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Abstract

Provided a set of acquired BRDF data, realistic image synthesis requires evalu-

ation of the rendering equatuation over a hemisphere of directions on a surface.

We store the basis representation of the BRDF, acquired directly from the sam-

ple material, in a pair of three-dimensional textures to offload the work to the

GPU. For materials that produce artifacts in the basis representation, we use

data fitted to the D-BRDF model as an alternate method of rendering the

BRDF. We discuss the usage of environment maps and importance sampling

algorithms as a method of representing complex natual illumination. Through

this approach, the solution of the illumination integral can be approximated for

real-time and interactive applications that opt to use measured BRDFs.
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Chapter 1

Introduction

Photo-realism is a term often used in the sub-field of computer graphics. The

term refers to synthesized images that are perceived as real images. The chal-

lenge is often associated with realistic illumination, more so than the geometry

of the scene.

The classical method of applying illumination to objects is to partition light

into an ambient, a diffuse, and a specular component. By applying such limita-

tions to our illumination model, we limit ourselves in rendering a small subset

of materials.

The reflectance property of a material can be determined by using an acqui-

sition process that directly extracts the BRDF coefficients of a basis function

representation [7]. With a function that describes the reflectance of our sam-

pled material, we can accurately render the material on any given geometry. By

using such a process, we widen the set of materials that can be rendered.

An important requirement for realistic renderings is the illumination model.

In this thesis, we use an environment map to simulate the light at a given point.

We then apply an importance sampling algorithm to fetch a set of sample points
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that represent the environment map. By storing the basis representation of the

BRDF in a pair of three-dimensional textures and using the set of point lights

to describe the environment, we are capable of evaluating the BRDF and the

rendering equation on the GPU. The BRDF data, when represented in a global

basis such as spherical harmonics, can result in ringing artifacts in the rendering

for specular materials. For data sets with visible ringing artifacts, we choose to

alternatively use data fitted to a D-BRDF analytical model.

The thesis will describe the methods of implementing a renderer for acquired

reflectance functions that can generate images and animations in real-time. The

thesis is structured as follows. Chapter 2 discusses the background and theory

of computing the illumination integral. The implementation details associated

with the renderer will be described in Chapter 3. In Chapter 4, we conclude

our findings and discuss the relevance of the work.
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Chapter 2

Background

2.1 Overview

Before proceeding to the discussion, we outline a few fundamental concepts that

will be referred to in the following sections and chapters.

2.1.1 Probability Density Function

The probability density function (PDF) is the probability distribution of any

function f(x). A function f(x) : R → R is a probability density function if:

f(x) ≥ 0 for all x ∈ R (2.1)
∫ ∞

−∞

f(x)dx = 1 (2.2)

For the most part, we will be dealing with the discretized PDFs. Given an

ordered finite set X = {xk | k = 1, 2, . . . , N}, we define the function f(xk) :

X → R as the discrete probability density function. Both function definitions
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will be abreviated by the acronym PDF. Similarly to equation 2.1 and 2.2, the

discrete probability density function has the following properties:

f(xk) ≥ 0 (2.3)
N∑

k=1

f(xk) = 1 (2.4)

f(xk)

xk0

1/4

1/8

Figure 2.1: Sample Discrete Probability Density Function

2.1.2 Cumulative Density Function

The cumulative distribution function (CDF), or probability distribution function,

is an extension of the probability density function. A function f(x) : R → [0, 1]

is a cumulative density function if:

lim
x→−∞

f(x) = 0 (2.5)

lim
x→∞

f(x) = 1 (2.6)

f is monotone (2.7)

Recall that a function f(x) is monotone if ∀x, y ∈ R, x ≤ y implies that

f(x) ≤ f(y). We note that the PDF is also the derivative of the CDF. Fur-

thermore, if the PDF is non-zero, the associated CDF function is an injective
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function; the inverse cumulative distribution function f−1(x) exists for all x.

As with the PDF, we define the discrete cumulative distribution function

f(xk) : X → R. Given the discrete probability density function p(xk), f(xk) =
∑

k

j=1
p(xj)

∑
N

j=1
p(xj)

.

f(xk)

xk0

1

1/2

Figure 2.2: Sample Discrete Cumulative Distribution Function

The CDF of figure 2.2 is derived from the PDF of figure 2.1.

2.1.3 Cartesian and Spherical Coordinates

When referring to points or vectors, all coordinates are situated within a three-

dimensional space. We often represent the coordinates in two interchangeable

coordinate systems: Cartesian coordinates and spherical coordinates.

We first consider the three dimensional Cartesian space, also known as Eu-

clidean space. The space is defined by three orthogonal vectors, usually the x-,

y-, and z-axis, and each point (x, y, z) is uniquely defined by some linear com-

bination of each axis. These points are defined using the Cartesian coordinate

system.

