
Light Transport Analysis by Krylov Subspace Illumination

Matthew O’Toole∗

University of Toronto

Abstract

We propose a recursive illumination framework for light transport
analysis of an unknown scene. In this framework, we repeatedly
illuminate a scene by capturing a photo and projecting the photo
back onto the scene. This recursive illumination procedure pro-
duces a set of photos that spans the Krylov subspace of the light
transport matrix. Many iterative methods in numerical linear alge-
bra rely on this Krylov subspace for solving the generalized eigen-
value and minimal residual problems of large systems. Our frame-
work expresses this recursive illumination procedure as a means to
solve novel problems in computational illumination. In particular,
we discuss some applications in light transport segmentation and
light transport compensation. Light transport segmentation identi-
fies pixels that mutually illuminate each other by segmenting the
image according to low-level global illumination cues. Light trans-
port compensation improves image projection quality by construct-
ing an environment-aware projector that iteratively corrects for de-
focus, distortions, and global lighting. We also discuss the numer-
ical stability of Krylov subspace illumination by considering the
effects of sensor noise and signal quantization.

Keywords: coded illumination, numerical linear algebra, global
illumination, image segmentation, image manipulation.

1 Introduction

The light transport matrix models light transport between projector
and camera pixels. In addition to image-based relighting, measur-
ing the full matrix of a real-world scene has several applications.
In this paper, we study computational illumination with two ap-
plications in mind: light transport segmentation and light transport
compensation. First, combining light transport with image segmen-
tation provides the means to aggregate the low-level cues of global
transport into an image that describes how light scatters in a scene.
Second, environment-aware projectors preserve image content by
inverting light transport to compensate for defocused or distorted
projections. These problems are formulated as linear systems that
draw on light transport matrices, although measuring, storing, and
solving these large systems directly proves impractical. Our task is
to efficiently approximate their solutions.

Image segmentation algorithms operate on low-level affinity cues
to identify groups of pixels as objects in a scene. These algorithms
often require, as input, a similarity matrix that tabulates the affini-
ties between pixels. Most similarity matrices are a function of color
and proximity, in which two adjacent pixels with similar color val-
ues share a large affinity value. We introduce the novel concept of
light transport segmentation, a method that groups pixels according
to how light scatters from one pixel to the next by reinterpreting
a symmetric light transport matrix as a similarity matrix. Our im-
age segmentation results provide an intuitive visualization of light
scattering in real-world scenes without explicitly reconstructing the
light transport matrix.

Image compensation studies how to project image content onto
arbitrary surfaces without deteriorating the image quality. Prior
works partially solve this problem for scenes with non-planar sur-
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faces and multiple depth planes [Raskar et al. 2003; Zhang and Na-
yar 2006], though their solutions cannot handle scenes with global
illumination. Our light transport compensation algorithm betters
projection quality by applying a minimal residual method to the
light transport matrix itself.

The solutions to these applications share a common recursive light-
ing procedure that, in short, illuminates a scene, takes a photo, and
projects the photo back onto the scene. By repeating the latter
steps, the photos eventually converge to the principal eigenvector
of the light transport matrix. Moreover, the photographs span the
Krylov subspace of the light transport matrix. Many iterative meth-
ods in numerical linear algebra rely on the Krylov subspace to effi-
ciently approximate the largest eigenvectors or solve large systems
of equations. In the context of computational illumination, Krylov
subspace illumination requires no explicit knowledge of the light
transport matrix in order to efficiently solve the light transport seg-
mentation and compensation problems.

The main contribution of this paper is the introduction of Krylov
subspace methods to computational illumination. We build upon
this framework to introduce a novel concept in light transport seg-
mentation to visualize global transport. We also introduce a gener-
alized formulation of the image compensation problem, and create
an environment-aware projector that accounts for any type of light
transport. We also discuss the numerical stability of the Krylov
subspace illumination procedure in terms of sensor noise and sig-
nal quantization.

2 Related Work

The light transport matrix models outgoing light as a function of in-
cident light. Many works study these matrices in its various forms.
A matrix that models incident light fields to outgoing light fields de-
scribes an 8D light transport function [Levoy and Hanrahan 1996].
Because the cost of capturing high fidelity 8D light transport is
high, most applications reduce the dimensionality of the matrix to
simplify the acquisition process. Light stages are built to acquire
4D and 6D reflectance fields for image-based relighting of station-
ary scenes to facial animations [Chabert et al. 2006]. A discretized
BRDF is itself a light transport matrix parameterized over incident
and outgoing light directions [Ghosh et al. 2007]. In addition to
image-based relighting and BRDF sampling, reconstructing the full
light transport matrix allows one to compute the interreflection op-
erator for a Lambertian scene, and find the contribution of light after
n bounces [Seitz et al. 2005].

Brute force methods reconstruct these matrices directly column by
column with many photographs. Other methods attempt to lower
the number of photographs while maintaining high fidelity in the re-
construction results. Adaptively point sampling a reflectance field
allows an algorithm to capture important features faster than us-



ing a fixed sampling pattern [Fuchs et al. e 07]. Dual photography
adaptively samples the matrix by hierarchically searching for radio-
metrically independent blocks of pixels [Sen et al. 2005], though
the worst case occurs for scenes with significant amounts of inter-
reflections. Symmetric photography extends this work by approx-
imating the blocks with rank-1 factorizations [Garg et al. 2006].
Compressive light transport sensing approximates the signal with a
sparse set of basis functions using non-adaptive random measure-
ments patterns as a constraint [Peers et al. 2009; Sen and Darabi
2009]. The generalized kernel Nyström method reconstructs low
rank matrices by exploiting nonlinear coherence [Wang et al. 2009].
Unlike these methods, our approach avoids reconstructing the ma-
trix entirely.

Prior work uses coded illumination patterns to perform 3D recon-
struction of a scene without reconstructing the full matrix [Salvi
et al. 2004; Narasimhan et al. 2008; Zhang et al. 2002]. Project-
ing a small number of polarized sinusoidal patterns onto a scene
produces measurements to robustly estimate a disparity map even
in the presence of global illumination [Chen et al. 2007]. A few
high-frequency illumination patterns also provides the means to
approximate direct and global separation efficiently [Nayar et al.
2006]. Flash and no-flash image pairs allow for low-light photog-
raphy [Petschnigg et al. 2004; Krishnan and Fergus 2009]. Unlike
these methods, our recursive illumination procedure assumes noth-
ing about the structure of the matrix.

Light transport segmentation. We are not aware of any prior work
in light transport segmentation. However, there is an abundance
of research in image segmentation. Spectral clustering relaxes the
problem of partitioning a graph into distinct sets according to some
metric function. Specifically, minimizing cuts according to the nor-
malized cut, average association, and average cut metrics relate to
finding the eigenvectors of certain numerical systems [Shi and Ma-
lik 1997; Weiss 1999]. Soft segmentation for separating foreground
and background objects in images are useful for matting applica-
tions [Levin et al. 2008; Lischinski et al. 2007]. Most of these
image segmentation algorithms operate on the color and proximity
of pixels to determine the appropriate grouping.

