optical Arnoldi

Ground-truth comparisons Although optical Arnoldi computes
rank-K matrix approximations at the resolution of cameras and pro-
jectors, it is not possible to capture ground-truth matrices of that
size for evaluation. To validate our algorithm and compare against
other low-rank approximation methods, we acquired low-resolution
transport matrices for the four scenes shown in Figure 9. We delib-
erately chose these scenes to exhibit a variety of challenging light-
ing effects, including shadows, interreflections, caustics, etc.

To capture the ground-truth matrix, we treated the left projector as
a low resolution display with 32 × 32 or 16 × 16 superpixels. We
used the full set of Hadamard illumination patterns because of their
good noise properties [Schechner et al. 2007] and captured photos
at thumbnail resolution (362× 234).

The accuracy and efficiency of a particular acquisition technique
can be measured by how well the ground-truth matrix can be re-
constructed after a certain number of steps. We compute the relative
reconstruction error under the Frobenius norm after k iterations:

ǫk =
‖Tk − T̂‖F

‖T̂‖F
, (10)

where T̂ is the ground-truth matrix and Tk is the transport matrix
computable after k iterations. We report this error for Tk computed
five different ways:

• running k iterations of optical Arnoldi;

• acquiring k random rows and columns of the transport matrix
and then using the Nyström method of Wang et al. [2009];

• applying the kernel Nyström method [Wang et al. 2009] to the
same input, with its exponent parameter chosen to minimize
ǫk (this represents the best-case scenario for that method);

• acquiring k photos under the discrete cosine transform (DCT)
illumination basis (i.e., a brute-force technique);

• computing the best rank-k approximation of T̂ numerically
using singular value decomposition (this is optimal under the
Frobenius norm).

To assess the relative performance of these methods in the absence
of measurement noise, we simulated photo acquisition for the four
scenes shown in Figure 9. Specifically, instead of capturing more
photos as needed by each method, we used the ground-truth trans-
port matrix to compute them.

The plots in Figure 9 show that optical Arnoldi’s convergence rate
under noiseless conditions is close to optimal, and significantly
faster than the Nyström methods. Note that it should be possible,

in principle, to reconstruct T̂ perfectly once the number of itera-

tions becomes equal to the number of rows in T̂ (i.e., 1024). We
found, however, that this was not the case with Nyström because it
depends on a pseudoinverse tolerance parameter that does not guar-

antee perfect reconstruction when T̂ is singular. This is the case in
the Waldorf and Bull scenes, as can be seen by SVD’s error pro-
file. Finally, note that brute-force acquisition can outperform other
methods in some cases (e.g., Juice).

Figure 9 also shows comparisons under noisy conditions for the
Flower and Juice scenes. In this case, all photos were captured
rather than simulated. Since the single-source illuminations re-
quired by the Nyström methods (i.e., only one superpixel is on)
produce very dim images, we doubled the exposure time of the
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Figure 9: Error comparisons for five methods applied to scenes
shown above. We used the non-symmetric arrangement in Fig-
ure 11(a) for the Waldorf, Bull and Flower scenes. Since the
left projector was behind a diffuser, the transport matrix for these
scenes was dense; the SVD error profiles suggest the rank is not
very low for Bull and Flower because of mirror reflections from
the glass objects in those scenes. For Juice, we used the symmetric
arrangement in Figure 2(c), with light projected directly onto the
scene. The transport matrix in this case was 256× 256 and, as the
SVD error profile indicates, has a high rank.

photos provided to Nyström. Thus, the total exposure time in Fig-
ure 9 is the same after k iterations for the Nyström methods and for
optical Arnoldi (the latter captures twice as many photos per itera-
tion).7 Despite the increase in the per-photo exposure time for the
Nyström methods, their input images are still very noisy. Arnoldi,
on the other hand, uses illumination vectors with much broader spa-
tial support (e.g., see Figure 6) and therefore has some of the advan-
tages of the Hadamard illumination patterns.