Spherical coordinates span the Euclidean space with an alternate set of pa-

rameters, (p, φ, θ) where p ∈ [0,∞), φ ∈ [0, π), θ ∈ [0, 2π). The parameters φ

and θ spans the sphere of radius p centered at (0, 0, 0).
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Definition 1. Spherical to Cartesian coordinates:

x = p sin(φ) cos(θ)

y = p sin(φ) sin(θ)

z = p cos(φ)

Definition 2. Cartesian to spherical coordinates:

p =
√

x2 + y2 + z2

φ = arccos(z/
√

x2 + y2 + z2)

θ = arctan(y/x)

For all applications of spherical coordinates in this paper, we only con-

sider points on the unit sphere where p = 1. The advantage of using spher-

ical coordinates over Cartesian coordinates is that the parametrization of the

area over the surface of the unit sphere requires only two variables. Fur-

thermore, for reasons that will be later discussed, we concern ourselves in

general with the half sphere, and thus φ ∈ [0, π/2). For the remainder of

this thesis, we define the set S = {ω = (θ, φ) | θ ∈ [0, 2π), φ ∈ [0, π)} and

Shemi = {ω = (θ, φ) | θ ∈ [0, 2π), φ ∈ [0, π
2 )}.

2.2 Rendering Radiance

2.2.1 Lambert’s Cosine Law

In reality, light rays interact with curved surfaces. For any given point on the

surface, the infinitesimal area of the curved surface becomes a plane. Recall

that the plane is defined by x · n = d, where normal n ∈ R3 and d ∈ R.
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Given a single incident light vector and the normal, the total radiance pro-

jected onto that point is directly proportional to cos(φ), where φ is the angle

between the normal and the light vector. The law is known as Lambert’s cosine

law.

dA
1

cos(φ)
dA

L1
L

2

φ = π
3

Figure 2.3: Lambert’s cosine law

Given a light ray of width dA as in figure 2.3, the radiance of the ray is

distributed across an area of size 1
cos(φ)dA. Therefore, the radiance of a light

vector is observed to be cos(φ)Li at any point on the plane, where the Li is the

light intensity.

Because the ray intersects the underside of the plane, the light ray does not

contribute to the illumination of that point. That is, any ray that exceeds φ > π
2

gets culled. For this reason, we defined the set of spherical coordinates Shemi,

where (0, 0) ∈ Shemi refers to direction of the normal.
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2.2.2 Blinn-Phong Analytical Model

The Phong reflection model is composed of three components: ambient, dif-

fuse, and specular. The resulting illumination is the summation of all three

components.

Definition 3. Phong reflection model

Ip = kaia
︸︷︷︸

ambient

+
∑

kd(L · N)id
︸ ︷︷ ︸

diffuse

+ ks(R · V )αis
︸ ︷︷ ︸

specular

The Blinn-Phong reflection model is the classical shading model used in

graphic pipelines. For most graphic processor units (GPUs), the Blinn-Phong

analytical function is hardwired into the pipeline.

For efficiency purposes, the Blinn-Phong reflection model is an approxima-

tion of the Phong model. The Phong model requires that the reflected light-

source R be calculated per pixel. The Blinn-Phong model replaces the angle

R · V by N · H , where H = (L + V )/|L + V | = (L̂ + V̂ )/2.

Definition 4. Blinn-Phong reflection model

Ip = kaia
︸︷︷︸

ambient

+
∑

kd(L · N)id
︸ ︷︷ ︸

diffuse

+ ks(N · H)αis
︸ ︷︷ ︸

specular

Notice Lambert’s cosine law factor L · N = cos(φ) in the diffuse component

of both models.

2.2.3 Bidirectional Texture Function

The bidirectional reflectance distribution function (BRDF) describes the re-

flectance properties of a given material. Because we only concern ourselves

with the light distribution at a local reference point, BRDFs must assume that

11



they are invariant with respect to the planar texture coordinates (s, t). There-

fore, the BRDF is a four dimensional function parametrized by the spherical

coordinates of the incoming light vector and the outgoing view vector.

Figure 2.4: Light Ray Reflectance Distribution over Hemisphere

We will define the BRDF as fr for the remainder of this paper. If we are to

assume that the Lambert’s cosine law is not implicitly defined by fr, the area

element for reflected radiance is given as follows:

Definition 5. Area element of BRDF Radiance

fr(θo, φo, θi, φi)Li(θi, φi) cos(φi)dωi

The BRDF is a subset of a higher class of texture functions, called bidi-

rectional texture functions (BTFs). The bidirectional texture function, also

referred to as the bidirectional scattering distribution function (BSDF), is a six

dimensional function parametrized by planar texture coordinates (s, t), incom-

ing light spherical angles ωi = (θi, φi) ∈ Shemi, and outgoing view spherical

angles ωo = (θo, φo) ∈ Shemi. Provided these parameters, the function can be

used to describe inter-reflections, subsurface scattering, self-shadowing, mask-

ing, and other nonlocal effects. When a light ray intersects an object, light can

be reflected or absorbed. When absorbed, the light can be transmitted to the

opposing side or scatter back to the surface. The acquisition process to define

a BTF function at a suitable resolution demands large acquisition times and
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storage requirements for the six dimensional.