Light transport compensation. The light transport compensation,
also known as image compensation, asks what image to project onto
a scene to get a specific image back. Projecting an image onto any-
thing other than a flat surface incurs image distortions, among other
effects. A projector can minimize these distortions by becoming
aware of the geometry in the scene itself [Raskar et al. 2003]. An-
other issue with projectors is the defocus that blurs the incident im-
age. By performing defocus analysis and computing the per-pixel
point spread function that blurs the image, it is possible to project an
image that compensates for the defocus [Zhang and Nayar 2006].
These prior works in light transport compensation explicitly design
their approach to handle these select cases, and thus their approach
breaks down for general scenes. For example, projecting a pattern
onto a concave surface produces global illumination and washes
out the projection. We are, again, not aware of any work in light
transport compensation for this general case.

3 Light Transport

In this paper, we restrict our setup to that of a single camera and
projector. Suppose that a projector illuminates a scene and a camera
measures the response of light scattering through the scene. In gen-
eral, the projected light reflects and refracts multiple times within
the scene before reaching the camera. The camera measures irradi-
ance as a function of the choice of projected light pattern and the
scene itself. We model this process to describe the appearance of a
scene under any given illumination.

Projector

Camera

Ab b

Figure 1: Computational illumination setups often consist of a
camera and light source (i.e. a projector, display, or laser) that il-
luminates a scene. The figure illustrates how a nonsymmetric light
transport matrix models the scattering of light from projector to
camera. When light scatters through a scene, light might reflect or
refract with multiple surfaces before reaching the sensor. Global
illumination refers to the contribution of light due to multiple scat-
tering, and direct illumination refers to that of single scattering.

For this paper, all images are represented by a single vector x ∈ Rk
for some k, where the component i of x stores the value of the ith

pixel of an image. Light transport, as discussed in this paper, is a
function f : Rn → Rm that takes as input an n-pixel projected pat-
tern and outputs anm-pixel photograph. If we are capable of defin-
ing this function, we are able to reconstruct the photograph taken of
a scene under any given illumination pattern. Function f has two
important properties. First, f is a homogeneous function of degree
1, where f(αx) = αf(x) for any scalar α. To explain, imagine
projecting some pattern onto a scene and taking its corresponding
photograph. If the projected image is made twice as bright, the re-
sulting photograph is also twice as bright. Second, the function f
is additive as given by f(x + y) = f(x) + f(y). Taking two pho-
tos under different illumination and adding these photos together
is equal to taking a single photo of the scene under the two illu-
mination patterns added together. The additivity and homogeneity
properties imply that the function f(x) is linear. Evaluating f(x) is
therefore equivalent to the matrix product operation Ax for a matrix
A ∈ Rm×n, commonly known in practice as the light transport ma-
trix. Each matrix component Aj,i describes the irradiance for light
emitted from projector pixel i and measured by camera pixel j.

If we had the resources to build the entire light transport matrix,
one option is to construct the matrix column by column as follows.
Suppose that we illuminate the scene with a single pixel, and this
pattern is given by a unit vector ek with a 1 at the kth position and
0 elsewhere. The matrix product Aek extracts the kth column of the
matrix A. By iteratively taking photographs under illumination pat-
terns ek for all k, we can build up the transport matrix one column
at a time. Once the light transport matrix is found, we can recon-
struct the scene under any illumination x by evaluating the product
Ax through a linear combination of the photographs taken.

The columns have a clear physical meaning, and so do the rows.
Reading a row from the transport matrix is like taking a photo with
the camera and projector swapped. This stems from the idea that



light flow reverses as per Helmholtz reciprocity, and the same ir-
radiance value applies for light traveling in the opposite direction.
An image produced by a linear combination of rows is a dual image
of this system, and a linear combination of columns form a primal
image.

Light transport has three properties that are of interest to our discus-
sions. First, light transport is linear, and modeled by some matrix.
The matrix product Ax produces an image of the scene as though
illuminated by x, as used in image-based relighting. Second, given
Helmholtz reciprocity, aligning the camera and projector produces
equivalent primal and dual images. In this situation, the light trans-
port matrix becomes symmetric, or A = AT . A symmetric matrix
is also known to have orthogonal eigenvectors and real eigenvalues,
a useful constraint for numerical analysis. Third, light transport
is nonnegative. In other words, the matrix itself has nonnegative
components. Combining the nonnegativity and symmetry proper-
ties allows light transport to be reinterpreted as a Laplacian matrix,
a matrix often used in image segmentation.

4 Transport Eigenvectors by Recursive Illu-
mination

At the heart of our approach is a simple recursive procedure that il-
luminates a scene with an initial pattern, takes a photo of the scene,
lights the scene with the photo, takes another photo of the scene,
and so on and so forth. The set of images produced by follow-
ing this approach spans a basis considered to be among the most
important for solving large linear systems. Below, we show why
this recursive procedure is a powerful tool for light transport matrix
analysis.

The initial pattern of this recursive procedure is some n-pixel image
b ∈ Rn where the component bi of this vector is the intensity
value of a pixel i. A n-pixel projector takes the image b as input
and projects the image onto some scene. A photo is taken by an
n-pixel camera while the scene is being lit. Remember that, as
described in section 3, this process is equivalent to a matrix-vector
multiplication operation that involves the light transport matrix.

The light transport matrix A is an n × n square matrix, given that
both the projector and camera have n pixels. If an image b is pro-
jected onto the scene, the photo captured by the camera is given by
the matrix-vector multiplication Ab. What happens when we now
illuminate the scene using the previously captured image Ab?

x0 = b
xk+1 = Axk
(xm) = (x0, x1, x2, . . . , xm−1)

= (x0,Ax0,A(Ax0), . . . ,A(· · · (Ax0) · · · ))
= (b,Ab,A2b, . . . ,Am−1b)

By recursively projecting and capturing photos, a sequence (xm) of
m images is produced, where the kth image is given by the vector
Ak−1b. This sequence is related to one of the simplest iterative
methods in numerical linear algebra: power iteration.

Power iteration is an algorithm that finds the largest eigenvalue and
its corresponding eigenvector. If the largest absolute eigenvalue of
matrix A is distinct in magnitude and the initial image b is not or-
thogonal to the eigenvector corresponding to the largest eigenvalue,
the iteration converges as the number of photos m taken becomes
large. After performing the recursive illumination procedure, the
last image in the sequence (xm), namely vm = Am−1b, is an ap-
proximation to the principal eigenvector of the light transport ma-
trix A. This algorithm is efficiently implemented by only storing

…
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Figure 2: An optical realization of the power iteration method for
an initial white image b = 1. The scene is a folded sheet of pa-
per, as illustrated in figure 1. While a uniformly white image lights
the scene, a photo of the scene is taken. By recursively illumi-
nating the scene with the previous photo taken, the light from the
photos converge to a single point in this particular example. The
bottom-right image is the principal eigenvector corresponding to
the largest eigenvalue of the light transport matrix. In this exam-
ple, the eigenvector appears to indicate the location of the most
specular point in the scene, located on one of the concave folds.
Moreover, because the matrix is nonnegative, the principal eigen-
vector is nonnegative according to the Perron-Frobenius theorem
from appendix A.