Since noise is present in all photos of Flower and Juice—including
those we used for ground-truth capture—perfect reconstruction of

T̂ cannot be guaranteed. Indeed, no method other than SVD, which

depends only on T̂, achieves perfect reconstruction. As in the
noiseless case, optical Arnoldi performs substantially better than
the Nyström methods. Its convergence rate resembles that of SVD,
although it converges to a non-zero reconstruction error. This is ex-
pected because it computes matrix-vector products with noisy 8-bit
camera pixels rather than noiseless floating point arithmetic.

Relighting results and discussion Figure 10 shows relight-

7We consider constant total exposure time a more accurate baseline,

given the different illumination conditions required by the Nyström meth-

ods. See Figure 10 for a comparison with a constant number of photos.

(a) (b)

(c) (d)

Figure 10: Relighting results for the Flower scene in Figure 9
under point-source illumination. We computed T after (a) 10, (b)
20, and (c) 50 iterations of optical Arnoldi (i.e., 200 photos, 200/13
sec total exposure time). In (d) we show an image relit with the
transport matrix computed by kernel Nyström from 100 row and
100 column samples (200 photos, 400/13 sec total exposure time).

ing results for a point light source, and Figures 1, 12 and the
supplementary video show results for several more scenes. Un-
like the ground-truth experiments, these scenes are relit with high-
resolution, (362× 234)× (1080× 720) transport matrices.

These results suggest that it is possible to create good-quality relit
images from a small number of captured photos, even in the pres-
ence of complex light transport phenomena. Clearly, since we ac-
quire a rank-K approximation of the transport matrix from 4K cap-
tured photos, high-rank transport components cannot be acquired if
K is very small. This is evident in the second row of the Hat scene
in Figure 12, where a rank-10 approximation cannot reproduce the
light passing through holes in the hat’s brim. These are reproduced
much better with a rank-50 matrix. The Crystal scene in the same
figure is more challenging, with numerous mirror reflections and
light transported to the backdrop in complex ways. The result is a
significant difference between the rank-10 and ground-truth photos.

An interesting property of optical Arnoldi is that even when the relit
images are not entirely correct, as in the Crystal scene, they are still
visually plausible. This is mainly due to the scene-dependent basis.
All relit images are linear combinations of photos of the scene itself.

We deliberately did not use high dynamic range photos for exper-
iments in this paper. This makes noise apparent in some of our
photos (both real and rendered). Our purpose was to illustrate the
performance of our optical-domain approach in a challenging set-
ting. Cameras and projectors have limited dynamic range, are sub-
ject to noise, and represent numbers with limited precision. As
such, optical matrix-vector products cannot be considered as accu-
rate as matrix-vector products done with floating-point arithmetic.
Nevertheless, we observe that despite these unavoidable issues, the
presence of noise does not cause additional rendering artifacts. For
example, the ground-truth photos in Figure 12, which were captured
with the same exposure settings as Arnoldi’s, appear noisier than
the rendered ones. The good behavior of optical Arnoldi comes
from the overall stability of Krylov subspace methods in the pres-
ence of matrix-vector product errors [Simoncini and Szyld 2003].
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Figure 11: Simulating one light source with another. We used a non-symmetric arrangement with a display screen between the left camera
and the scene (a). We then placed a toy on the other side (b) and used a flashlight (circled) to illuminate it. We captured a photo with the
right camera (c, bottom) and gave it as input to optical GMRES. The goal was to get the left projector to illuminate the scene exactly like the
flashlight. A left-camera photo of the display screen under flashlight illumination is shown in (c, top). This photo was not given to GMRES.
It took GMRES 20 iterations to compute it (f, top). Note how the illumination computed by GMRES correctly replicates the shadows in the
input photo, both hard and soft. (g) Relative L2 reconstruction errors of the flashlight illumination (top) and the input photo (bottom).

6.2 Inverting Light Transport with Optical GMRES

The experiment in Figures 7 and 8 showed the ability of GMRES
to invert light transport at high resolution for a high-rank T. To test
its ability to do the same for a low-rank T, we consider the problem
of creating an “illumination impostor” i.e., using one light source
(a projector) to simulate the complex lighting effects produced by
another (a flashlight). This experiment is described in Figure 11.