To overcome the difficulties associated with acquiring general BTF func-

tions, we can reduce the problem to a simpler state by eliminating some of the

parameters. In particular, there are three subsets of BTFs that are particularly

interesting: BSSRDF, BTDF, and the previously discussed BRDF.

The bidirectional surface scattering reflectance distribution function (BSS-

RDF) ignores the specular transmission component of the BTF; the BSSRDF

is the contribution of the reflected and the surface scattered light. The bidi-

rectional transmittance distribution function (BTDF) defines the distribution of

the transmitted light on the opposite side of the surface.

For the purpose of this paper, we will only consider the use of BRDFs.

2.2.4 Illumination Integral

At any given point on the surface, infinitely many light rays interact at different

angles and intensities. The emitted illumination is given by the integral of the

area element over the surface of the unit sphere [8]. Because we are evaluating

the radiance on a planar surface, the domain of integration can be reduced to

the hemisphere. That is, no light is transmitted or absorbed, and any coordinate

facing away from the surface normal will produce no radiance.

Definition 6. BRDF Radiance

Lo =

∫

Shemi

fr(θo, φo, θi, φi)Li(θi, φi) cos(φi)dωi

Provided a suitably represented BRDF fr and incident light function Li,

rendering realistic images requires the evaluation or approximation of this illu-

mination integral.
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2.3 Integral Approximation

2.3.1 Monte Carlo Integration

Among the many method for integral evaluation, Monte Carlo integration is a

popular choice, despite the slow convergence rate. Monte Carlo ray tracing is

often noisy and infeasible for real-time applications.

Given some function and its domain, we can use Monte Carlo to evaluate its

integral, I =
∫

Z
f(z)dz.

Definition 7. Monte Carlo Approximation

I ≈ 1

n

n∑

i

f(zi)

p(zi)
, for n ≫ 0

By randomly distributing zi, the PDF p(zi) = 1
V , where V =

∫

Z
dz.

1

n

n∑

i

f(zi)

p(zi)
=

V

n

n∑

i

f(zi)

Monte Carlo integration uses the set of uniformly distributed variables {zi}

of size n to evaluate the average of the function f(z). The volume of the

domain of integration, V , multiplied with the average provides an estimate

of the integral. We now prove that the expected value of the Monte Carlo

summation is I (see page 14).

Because the method is stochastic, or nondeterministic, the disadvantage of

using the Monte Carlo method is noise. In particular, the number of samples

required for convergence of the integral to occur has a rate of O(
√

n), although

the rate can be improved slightly by using pseudo-random numbers.
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lim
n→∞

E[
V

n

n∑

i=1

f(zi)] = lim
n→∞

V

n

n∑

i=1

E[f(zi)]

= lim
n→∞

V

n

n∑

i=1

∫

Z
f(z)dz
∫

Z
dz

= lim
n→∞

V

n

∫

Z
f(z)dz

V

n∑

i=1

1

= lim
n→∞

I

n
n

= I

2.3.2 Dirac Delta Function

Because of the slow convergence rate, solving the integral problem explicitly in

real-time is infeasible. Moreover, a solution with any noise is visually distracting

to the human eye. The Dirac delta function can be used to derive a simpler

form of the integral that can be evaluated relatively quickly and with no noise.

Definition 8. The Dirac delta function

δz(x) =







0 if |x| > z

1
2z if |x| ≤ z

δ(x) = lim
z→0

δ|z|(x)

The function has the following set of properties:

δ(x) =







0 if x 6= 0

∞ if x = 0
(2.8)

∫ ∞

−∞

δ(x)dx = 1 (2.9)

∫ ∞

−∞

f(x)δ(x − a)dx = f(a) for f continuous (2.10)
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Because δ is nonnegative for all x and equation 2.9 is satisfied, the Dirac delta

function can be interpreted as a probability density function (though technically

not a function). Given the set of points A = {ak ∈ R | k = 1, 2, . . . , N}, we can

extend the Dirac delta function to isolate a finite number of points.

δA(x) =
1

N

N∑

i=1

δ(x − ai) (2.11)

∫ ∞

−∞

δA(x)dx = 1 (2.12)

By using such a PDF, we can approximate the integral by isolating the den-

sity to finitely many points. That is, we argue that
∫ ∞

−∞
f(x)dx ≈

∫ ∞

−∞
f(x)δA(x)dx,

though this largely depends on our choice of A.