Algorithm 1 Power Iteration

for k = 1 to m do
w = Avk−1

vk = w
‖w‖2

λk = vTk Avk
end for

the current image vk in memory at any given step k. Unfortunately,
there are several disadvantages associated with the power iteration.
First, this method only approximates the largest eigenvalue λm and
corresponding eigenvector vm. Second, the power iteration con-
verges linearly at a rate given by the ratio of the two largest absolute
eigenvalues of A. If the largest two eigenvalues are close in mag-
nitude, the convergence will slow down as well. Third, the largest
eigenvalue is not always distinct in magnitude.

A better approach is to store and use all the images in the sequence
(xm), not just the last image captured. In fact, the power iteration
is part of a larger class of numerical techniques called Krylov sub-
space methods.

Km(A, b) = 〈b,Ab, · · · ,Am−1b〉

The Krylov subspace, Km(A, b), of a light transport matrix A and
initial image b is the basis spanned by all of the photos captured in
our recursive procedure, and so any element within this subspace is
a linear combination of the captured images. Importantly, building
this subspace requires no explicit knowledge of the matrix A itself.
This subspace is particularly useful for light transport analysis be-
cause the subspace is constructed by treating the transport matrix as
a black box; computing the product of an unknown transport matrix



with a known vector amounts to projecting the vector onto the scene
and capturing the resulting image. These Krylov subspaces allow
for approximations to multiple eigenvalues and eigenvectors, and a
way to solve Ax = b. The idea behind Krylov subspace methods is
that solving large systems involving a matrix A ∈ Rn×n requires
finding a solution in an equally large space Rn. By limiting the
search to a much smaller subspace Km(A, b) ⊂ Rn, we are able to
find approximations to these large systems much more efficiently.

Because an element of the Krylov subspace Km(A, b) is a linear
combination of the images Akb, the Krylov subspace can be ex-
pressed as the set of (m − 1) degree polynomials in A, multiplied
by the vector b.

p(A)b =
(
α0 + α1A + · · ·αm−1Am−1) b

=

(
m−1∑
k=0

αkAk
)

b ∈ Km(A, b)

Suppose for the moment that b is not orthogonal to any eigenvector
of A. What does it mean to find the nonzero polynomial of least
degree such that p(A)b = 0? The answer is given by the matrix
minimal polynomial denoted as q(A), and the roots of this special
polynomial are eigenvalues of the matrix A.

0 = q(A)b =

(
m−1∑
k=0

αkAk
)

b

=

(
m−1∏
k=0

(A− λkI)

)
b (1)

A few slight modifications to the same minimal polynomial allow
us to solve for Ax = b by finding the element in the Krylov sub-
space that equals to A−1b for nonsingular matrix A.

0 = q(A)b =

((
m−1∑
k=1

αkAk
)

+ α0I

)
b

=
1

α0

(
m−1∑
k=1

αkAk−1

)
b + A−1b (2)

For large enough Krylov subspace, equations 1 and 2 provide solu-
tions to Ax = λx and Ax = b respectively. The Krylov subspace
must equal to Rn in general to provide an exact solution, and this
becomes impractical when n is even remotely large. If the Krylov
subspace is any smaller, there is no nonzero polynomial that satis-
fies p(A)b = 0.

What if, instead, the algorithm searches for a nonzero polyno-
mial by minimizing the vector p(A)b with respect to the Euclidean
norm?

min
αk

‖p(A)b‖2 subject to one of
{
αm−1 = 1

α0 = 1

This polynomial approximation problem in Km(A, b) is a compact
description of the Arnoldi approximation problem for the normal-
ization constraint αm−1 = 1. The polynomial’s roots are known as
Arnoldi eigenvalue estimates of the matrix A, and converge to the
exact eigenvalues as m approaches n. Similarly, the general min-
imal residual approximation problem (GMRES) estimates A−1b
by minimizing the norm according to the normalization constraint
α0 = 1.

There are numerous iterative methods that use the Krylov subspace.
Some of these alternative algorithms are optimized for symmet-
ric matrices, and as such can be applied to light transport matrices

when the camera and projector are aligned. Other iterative methods
rely on the transpose of A to compute ATb. The transpose of the
light transport matrix is not generally known, though it’s possible
to compute optically by swapping the locations of the projector and
camera. Otherwise, the algorithms in light transport analysis are
known as transpose-free iterative methods. We restrict our attention
to the MATLAB functions eigs, gmres, and minres for computing
eigenvectors and solving Ax = b respectively.1
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Figure 3: This figure illustrates the light transport for a set of pixels
V = {a, b, c, d, e} in terms of a complete graph G = (V,E). The
edges of the graph are given by the throughput of light from some
pixel i to another pixel j. In the left diagram, light scatters between
pixels a and b, and therefore the corresponding edge (a, b) has a
nonzero value describing the irradiance contribution. Similarly, no
light scatters between pixel a and c, and therefore the weight of
edge (a, c) is 0. The ideal bipartioning of this graph is A = {a, b}
and B = {c, d, e}, since this cuts the edges with weight 0. In other
words, the sets A and B are radiometrically independent.

5 Light Transport Segmentation

5.1 Light Transport Graph

As discussed in the previous section, recursive illumination allows
eigenvectors and eigenvalues to be approximated without explicitly
knowing the light transport matrix. It is not initially clear how to
interpret these often complex eigenvectors and relate them to light
transport for general matrices. By definition, the photograph of a
scene illuminated by an eigenvector of the light transport matrix is
the eigenvector scaled by its corresponding eigenvalue. By itself,
this definition provides little insight on the inner workings of the
light transport matrix. Ideally, we want to have a more intuitive
physical interpretation of the eigenvectors to better analyze light
transport.

For this section, suppose that the light transport matrix is sym-
metric by aligning the camera and projector with each other. An
equivalent representation of this matrix comes in the form of a
graph, one where the pixels are given by vertices and the edges
describe the light transport. Specifically, we provide a visualiza-
tion of light transport by drawing a complete graph according to
an adjacency-matrix representation given by the light transport ma-
trix. In short, this adjacency-matrix is a robust representation of a

1The details behind these algorithms are omitted - we refer the reader to
[Lehoucq et al. 1997; Saad 1992; Bau, D. and Trefethen, L. N. 1996]. For
more insight about the Krylov subspace, see appendix B.



weighted graph G = (V,E). Each element aij of the adjacency-
matrix A = (aij) ∈ Rn×n has a value that describes the weight
of an edge (i, j) ∈ E going from vertex i ∈ V to vertex j ∈ V .
If the matrix is symmetric as given by aij = aji, the weight of
edges (i, j) and (j, i) become equivalent and thus the graph itself
becomes undirected. Our light transport graph weighs an edge (i, j)
by the irradiance measured at some pixel i while the scene is illu-
minated by another pixel j.