The experiment shows that GMRES is able to invert light transport
at high resolution in a very challenging setting, with complex oc-
clusions, shadows and interreflections. This would not have been
possible with existing methods without capturing the full T first.
Note that even though the illumination that GMRES estimates is
similar to the one we used, it is not exactly the same. The photo
of the scene it produces, however, matches that of the flashlight-
illuminated scene very well. This means that T has a whole sub-
space of feasible illuminations that produce the same photo—and
GMRES just found one of them.

7 Relation to Work in Optical Computing

Numerical linear algebra with optics In discrete analog opti-
cal processing, matrices and vectors are encoded by transparency
masks or spatial light modulators [Goodman 2005]. Athale and
Collins [1982] showed how a sequential arrangement of such ele-
ments (along with light sources, lenses and detectors) can be used
to implement matrix multiplication optically.

For more complex operations, the idea of using optical feedback
loops for processing was well established [Cederquist and Lee
1979]. Kumar and Casasent [1981] describe several optical feed-
back loops for computing eigenvectors of a matrix, including power
iteration. Rajbenbach et al. [1987] computed matrix inverses opti-
cally by implementing the Neumann series in a feedback loop. Our
approach can be thought of as a re-interpretation of this general
approach, where the matrix is encoded implicitly by the scene and
where all other optical elements are replaced by cameras, projectors
and a PC. In this respect, it is a hybrid system [Casasent 1981].

We refer readers interested in exploring this area to the review arti-
cles of Leith [2000] and Ambs [2009] as well as the critical analysis
of Psaltis and Athale [1986] on the feasibility of using linear optics
for numerical calculations.

Context-aware illumination Wang et al. [2010] recently used
the coaxial arrangement in Figure 2(c) to enhance the appearance

of a real-world scene in real time. Their idea is to illuminate the
scene with a processed version of the live video in which certain
features, like edges, have been enhanced. Their approach cannot
be considered a form of optical computation because it explicitly
prevents feedback loops. No photo is captured when the scene is
illuminated by their context-aware light source.

Perhaps closer in spirit to our work is the dynamic contrast enhance-
ment technique of Amano and Kato [2008]. To enhance the contrast
of a real-world planar scene under room illumination, they capture
a photo, contrast-enhance it, and project it back onto the scene in a
simple feedback loop. Contrary to our work, their analysis is done
per pixel and assumes no indirect light transport.

8 Conclusions

In this paper we introduced the idea of performing numerical com-
putations on the full-resolution transport matrix in the optical do-
main. We have shown that computations often assumed to require
complete acquisition of the matrix—such as computing eigenvec-
tors or inverting light transport—can actually be done efficiently
without it. The numerical methods we use are widely available and
can be readily moved to the optical domain; importantly, they bring
with them a wealth of numerical research that can potentially be
transferred to the optical domain as well.

Our efforts in this paper were specifically aimed at low-rank ap-
proximation and inverse light transport. Although we believe the
low-rank constraint can be a powerful one, clearly many transport
phenomena cannot be represented by low-rank matrices. The ques-
tion of how to bridge the gap between the low-rank constraint we
exploit and the sparsity constraints employed recently [Peers et al.
2009] is wide open. One advantage of optical GMRES, at least for
inverse transport, is that it can operate regardless of matrix rank.

Finally, there is some evidence that individual transport eigenvec-
tors provide information about shadows, interreflections, or even a
scene’s 3D shape [Koenderink and van Doorn 1983; Langer 1999;
Mahajan et al. 2007]. Since direct capture of eigenvectors is possi-
ble with our approach, we have begun to explore these connections.
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Figure 12: First row: Relighting results under complex illumination with a rank-10 transport matrix. Second row: We use spatially-localized
lighting and a rank-10 matrix to identify inaccuracies in high-rank light transport. Third row: Actual photo of the scene captured under the
same illumination with identical exposure settings. Fourth row: Difference between actual photo and the relit image above it. Fifth row:
Relighting with a rank-50 matrix. Please refer to the supplementary video for more results and comparisons.