The Dirac delta function can be extended to fit other sets of coordinates,

such as our spherical coordinates on the unit sphere. Our extended Dirac delta

function must satisfy the same properties for spherical coordinates.

Definition 9. The extended Dirac delta function

δz(θ, φ) =







0 if |φ| > z

1
A(z) if |φ| ≤ z

δ(θ, φ) = lim
z→0

δ|z|(θ, φ)

Note that A(z) is the area on the unit sphere spanned by θ ∈ [0, 2π) and

φ ≤ z. This function has similar properties to 2.8, 2.9, and 2.10, and we can

once again define the set A = {ak = (akθ, akφ) ∈ S | k = 1, 2, . . . , N} to use for

our PDF.
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δA(θ, φ) =
1

N

N∑

i=1

δ(θ − aiθ, φ − aiφ) (2.13)

∫

S

δA(θ, φ)dx = 1 (2.14)

Instead of evaluating the illumination integral directly as with the Monty

Carlo or an alternative method, we can use the Dirac delta function as the light

function PDF to reduce the integral to a summation. Minimizing the error of

the approximation depends on the choice of the finite set A.

Definition 10. BRDF Radiance with Dirac delta function

Lo =

∫

Shemi

fr(θo, φo, θi, φi)L(θi, φi) cos(φi)dωi

≈
∫

Shemi

fr(θo, φo, θi, φi)L(θi, φi)δA(θi, φi) cos(φi)dωi

=

∫

Shemi

fr(θo, φo, θi, φi)L(θi, φi)
1

N

N∑

k=1

[δ(θi − akθ, φi − akφ)] cos(φi)dωi

=
1

N

N∑

k=1

∫

Shemi

fr(θo, φo, θi, φi)L(θi, φi)δ(θi − akθ, φi − akφ) cos(φi)dωi

=
1

N

N∑

k=1

fr(θo, φo, akθ, akφ)L(akθ, akφ) cos(akφ), by property 2.10

2.3.3 BRDF Basis Representation

The BRDF data that is given by the acquisition device [7] must be stored in

memory. For our BRDF representation, we discuss three methods to fit the

data in memory.

Discrete Fitting The BRDF can be stored discretely by creating a four di-

mensional table, where each 4-tuple coordinate refers to the function value. The

advantage is that the BRDF function is explicitly defined. A serious disadvan-
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tages is the space requirement. For instance, a low resolution representation

of the BRDF may consist of 90 samples for φ by 360 samples for θ. With the

assumption that we are storing RGB data where each component is a 32 bit

float, the memory consumption becomes 11.732 gigabytes.

Basis Fitting As in many situations, we turn to finding a suitable basis set

to approximate the BRDF function. Because we are interested in evaluating

the BRDF function over the unit sphere, the set of spherical harmonics basis

functions [10] is a suitable basis to form our BRDF function. The linear combi-

nation of a set of continuous basis functions and uniquely determined coefficient

functions that fit to the BRDF data provides a visually smooth result.

Model Fitting Model fitting is the process of defining an analytical model,

and setting the model’s parameters to approximate the acquired data. For in-

stance, the Blinn-Phong illumination model is once again comprised of a diffuse,

specular, and ambient term. By determining the diffuse component or specu-

larity of a material, we can then fit the data to the given model by tuning the

parameters appropriately. However, we are limited to a model’s constraints;

because Blinn-Phong cannot model anisotropy, anisotropic materials cannot be

represented by that particular model.

2.3.4 Spherical Harmonics

The set of spherical harmonic functions is an orthogonal basis commonly used

in computer graphics because it is parametrized by spherical coordinates on

the unit sphere. The spherical harmonics, defined by Y m
l (θ, φ), is the angular

portion of the solution to Laplace’s equation.
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Definition 11. Spherical Harmonics

Y m
l (θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ)eimφ

where l ∈ {0, 1, 2, . . .} and m ∈= {−l,−l + 1, . . . , l − 1, l}

We can thus use them to approximate our BRDF function by linearly com-

bining a finite set of these spherical harmonic functions. As with any orthogonal

basis, we must find and store the set of coefficients for each l and m that ap-

proximate our BRDF.

Definition 12. BRDF Function Represented by Spherical Harmonics. Incident

light coordinates are given by (θi, φi) and exitant light coordinates, the view

vector, is given by (θo, φo).

∑

l∈{0,1,2,...}

∑

m∈={−l,...,l}

c(θo, φo)Y
m
l (θi, φi)

Note the simplicity of the BRDF function. Given the coefficient and basis

values, the BRDF function value is produced by a few multiplications.