If the amount of irradiance measured according to the weight of
some edge (i, j) is high, we might say that pixels i and j are simi-
lar. The light transport graph has a number of properties that makes
it a similarity graph. First, similarity graphs are defined by a non-
negative weight function that produces small values if two vertices
are dissimilar, and large otherwise. Second, as the concept of sim-
ilarity between two pixels is commutative, similarity graphs are
undirected. For light transport, the notion of similarity is related
to the amount of light transport between two pixels.

Provided this mapping from matrices to similarity graphs, a vari-
ety of graph-based analysis methods can be applied to light trans-
port. Graph-based segmentation is one such method that attempts
to bipartition a graph into two disjoint sets A and B satisfying
A∪B = V and A∩B = ∅ by a function of similarity. In essence,
we want for the partitions to have a high degree of similarity within
each set and low across sets, according to some measure. There
is no precise criterion for a “good” segmentation method, though
there has been a number of measures suggested for image-based
segmentation. For example, a popular choice among these mea-
sures is the normalized cut.

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3)

By finding the two sets that minimizes this measure, the combined
weight is low for the edges across sets and high for edges within
each set. What does this mean to light transport graph segmenta-
tion? Performing this segmentation algorithm will group the pixels
of an image into the two disjoint setsA andB, as a function of light
transport. If we illuminate the scene with pixels from one of the par-
titions, we expect that the irradiance measured by pixels from the
other partition to be small, because the weights of the edges across
the disjoint sets are also small. Moreover, as the edge weight is
high within each set, this suggests that light scatters across pixels
within the set, or that the pixels are related to each other by global
illumination.

Let’s break this concept down a little further. Suppose that a scene
has two concave regions, like in figure 3. If we project light into
one region, the light will bounce around within the same region be-
fore reaching the camera. Similarly, any light in the second region
stays within that region. There is no light that travels between the
regions for this particular scene. Therefore, a good segmentation of
this scene is expected to bipartition pixels according to these two
regions.

Unfortunately, there are two problems associated with the discrete
normalized cut algorithm of a light transport graph. As we have al-
ready discussed, the light transport matrix is often too large to mea-
sure directly, and therefore the light transport graph is unknown.
Even if we have the graph, finding the optimal solution to the nor-
malized cut problem is an NP-complete problem. However, a key
feature of this problem is that it can be approximated by a gener-
alized eigenvalue problem and, hence, the methods of the previous
sections apply.
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Figure 4: Applying normalized cuts to light transport allows one
to decipher how light scatters through a scene. For paper folded
in a zig-zag shape, there are two concave regions within the scene
that should be radiometrically independent from each other. After
50 iterations of the recursive procedure, a bipartition of the graph
distinguishes the left and right concave regions of the image (top-
right image from section c). Partitioning the graph into 6 groups
(bottom-left image from section c) and 10 groups (bottom-right im-
age from section c) begins cutting the concave regions horizontally.
Region 1 and region 2 do not contribute light to one another, and
therefore are grouped separately.

5.2 Normalized Cuts by Recursive Illumination

Minimizing the normalized cut measure from equation 3 is equiva-
lent to the following statement [Shi and Malik 1997].

min
x

xT (D− A)x
xTDx

subject to xi ∈ {1,−b}, xTD1 = 0 (4)
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Figure 5: Figure 5a illustrates the smallest generalized eigenvec-
tors of the light transport matrix for the scene in figure 4. Stacking
the k smallest eigenvectors on top of each other produces an image
where each pixel has a feature vector of size k, as illustrated by
figure 5b. The Euclidean distance of two feature vectors determines
the similarity between pixels. If the distance is small as in columns
1 and 2, the pixels are similar and are likely to group together. Oth-
erwise, the pixels are dissimilar as in columns 3 and 4.

The degree matrix D is a diagonal matrix with components along
the diagonal given by the vector A1 for the symmetric light trans-
port matrix A. In other words, the degree of a vertex is the sum of its
adjacent edge weights. Without going into too much detail, the vec-
tor x bipartitions the graph according to the constraint xi ∈ {1,−b}
for some b. Removing this constraint allows the problem to be re-

laxed at the cost of the solution vector x having real components.

min
x

xT (D− A)x
xTDx

subject to xTD1 = 0 (5)

Equation 5 has two distinct advantages over equation 4. First, the
discrete NP-complete problem is reduced to solving a continuous
problem in polynomial time. Second, the second smallest general-
ized eigenvector of (D−A)x = λDx solves the continuous problem
exactly, and we can apply the recursive illumination methods dis-
cussed in section 4 to finding this eigenvector. Although there is
no correlation between the solutions to the discrete and continuous
problems, grouping pixels according to the real-valued components
of the second smallest generalized eigenvector provides a good seg-
mentation of the image with respect to the weights of light transport
matrix A. Specifically, if the difference between two real-valued
components is small, the two corresponding pixels are likely to be
grouped within the same partition. Similarly, if the difference is
large, the pixels are more likely to be grouped with distinct parti-
tions.

What if the second smallest generalized eigenvector z2 is not good
enough? Perhaps we like to find another sufficiently different so-
lution that also minimizes the continuous problem. We say that
two solutions are different if they are orthogonal to each other with
respect to the weight function D, or that zTi Dzj = 0. Applying
xTDz2 = 0 as a constraint to equation 5 produces a different solu-
tion to the segmentation problem, and the third smallest generalized
eigenvector z3 solves this new problem exactly. By applying this
argument recursively, this statement generalizes to finding the m
smallest generalized eigenvectors, and suggests a segmentation al-
gorithm based on these m vectors. Effectively, if the difference be-

Algorithm 2 Normalized Cuts

Compute the degree matrix D = diag(A1).
Find the m smallest generalized eigenvectors (D− A)x = λDx.
Apply k-means to the n pixels using the m eigenvectors as fea-
ture vectors.

tween two real-valued components for each of the m eigenvectors
is small, the corresponding pixels are, again, likely to be grouped
together. Otherwise, the pixels might not be grouped together.

How do we find these generalized eigenvectors using recursive illu-
mination? First, the diagonal degree matrix requires a single photo
to compute. Specifically, the diagonal elements of the matrix are
equal to the irradiance values of a scene illuminated by a plain
white illumination pattern. The degree matrix can also be efficiently
stored in memory because it is sparse. Second, we identify that the
generalized eigenvalue problem is equivalent to the standard eigen-
value problem studied in section 4.