Using a basis function to determine the approximation of the BRDF func-

tion does have consequences. For higher-order data, ringing artifacts can be

introduced, an unwanted oscillation of the BRDF values. Specular materials

are often the culprit because they require the higher-order basis functions. To

resolve the ringing artifacts, we can fit the acquired data to an analytical model.

For φ > π
2 , the light has no direct illumination onto the surface. Therefore,

any light satisfying φ > π
2 can be removed from the illumination integral equa-

tion. There is no need in storing the spherical harmonics for φ > π
2 , and so

each order of spherical harmonics only represents half of the function values. In

figure 2.5, the values are parametrized for (s, t) ∈ [0, 1] × [0, 1] such that tex-

ture coordinate (0, 0) (bottom-left) is spherical coordinates (0, 0) and texture
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coordinate (1, 1) (upper-right) is spherical coordinate (2π, π
2 ).

Figure 2.5 is scaled such that a function value of 0 is represented by black

and a function value of 1 is represented by white. Any values outside of the

range are clamped to [0, 1]. In particular, the black areas consist of negative

function values.

l
=

0
l
=

1
l
=

2

m = 0m = −1m = −2 m = 1 m = 2

...

Figure 2.5: Spherical Harmonics

2.3.5 Ashikhmin-Shirley Model

The Ashikhmin-Shirley model [2] is another analytical model developed to repre-

sent materials that the classical models cannot. The Anisotropic Phong BRDF

model has the following properties:� Energy conservations and reciprocity laws� Anisotropic reflections� Fresnel behaviour� Non-constant diffuse term
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The energy conservations and reciprocity laws define that no light energy is

lost or gained; it is either reflected, absorbed, or transmitted. Anisotropic re-

flections allows a brushed metal appearance, where light is not reflected equally

along different axes. The Fresnel term defines the reflectance of the material as

the angle of view approaches a grazing angle. The non-constant diffuse term

provides more variation to the diffuse reflection.

The model is another classical sum of the often used diffuse and specular

term, p(k1, k2) = ps(k1, k2) + pd(k1, k2) where k1 is the normalized light vector

and k2 is the normalized view vector. The model diverges from the Phong or

Blinn-Phong model by redefining the specular component analytical model.

ps(k1, k2) =

√

(nu + 1)(nv + 1)

8π

(n · h)nu cos2 φ+nv sin2 φ

(h · k)max((n · k1), (n · k2))
F ((k · h))

The Fresnel fraction F is defined as F ((k · h)) = Rs + (1 − Rs)(1 − (k · h))5

where Rs is a 3-component RGB color that specifies the specular reflectance.

Note that n is the surface normal, h is the normalized half-vector between k1

and k2, k is either k1 or k2, and nu, nv control the shape of the specular lobe.

Similarly, the diffuse term is redefined as follows, where Rd is a 3-component

color RGB describing the diffuse reflectance:

pd(k1, k2) =
28Rd

23π
(1 − Rs)(1 − (1 − (n · k1)

2
)5)(1 − (1 − (n · k2)

2
)5)

2.3.6 Distribution-based BRDF model

Although the Ashikhmin-Shirley model has many desirable properties, it does

not offer sufficient flexibility for many materials. The Distribution-based BRDF

model (D-BRDF) [1] is a generalization of the Ashikhmin-Shirley analytical

model.
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The D-BRDF model is defined as follows:

p(k1, k2) =
cp(h)F ((k · h))

(k1 · n) + (k2 · n) − (k1 · n)(k2 · n)

Again, F represents the Fresnel term discussed in the Ashikhmin-Shirley

section. p(h) is the anisotropic Phong function parametrized by the half-vector

h covering the hemisphere. Given the table p(h) and the coefficient c from fitting

the acquired data to the model, the D-BRDF model defines a simpler and more

flexible method to represent the BRDF.
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Chapter 3

Implementation

Given a set of BRDF coefficients and spherical harmonic values for the basis

representation, we store the data set in a pair of three-dimensional textures.

By converting the Cartesian coordinates for incident and exitant light to the

appropriate BRDF texture coordinates, we can sample the coefficients and ba-

sis function values from the look-up tables. Given a set of point lights from

an environment map or otherwise, we can perform the illumination in real or

interactive time.

3.1 BRDF Coordinates

Given a set of Cartesian coordinates, we must determine the texture coordi-

nates to sample the appropriate texel. We can generalize the transformation of

coordinates to four phases: Cartesian coordinates, spherical coordinates, texel

coordinates, and texture coordinates.

The code for section 3.1 is written using Cg, a programming language based

on C for the purpose of writing vertex, geometry, and fragment shaders.
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3.1.1 Cartesian Coordinates

The geometry of the scene is usually comprised of a set of models and light

sources. The models and lights are given in local coordinates, and are trans-

formed to global coordinates.

Code 1.

. . .
result.light = mul(LightModelView, light);

result.normal = mul(ModelViewInvTrans, normal);

result.position = mul(ModelView, position);

. . .

By performing these matrix transformations, we transform each vector such

that they are relative to each other. That is, the light direction can be deter-

mined by the difference of model position and the light. Similarly, the view

vector is given by the negated position, such that the view vector at the given

position points towards (0, 0, 0).

Code 2.

. . .
light = normalize(light - position);

normal = normalize(normal);

view = -normalize(position);

. . .

Provided these normalized vectors, we can determine the spherical coordi-

nates of the light and view vector with respect to the normal vector.

3.1.2 Spherical Coordinates

Given the Cartesian coordinates for the light vector and the view vector to eval-

uate the BRDFs, we must transform them into spherical coordinates. For the
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Cg code, the ViewSphericalCoordinates and LightSphericalCoordinates

variables contain the texture coordinates for sampling the coefficient and spher-

ical harmonic functions. The x- and y-components of the variables provide the

s ∈ [0, 1] and t ∈ [0, 1] texture coordinate, respectfully.

The φ value is uniquely determined, and is given by cos−1(view · normal).

The θ coordinate is not uniquely determined, and a user-defined vector is pro-

vided to allow a unique choice of θ. We decide on using the vector (0, 1, 0),

because the conversion from Cartesian to spherical coordinates only becomes

ill-conditioned near grazing angles.

To determine the coordinates of a vector with respect to the normal and

the user-defined vector (0, 1, 0), we perform a backface culling operation on the

view and light vectors. If v · n < 0 where n is the normal and v is the view

or light vector, the pixel either faces away from the viewer or the light does

not illuminate the pixel. Otherwise, if v · n ≥ 0, we can compute the spherical

coordinates as follows:

φ = cos−1(
v · n

‖v‖‖n‖) (3.1)

e2 = (0, 1, 0)

projn(v) =
v · n
‖n‖2

n (3.2)

a = v − projn(v), b = e2 − projn(e2)

θ = cos−1(
a · b

‖a‖‖b‖) (3.3)

The projn(v) function defined by equation 3.2 projects the vector v onto the

vector n.
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Code 3.

. . .
upVector = float3(0.0f, 1.0f, 0.0f);

upVector = normalize(upVector - dot(upVector, normal) * normal);

viewSphericalCoordinates.x = 0.5f * acos(dot(normalize(view - dot(view,

normal) * normal), upVector)) / 3.141592654f;

viewSphericalCoordinates.y = acos(dot(view, normal)) * 2.0f / 3.141592654f;

lightSphericalCoordinates.x = 0.5f * acos(dot(normalize(light - dot(light,

normal) * normal), upVector)) / 3.141592654f;

lightSphericalCoordinates.y = acos(dot(light, normal)) * 2.0f / 3.141592654f;

. . .

Figure 3.1: Spherical Coordinates for Point Light. The figure visualizes φ values
per pixel (left) and θ values per pixel (right).

Figure 3.2: Spherical Coordinates for Directional Light. The figure visualizes φ
values per pixel (left) and θ values per pixel (right). Note that the light vector
coordinates is constant across all pixels.
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Figure 3.3: Spherical Coordinates for View Vector. The figure visualizes φ
values per pixel (left) and θ values per pixel (right).

3.1.3 Texel Coordinates

Given the (θ, φ) values, we can map them to the appropriate texel coordinates.

That is, we define that texel (0, 0) holds the value for spherical coordinates (0, 0).

Similarly, texel (n−1, m−1) (upper-right texel) contains the data for spherical

coordinate (2π(1− 1
n ), π

2 (1 − 1
m )), as demonstrated in figure 3.4. Therefore, we

scale the coordinates by multiplying each spherical coordinate by ( n
2π , 2m

π ).

0.0

0.0 1.0

10 2 3 4 5 6 7 8 9−1 · · ·
i

−1

0

1

2

3

1.0
...

t

s

j

Figure 3.4: Texel Coordinates
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3.1.4 Texture Coordinates

We discretely store the BRDF data as texture data using the OpenGL API [9].

The texture coordinates (s, t) ∈ [0, 1] × [0, 1] uniformly maps to the spherical

coordinates. The purpose of storing the compressed BRDF data in textures is

such that the memory is accessible by fragment programs implemented on the

GPU for the hardware-accelerated computation of each pixel fragment.

The texture memory is defined by GL RGBA FLOAT32 ATI, a 4-component

32-bit float. Given any texel parametrized by (θ, φ), three components are used

to store the coefficients for the BRDF, and the fourth component stores the

basis value for the spherical harmonics function. We can decouple the BRDF

coefficients from the spherical harmonics table by separately defining texture

memory of type GL RGB FLOAT32 ATI and GL ALPHA FLOAT32 ATI.