(D− A)x = λDx ⇐⇒ D−0.5(D− A)D−0.5y = λy (6)

The two eigenvalue problems are related to each other by a trans-
formation of their eigenvectors y = D0.5x. Therefore, the same
Krylov-based methods are applicable to the generalized eigenvalue
problem. Third, computing the matrix product of this standard
eigenvalue problem requires a single photo, provided that we pre-
compute the degree matrix. For example, if we define the light
transport matrix product by a function f(x) = Ax, the Krylov sub-
space for the generalized eigenvalue problem is built according to
the following recursive illumination procedure.

xk+1 = D−0.5(D− A)D−0.5xk
= xk − D−0.5f(D−0.5xk)



Thus, combining the normalized cuts algorithm with recursive illu-
mination provides an efficient method for image segmentation as a
function of the light transport matrix.
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Figure 6: This scene consists of two radiometrically independent
regions, though one occludes the other. This example demonstrates
that the regions are grouped together even though they are not con-
nected in image space. Region 1 demonstrates similar cuts to that
from figure 4 when raising the number of groups. Region 2 groups
pixels due to reflections off the backside of the front sheet of pa-
per. Region 3 transmits light behind the front paper to connect two
patches that are spatially independent from each other in image
space.

5.3 Discussion of Light Transport Segmentation

There are some differences between light transport segmentation
and standard image-based segmentation methods. In section 5.1,

we associated light transport to a non-negatively weighted and undi-
rected similarity graph, and its corresponding non-negative and
symmetric adjacency-matrix representation. To keep our discus-
sion simple, our description of similarity graphs omitted two key
properties required by normalized cuts.

One issue has to do with the diagonal of the light transport ma-
trix. A non-zero diagonal component is represented in a graph by
drawing an edge from a vertex to itself. Similarity graphs usually
assume that these self-loops are weighted by zero, as the notion of
similarity only applies to different vertices. Why might non-zero
diagonals be a problem? Segmentation has everything to do with
cutting the edges between different vertices, and nothing to do with
self-loops. In other words, modifying the self-loop weights should
not change the segmentation solution. The normalized cut algo-
rithm is, however, dependent on the diagonal.

How can we classify the diagonal and off-diagonal contributions in
light transport terms? The off-diagonal components are due to the
illumination of a pixel by other pixels in the scene, and constitutes
as the global component. Conversely, each diagonal component is
due to the direct illumination of a pixel. The light transport ma-
trix satisfies A = Adirect + Aglobal, where the diagonal matrix
Adirect is extracted from the light transport matrix A. Figure 7
demonstrates how a matrix is separated into its two matrix compo-
nents. Ideally, any segmentation algorithm is uniquely a function of
Aglobal, and modifying Adirect should not affect its segmentation
results.

a11 a12 a13

a21 a22 a23

a31 a32 a33


A

=

a11

a22

a33


Adirect

+

 a12 a13

a21 a23

a31 a32


Aglobal

Figure 7: The decomposition of a 3 × 3 symmetric light transport
matrix into its direct and global matrix components.

We can approximately separate the direct and global vector compo-
nents using high frequency illumiation [Nayar et al. 2006]. With
the assumption that global illumination is a low frequency phe-
nomenon, a high frequency pattern is swept over a scene and the
variation in response becomes a function of the direct illumination.
This method produces two direct and global images Adirect1 and
Aglobal1, and their sum is given by A1. Although we know very
little about the global matrix component, it is trivial to construct
the direct matrix component from the direct vector component for
symmetric scenes. Effectively, the direct matrix component is a
diagonal matrix, and its diagonal is the direct vector component.
How does this relate back to segmentation? If we precompute the
direct matrix component, any segmentation algorithm becomes a
function of the global matrix component by defining the following
light transport function.

f(x) = Aglobalx
= Ax− Adirectx

This light transport function takes a photo of a scene under some
illumination and subtracts the direct contribution of the illumination
pattern. Thus, the first discrepancy is remedied by precomputing
the direct and global separation.

The second discrepancy occurs when there is no global contribu-
tion. If all the edges adjacent to some vertex are weighted by zero,
how do we classify this vertex? The sum of these edge weights



is zero, and so is the corresponding component within the degree
matrix. The generalized eigenvector problem requires the diagonal
of the degree matrix to be strictly positive. Otherwise, the problem
becomes ill-conditioned and is pointed out by equation 6. Although
this is not likely to happen for synthetic image-based segmentation
algorithms, there might be many pixels in a scene having no global
contribution. We can ignore these pixels by creating a mask that
only projects light onto the pixels with nonzero global components.
Alternatively, we can add a µ1 term to the light transport function
f to increase the weight of all edges in the graph by µ.

Figure 8: We apply our recursive illumination method to partition
a scene consisting of eggs sitting on their cardboard container. One
hundred photos approximate the eigenvectors for this scene, and we
partition the pixels into ten groups by applying the k-means algo-
rithm to the twenty smallest generalized eigenvectors. Because of
the scene is complex, we find that blurring the light transport ma-
trix produces better results, as it introduces spatial coherency in the
segmentation results.

Not all segmentation algorithms suffer from these inconsistencies.
Average cut is another measure applicable to image-based segmen-
tation algorithms. The average cut measure is to the standard eigen-
value problem (D−A)x = λx, as normalized cut measure is to the
generalized eigenvalue problem. This eigenvalue problem is by def-
inition stable for any light transport matrix, and is already invariant
with respect to the direct matrix component. However, the type of
segmentations produced by average cut is different from that of nor-
malized cut, though whether one is better than the other is up for
debate.

6 Light Transport Compensation

6.1 Inverting Light Transport

A projector transforms any surface into a display. It is important
for the surface to preserve the projector’s image content, and so
images are generally projected onto white diffuse planar surfaces.
Otherwise, the quality of the projection deteriorates due to the scene
distorting the image. The cause for these distortions falls into one
of three categories: non-uniform albedos, non-planar surfaces, and
indirect transport. The objective for an image compensation algo-
rithm is to project an image that corrects for these distortions.

To illustrate the problem associated with non-uniform albedos, con-
sider projecting an image onto a textured diffuse planar surface.
The observed image becomes the projection image modulated with
the textured surface. For example, consider projecting some image
onto surface with either white or gray patches. The pixels that fall
into the gray patches become darker than those in the white patches.
By making the pixels in the gray regions brighter and those in the
white areas darker, the projected image compensates for the varia-
tions in surface brightness.

Projections onto non-planar surfaces alters the observed image in
two ways: disparities and defocus. First, if the observer is not
colinearly aligned with the projector, image disparities or warp-
ing appears. To illustrate this point, suppose an image is projected
onto a spherical surface. Depending on the position of the viewer,
the image appears distorted on parts of the sphere. Some work on
geometry-aware projectors studies this case in detail [Raskar et al.
2003]. Second, any depth variation within the scene incurs some
amount of projector defocus. Projectors often have large apertures
to produce bright images, at the cost of having a shallow depth of
field. Most projectors cannot focus their image on scenes with large
depth variations. Work on projector defocus analysis suggests an
image compensation algorithm to correct for such a case [Zhang
and Nayar 2006].

Correcting for non-uniform albedos and non-planar surfaces is suf-
ficient for scenes with direct illumination only. Indirect illumina-
tion decreases projection quality with a wide range of other effects
from caustics to low-frequency global illumination. In this section,
we study a generalized image compensation algorithm that corrects
for all three types of distortions by inverting the light transport ma-
trix itself.

We formalize the image compensation problem as follows. Given a
target image b, the objective is to minimize the residual ‖b − Ax‖
with a compensation image x. If the difference between the ob-
served image Ax and the target image b is small, the projection
successfully preserves the image content. Suppose that the light
transport matrix is nonsingular and square. Inverting the light trans-
port matrix gives the exact solution x = A−1b, and minimizes the
residual to 0. There are two problems with this approach. First,
computing the inverse of the light transport matrix is computation-
ally expensive. Second, this approach requires reconstructing the
full matrix.

We relax the problem in the following way. Illuminating the scene
with an image uk produces a photo vk = Auk. Suppose now
that a linear combination of the photographs produces the target
image b. It follows that the same linear combination of illumi-
nation patterns produces the compensation image solution, since
b =

∑
αkvk = A

∑
αkuk. Projecting any random illumination

pattern uk converges slowly to the actual solution. Another ap-
proach is to build the Krylov subspace Km(A, b) by recursively
illuminating the scene, starting with the target image b. The gen-
eralized minimal residual method (GMRES) from section 4 is an



Ill
u

m
in

at
io

n
Pa

tt
er

n
s

Ph
o

to
g

ra
p

h
s

Figure 9: The top row illustrates the first five illumination patterns for the light transport segmentation algorithm, from left to right. The
images in the bottom row are the corresponding photographs of the scene. This scene is the same carton of eggs from figure 8, without the
eggs.

example of such an approach.

6.2 Residual Minimization Algorithms

The GMRES algorithm is the most general method for residual
minimization. The algorithm converges in no more than n steps
for a matrix A ∈ Rn×n. Unfortunately, the amount of work and
storage increases linearly with each iteration. One workaround is
to restart the method with a better initial solution after every m
steps, at the cost of no longer guaranteeing convergence.

For symmetric systems, GMRES does more work than necessary.
There are faster algorithms available, such as the minimal residual
method (MINRES) based on a three-term recurrence relation and,
for positive definite system, the conjugate gradient method. The
amount of work and storage at each step remains constant, and the
algorithms guarantee convergence after n steps. The convergence
of these algorithms depends on the eigenvalue distribution. More-
over, the conjugate gradient method converges to a specified toler-
ance in O(

√
κ) iterations, where the condition number κ = |λmax

λmin
|

of the positive definite matrix A is high for ill-conditioned systems
and low for well-conditioned systems.

There are many more iterative residual minimization algorithms
that exist, mostly for nonsymmetric systems. Some of these meth-
ods require both matrix multiplications Ax and matrix transpose
multiplications AT x.

6.3 Nonnegativity Constraint

Minimizing the residual does not always produce a valid solution.
Even though the light transport matrix and target image are non-
negative, the solution to Ax = b is not necessarily nonnegative and
thus infeasible since one cannot project negative light.

Clamping the solution’s negative components to zero produces pro-
jection artifacts. Another workaround is to modify the target im-
age itself by linearly mapping the pixel values from within [0, 1]
to [α, 1], reducing the number of negative components in the so-
lution at the cost of decreasing image contrast. The most sensible
option is to modify the residual minimization algorithms to include
a nonnegativity constraint.

6.4 Matrix Preconditioning

The convergence of these Krylov-based methods are a function of
the distribution of eigenvalues, and this distribution depends on the
scene. Even though the GMRES algorithm, and Arnoldi for that
matter, converge monotonically to the optimal solution, the rate of
convergence slows down for badly conditioned matrices. One uses
preconditioners to improve the convergence of these iterative meth-
ods.

(M−1
leftAM−1

right)Mrightx = M−1
leftb

The solution to the equation above is the same as Ax = b.
With the inclusion of left and right preconditioners Mleft and
Mright, the convergence of Krylov-based methods now depends on
M−1
leftAM−1

right instead of A. A good preconditioner drastically im-
proves the convergence of these iterative methods. The best precon-
ditioner matrices satisfy A = MleftMright, though this assumes
the light transport matrix and its inverse are already known. In-
stead, the objective is to find preconditioners that approximate the
matrix.

In practice, these preconditioner matrices approximate the effects
of non-uniform albedos and non-planar surfaces on the light trans-
port matrix. Although modeling indirect illumination is nontrivial,
several nonlinear methods exist that efficiently approximate pixel
disparities, projector defocus, and variations in direct illumination.
By preconditioning the matrix for these effects, the performance of
the image compensation algorithm increases.

7 Imaging and Illumination

7.1 Numerical Stability

As the Krylov subspace grows through recursive illumination, the
photos become almost linearly dependent on each other. For in-
stance, these photos converge to the same principal eigenvector
when the largest eigenvalue of the matrix is distinct. Therefore,
these photos span an exceedingly ill-conditioned Krylov subspace.
Any error, in terms of numerical precision or sensor noise, greatly
affects the subspace spanned by these photos.
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Figure 10: Illumination patterns and the corresponding photographs for the first five iterations of the image compensation procedure,
increasing from left to right. This is the same scene as in figure 12, and demonstrates the effects of global illumination and projector defocus.

Krylov subspace methods minimize numerical issues through an
orthogonalization process named Gram-Schmidt. An orthogonal
projector transforms each photo to be orthogonal to all previous
photos, without affecting the subspace spanned by the images. An
orthogonal set of vectors is well-conditioned, and the vectors span
a subspace less sensitive to errors. This stabilizes the recursive illu-
mination procedure by reducing the influence of error on the Krylov
subspace.

An image is no longer necessarily nonnegative after the orthogo-
nal projection step, and illuminating a scene with negative light
is physically impossible. To compensate, an affine transforma-
tion maps the illumination x to a nonnegative space, and another
function maps the corresponding photo back to Ax. For example,
g(x; a, b) = x−a

b−a maps an image x ∈ [a, b]n to g(x) ∈ [0, 1]n. Af-
ter illuminating the scene with g(x) to get a photo Ag(x), the next
step is to evaluate Ax = (b − a)(Ag(x)) + a(A1). Note that this
requires taking an additional photo A1 of the scene under uniform
illumination, though this step is only necessary once for a scene.

7.2 Quantization

Another source of error comes from signal quantization, due to
rounding or truncation. The colour depth for modern projectors
and displays is generally 8-bit per channel.2 If the illumination is
not an 8-bit signal, some information is lost because of rounding.
To clarify, imagine a 1-bit projector that illuminates a scene with
either white or black pixels. Any input image with gray intensity
values needs to either round its pixel values up to white or down
to black. The round-off error in the illumination in turn affects the
photographs.