Given any set of values φ ∈ [0, π/2] and θ ∈ [0, 2π], s = θ
2π and t = φ

π/2 .

Recall that coordinates with φ ∈ (−π/2, 0) fail the backface culling test.

In OpenGL, we can sample textures using a combination of texture filters.

Because the texture type is GL * FLOAT32 ATI, our hardware requires that

GL TEXTURE MAG FILTER is set to GL NEAREST. For hardware without

the limitation, we can consider using GL LINEAR to linearly interpolate be-

tween the BRDF data. Otherwise, linear interpolation is written manually into

the fragment shader.

When sampling a texture, we must be aware that the texture coordinates

(s, t) = (0, 0) does not sample at the center of a texel. Figure 3.4 demonstrates

that the center for texel (0, 0) is given by a nonzero texture coordinate value.

For this example, each texel has width 1/10 and height 1/4. Therefore, the value

of texel (0, 0) is given by texture coordinates (1
2

1
10 , 1

2
1
4 ). We must be cautious

when transforming the coordinates so that they sample the correct pixel.
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3.1.5 BRDF evaluation

The basis representation of the BRDF described by definition 12 is imple-

mented by a for-loop in Cg. For each l and m, we are given the table of values

parametrized by (θ, φ). By using GL TEXTURE 3D to store each layer of data

into a single three-dimensional texture, we can iterate through each layer and

sample appropriately.

Note that DepthInfo.x = 1
N , where N is set to the number of layers. As

with two-dimensional (s, t) coordinates, caution is required when attempting

to sample from the appropriate layer. Note that to sample the layer i from a

three-dimensional texture, the coordinates are set to (s, t, (1
2 + i) 1

N ).

Code 4.

. . .
color = 0.0f;

viewSphericalCoordinates.z = 0.5f * DepthInfo.x;

lightSphericalCoordinates.z = 0.5f * DepthInfo.x;

for (int i = 0; i < DepthInfo.y; i++) {
coefficient = tex3D(coefficientTexture, viewSphericalCoordinates);

sh = tex3D(shTexture, lightSphericalCoordinates);

color += coefficient * sh;

viewSphericalCoordinates.z += DepthInfo.x;

lightSphericalCoordinates.z += DepthInfo.x;

}
. . .

Because the coefficients texture utilizes only a single component, a reduction

to the number of texture samples can be made by encoding four coefficient values

into one texel. A similar strategy can be used to take advantage of the additional

alpha channel in spherical harmonics texture, or by packing additional data into

each component of either texture. This effectively reduces the number of texel
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fetches, a bottleneck in the performance of the fragment shader.

3.2 Environment Mapping

We choose to use a set of point samples to represent the environment map. This

finite subset of points to represent Li follow from the discussion of the Dirac

delta function. The algorithms in this section are written in MATLAB.

3.2.1 Light Probe

Debevec defines a light probe image to be an omnidirectional high-dynamic

range image [6]. The light probe defines the incident illumination at a given

point in space. With the light probe defined, we can sample the incoming light

at any direction at the defined point. By pre-computing the incident light at a

particular point, we can localize the rendering of an object.

Formally, a light probe, also known as an environment map, is a function

e : S → R3. The set R3 defines the three nonnegative red, green, and blue

components of a pixel. Recall that we define S to be the set of directions

parametrized by θ and φ.

There are two variants to the physical storage of the light probe function.

The cube environment map stores the values over the six sides of a cube centered

at the given point of the light probe. The alternate method is mapping the

function to a matrix A, where A ∈ Rm×n and aij = e(2π j
n , π i

m − π
2 ). The

storage for this method is referred to as a spherical environment map. Note

that this method is essentially equivalent to the storage of the BRDF coefficient

and spherical harmonic function values.

The disadvantage of spherical environment maps, or simply environment

maps, is that the mapping gets increasingly ”stretched” near the poles, where

φ = ±π
2 . However, the coordinates of the texture are easier to decipher than the
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alternate cube environment map. Figure 3.5 represents the mapping between

the sphere and the block of memory [−π
2 , π

2 ] × [0, 2π].

θ

φ

2π0

π/2

−π/2

Figure 3.5: Spherical Environment Map

For our applications, we use the high-dynamic range spherical environment

map acquired from Grace Cathedral. The environment map is characteristically

dark, except for a few sparse bright areas. Moreover, we will define Li = e in

order to evaluate the illumination integral.

3.2.2 Importance Sampling

Randomly selecting a set of points for each surface point would be an example

of unbiased sampling. This method of sampling would be very expensive for

real-time rendering applications, and suffers from high variance in the estimate

between surface points.