A workaround is to decompose the n-bit image into n 1-bit images.
Although the decomposition is not unique, one approach is to re-
cursively project the quantization error of a signal, as in figure 13.
A weighted sum of these n 1-bit images reconstructs the original
n-bit image. After illuminating the scene with the 1-bit images and
taking the corresponding photographs, the same weighted sum of
the photos synthesizes a photo of the scene as though illuminated
by the n-bit image.

2Some recent HDR imaging solutions provide higher bit depths.

Photographs are also subject to quantization error. Many modern
cameras produce photos with high bit-depths, reducing the influ-
ence of rounding errors. However, truncation error occurs when
light undersaturates or oversaturates camera pixels. To overcome
this limitation, a high dynamic range (HDR) photo combines mul-
tiple photos with different exposure settings such that each pixel is
appropriately saturated in at least one photo [Debevec and Malik
1997].

8 Results

8.1 System Setup

A prototype camera-projector system is built for the light transport
segmentation and compensation algorithms. The system consists
of a Mitsubishi PK20 DLP projector and a Canon EOS-1Ds Mark
III camera, both aligned with a beam splitter. The light from the
projector intersects the beam splitter, and half of the light enter the
scene. For the other half, we position and tilt an inactive LCD mon-
itor to minimize the amount of light that reflects back towards the
camera. The Canon camera captures photographs in a 14-bit sRAW
format with a linear response. The projector is also calibrated to
have a linear gamma function.

When assuming symmetry in light transport, the camera and projec-
tor alignment must be accurate. One approach to verify symmetry
is to place several objects within the scene and start the projector.
The light from the projector produces shadows within the scene. If
the system is calibrated correctly, the camera does not observe any
direct shadows.

For most camera and projector combinations, there are more cam-
era pixels than projector pixels. The discussion so far assumes that
the light transport matrix is square, or that a linear mapping ex-
ists from camera pixels to projector pixels. One approach is to
project a checkerboard pattern, and pair each projector pixel to
one camera pixel at the center of the corresponding checkerboard
square. The calibration toolbox from www.vision.caltech.
edu/bouguetj/calib_doc/ provides some useful function-
ality for this approach. Another alternative is to sample multiple
camera pixels that fall within the footprint of a single projector
pixel and averaging their values. Gray patterns are useful for this
approach, though requires several photographs.



 = 2-1 ·  + 2-2 ·  + 2-3 ·  + 2-4 ·  +  …

Figure 13: A projector illuminates the scene with a sinusoidal pattern, and a camera takes the corresponding photo. Multiple photos at
various exposures capture high dynamic range images to produce photos with high bit-depths. If the projector pixels have binary values, the
sinusoidal pattern is subject to severe quantization errors, and same goes for the photographs. By decomposing the signal into a series of
binary illumination patterns and collecting their corresponding photos, a weighted sum of the photos produces the correct response. Note
that photos with small weights become dominated by the sensor noise of the photos with large weights.

A short MATLAB program implements the light transport segmen-
tation and compensation algorithms. The program defines a func-
tion that takes an input vector x, projects the unvectorized image
onto the scene, photographs the response Ax, and returns the re-
sult. The function also implements the workaround for images with
negative pixel values. The function handle is passed as a param-
eter to the MATLAB function eigs for computing eigenvalues and
eigenvectors, or to gmres/minres for residual minimization.

Several flags are available to the eigs function. Enabling the sym-
metry flag produces eigenvectors that are numerical orthogonal.
Another flag controls the number of Lanczos vectors that restarts
the algorithm once the Krylov subspace becomes a certain size. To
avoid memory and performance issues when working with large
systems, the number of Lanczos vectors is often set to a small
value, at the cost of accuracy. In practice, we determine its best
to not restart the Krylov subspace, unless memory becomes an is-
sue. Therefore, the number of Lanczos vectors is set to the quota
for photographs, and the maximum iterations (restarts) flag is set to
one.

8.2 Image Segmentation

We apply light transport segmentation to three scenes. The two
scenes from figures 4 and 6 are simple examples to illustrate the
results. The last example from figure 8 applies light transport seg-
mentation to a more general scenes. After calibration, a uniform
black pattern and a uniform white pattern illuminate the scene. The
black pattern measures the ambient light of the scene to remove this
component from all the photographs. The algorithm uses the white
pattern for computing the degree matrix, and projecting negative
illumination patterns. The Krylov subspace method begins after
projecting these two images.

The first two scenes involves folded paper. The paper is a dif-
fuse material with a fair amount of subsurface scattering proper-
ties. Apart from the initial images, the Krylov subspace grows to
a maximum size of n × 50, at which point the algorithm termi-
nates. This subspace contains approximations to the 49 smallest
eigenvector, though only the smallest of these eigenvectors are ac-
curate. The algorithm uses k-means on smallest 10 eigenvectors
to produce the segmentation results. The same eigenvectors allow
pixels to be clustered into any number of groups. For the scene
from figure 4, we ask the algorithm to cluster the image into two,
six, and ten groups. The segmentation into two groups is clean
because the two concave regions are radiometrically independent.
Increasing the number of groups to six, the segmentation algorithm
begins to cut the two concave regions horizontally, describing how
light scatters from one face to another. Increasing the number of
groups to ten continues the same trend, though some vertical cuts
appear. Figure 6 demonstrates how the segmentation is spatially
independent. Although there is a foreground object that occludes
the background object, the segmentation algorithm disambiguates
between the two objects. Region 3 highlights how two spatially

disconnected patches relate to each other by light transport. For the
six and ten groupings, horizontal cuts appear in both the foreground
and background objects, as in the previous scene. Although the
light transport matrix has dimension 1002×1002 and 1282×1282

for these two scenes, 50 photographs appear sufficient for approxi-
mating the segmentation of these scenes.

The third scene from figure 8 produces segmentation results of an
egg carton from 50 photos. To improve the rate of convergence, the
algorithm blurs each photograph and illumination pattern slightly,
which biases the solution to be spatial coherent. The same proce-
dure is performed twice: once for a scene with eggs in the carton
and once without. When no eggs are within the carton, each cell
becomes highlighted as a cluster. Once an egg enters the cell, the
clustering changes accordingly because of the convex geometry of
the egg.

8.3 Image Compensation

The image compensation results in this paper are generated from
the minimum residual method minres, available in MATLAB. The
minimum residual method solves the image compensation problem
for symmetric systems by iterating through a three-term recurrence
relation. This method only ever has to store a few images in mem-
ory at any given step. Solving the image compensation problem
for nonsymmetric light transport matrices requires using methods
that handle nonsymmetric systems. The conjugate gradient squared
(cgs) and generalized minimal residual (gmres) methods are exam-
ples of algorithms that handle these cases.

In figure 11, an image is projected onto a piece of cardboard paper
folded to make a 90 degree angle. Any light received on one plane
also illuminates the second plane due to indirect illumination. This
effect is highlighted by region 1 in the figure. Because of the scene
geometry, the images appear brighter and washed out near the fold
of the paper. In as few as five iterations, the image compensation
algorithm finds a compensation image that minimizes the residual
error in the observed image. Note that region 1 appears to match
the target image relatively well.

The second example from figure 12 illustrates the effects of both in-
direct illumination and defocus. Region 1 highlights the area with
indirect illumination, and region 2 highlights the effects of defocus.
The camera and projector are not focused on the backplane of the
scene. Although the residual error is not minimized to zero, the al-
gorithm reaches convergence after about eight iterations. Note that
the algorithm does not necessarily converge to zero, as one would
expect for singular systems. Moreover, the algorithm does not spec-
ify any nonnegativity constraints, and instead clamps negative val-
ues to zero. Although the results are not seamless, the solution ap-
proximately matches the target image. Region 2 demonstrates how
the edges are enhanced to preserve the sharp detail from the target
image.
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Figure 11: A simple scene demonstrating the effects of projecting
into the corner of a room. In figure 11b, the top-left image is the
target image, and the top-right is the result of projecting the image
onto the scene. By compensating for the scene, the compensation
image (bottom-left) produces a projection much closer to the tar-
get image (bottom-right). The residual error from figure 11c also
decreases very quickly, and converges after about 5 images.

9 Conclusion

In this paper, we describe a computational illumination method that
takes a photo of a scene and lights the scene with the photo recur-
sively. We relate our adaptive computation illumination approach
to the power iteration, Arnoldi, and GMRES algorithms. These al-
gorithms provide a means to segment images according to sets of
pixels that mutually illuminate each other, by performing spectral
clustering using the light transport matrix. A general light trans-
port compensation algorithm preserves projected image content by
accounting for blur, disparity, and global illumination effects from
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Figure 12: The image compensation algorithm also handles defo-
cus, and large amount of indirect illumination. The back wall, high-
lighted by region 2, produces a blurry image. When projecting the
target image (top-left in figure 12b) directly onto the scene, the parts
of the image projected onto the back wall become blurry, as demon-
strated by the zoomed-in region of the projected result (top-right in
figure 12b). By finding a compensation image that corrects for both
defocus and indirect illumination (bottom-left in figure 12b), the fi-
nal result is a good approximation of the target image.

light transport.

These algorithms differ from other adaptive methods in the follow-
ing ways. First, the adaptive method is a 1-term recurrence relation,
where the photo from iteration k − 1 is the illumination pattern
for iteration k. Second, unlike methods that work hierarchically,
there is no notion of spatial coherency. For example, the image seg-
mentation algorithm groups pixels independently from the distance
between pixels, and any spatial coherency is a result of light trans-
port. Third, these adaptive methods output unique properties from



Figure 14: A top-down view of the setup for capturing the eigen-
vectors of symmetric light transport matrices.

the light transport matrix, namely its eigenvalues, eigenvectors, and
the solution to the minimal residual problem.

One of the limitations in the approach is that the light transport
matrix must be square. Otherwise, there is no one-to-one mapping
from camera pixels to projector pixels. The convergence rate of
the algorithms is also dependent on the light transport matrix itself,
though they converge exactly after n iterations. A light transport
matrix with complex effects slows the convergence of these Krylov
subspace methods.

There are a number of areas for future work. We discuss finding the
eigenvectors and eigenvalues of nonsymmetric systems, but it is not
yet clear how to use this information. This paper does not discuss
the application of these Krylov subspace methods to anything other
than the dual photography setup. Another extension is to remove
the transpose-free restriction by swapping the camera and projec-
tor, similar to the approach from Wang et al. [Wang et al. 2009].
Although we briefly discuss preconditioners, there are many vari-
ants of preconditioners for both eigs and minres, including some
multiscale approaches that exploit coherency. Lastly, there are
perhaps ways to approximate the full light transport matrix, di-
rect/global separation, or even disparity maps more efficiently with
these Krylov subspace methods.

This paper uses Krylov subspace illumination towards some novel
applications in light transport segmentation and compensation,
though the work only covers a few optical setups, applications, and
algorithms. Projecting the high-dimensional light transport matrix
into a much smaller Krylov subspace reduces the dimensionality
of the eigenvalue and minimal residual problems, allowing for an

Figure 15: Another view of the setup for our recursive illumination
procedure. The LCD monitor on the left is a light trap, minimizing
the amount of light reflecting back towards the camera. We found
that a diffuse black cloth reflects back more light than the specular
black screen of an LCD.

Figure 16: The checkerboard pattern for mapping projector pixels
to camera pixel. We apply a corner detection algorithm to this im-
age to find the center of each checkerboard square. This mapping
defines the square light transport matrix.

efficient adaptive approach to light transport analysis.
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A Perron-Frobenius Theorem

Define ρ(A) to be the spectral radius of a matrix A ∈ Rn×n,
where the spectral radius returns the absolute value of the largest
eigenvalue in magnitude. The Perron-Frobenius theorem for non-
negative matrices states the following [Berman and Plemmons
1979]:

1. If A is positive, then ρ(A) is a simple eigenvalue, greater than
the magnitude of any other eigenvalue.

2. If A ≥ 0 is irreducible then ρ(A) is a simple eigenvalue, any
eigenvalue of A of the same modulus is also simple, A has a
positive eigenvector x corresponding to ρ(A), and any non-
negative eigenvector of A is a multiple of x.

It follows that, for a reducible matrix A ≥ 0, A has a set of n
orthogonal positive eigenvectors {xk} corresponding to ρ(A) with
multiplicity n.

B Analysis of Krylov Subspace

The Krylov subspaceKm(A, b) of a matrix A and random vector b
contains information about the largest eigenvalues of the matrix. To
explain this concept a little further, note first that every matrix with
linearly independent eigenvectors has an eigenvalue decomposition,
or eigendecomposition.

A = QΛQ−1

The n × n matrix Λ is a diagonal matrix whose entries are the
eigenvalues of matrix A, and their corresponding eigenvectors are
the columns of matrix Q.



In the power iteration algorithm, the vector Amb converges to
the principal eigenvector as m increases, assuming that the largest
eigenvalue is distinct in magnitude.

Amb = (QΛQ−1)mb

= QΛmQ−1b

As the exponentm gets large, the eigenvectors of matrix Am do not
change, but the eigenvalues become smaller in magnitude relative
to the largest eigenvalue of the matrix. Once m is large enough, the
matrix Λm becomes approximatly rank-1. It follows that Am also
becomes a rank-1 matrix. Therefore, so long as b is not orthogonal
to the principal eigenvector, Amb reads off the largest eigenvector
of the matrix.

When the largest eigenvalue is not distinct, power iteration does not
necessarily converge. However, the latter images in the recursive
sequence do become linearly dependent. Suppose that the matrix
has k eigenvalues that equal in magnitude. The matrix Λm and
thus Am converge to rank-k matrices. Therefore, Amb produces a
vector that is a linear combination of the principal eigenvectors of
the matrix A.