Instead, we choose a biased representation of the environment illumination

by collapsing the environment map into a set of point lights. These points are

then used for all surface points in the rendering. By pre-computing the set

of points, this method can be applied to real-time rendering and removes the

variance in the integral estimate between adjacent surface points.

Unweighted Sampling We can randomly select a set of directions to sample

the environment map. By randomly selecting x ∈ R3, the direction d = x
‖x‖2

is
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uniformly selected. By mapping the Cartesian coordinates to spherical coordi-

nates, we can directly sample the spherical environment map.

Another method to is randomly select coordinates and sample directly from

the spherical environment map. If we attempted this, we would notice that

multiple points congregate near the poles of the unit sphere; the spherical en-

vironment is not distributed uniformly across the entire [−π
2 , π

2 ] × [0, 2π] area.

Instead, we notice that we have a probability distribution P ∈ Rm×n where

pij = cos(π i
m − π

2 ) = sin(π i
m ). Therefore, we can define the uniformly dis-

tributed spherical environment map Â where âij = aijpij . Even though ran-

domly selecting from Â also produces clustering at the poles, the points are

uniformly distributed in terms of pixel intensity.

Weighted Sampling In Grace Cathedral and other environment maps, there

are certain areas in the environment map that are brighter. Grace Cathedral is

a particularly compelling contrast between bright and dark areas. By concen-

trating sampling to the brighter areas, we create a better approximation of the

illumination integral using fewer points.
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Algorithm 1. Importance Sampling Algorithm

1. Define A as the monochrome environment map.

2. Suppose e = (1, 1, . . . , 1
︸ ︷︷ ︸

n

). Compute a vector r = Ae of row intensities.

Define a PDF by normalizing r, and define the corresponding CDF.

3. Similarly, each row is defined as:

A =






− aT
1 −
...

− aT
m −






Define a CDF for each ai.

4. Generate a set of random tuples in [0, 1] × [0, 1] for each point.

5. By using binary search or otherwise, find the value i that maps, according
to the CDF of r, to the randomly generated value.

6. Given i, find the value j that maps, according to the CDF of ai, to the
other randomly generated value. aij is the sampled point. Repeat steps 4
to 5 for every random tuple.

(b) 32 importance sampled points

(a) 16 importance sampled points (c) 64 importance sampled point

(d) 128 importance sampled points

Figure 3.6: Importance Sampling on Grace Cathedral

In figure 3.6, we notice the clustering of points near the windows and alter.

We also notice the sparsity of points in the darker areas of the environment

map.
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Because the importance sampling is biased towards pixel intensities, sampled

pixels tend to group around bright areas. For the Grace Cathedral, many points

cluster around the windows. Therefore, we get a good approximation where the

light is focused at the top hemisphere.

The relative darkness of the rest of the Cathedral forces most light sources to

be situated at the upper half of the spherical environment map texture. Because

we lack light sources with φ < 0, any pixel with a normal pointing towards the

floor will have a poor approximation.

function result = ImportanceSampling(img, fileinfo, n)

% Weighted average of color channels following ITU −R Recommendation
% BT.709
monocrome = img(:,:,1) * 0.2125 + img(:,:,2) * 0.7154 + img(:,:,3) * 0.0721;

N = fileinfo.width;
M = fileinfo.height;

x = 1:N;
y = 1:M;

phi = linspace( −pi/2,pi/2,M);

rowPDF = sum(monocrome, 2)' . * cos(phi);
rowPDF = rowPDF ./ sum(rowPDF);
rowCDF = cumsum(rowPDF);

colPDF = monocrome ./ repmat(sum(monocrome, 2),1,N);
colCDF = cumsum(colPDF,2);

result = img; % zeros(M,N);

for (i = 1:n)
c1 = min(find(rand ≤ rowCDF));
c2 = min(find(rand ≤ colCDF(c1,:)));

result(max(c1 −3,1):min(c1+3,M),max(c2 −3,1):min(c2+3,N),:) = 0;
result(max(c1 −2,1):min(c1+2,M),max(c2 −2,1):min(c2+2,N),:) = 255;

end

end
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3.2.3 Median Cut Algorithm

Although there are many importance sampling algorithms that can be designed

to decide on particular sampled points, our discussion moves towards the de-

terministic Median Cut algorithm [5]. Because of the sparsity of points in the

importance sampled results, certain reflective angles will be approximated with

fewer light sources. The Median Cut algorithm is biased towards light intensity

and distribution over space.

Algorithm 2. Median Cut Algorithm.

1. Add the entire monochrome light probe image to the region list as a single
region.

2. For each region in the list, subdivide along the longest dimension such
that its light energy is divided evenly.

3. If the number of iterations is less than n, return to step 2.

4. Place a light source at the center or centroid of each region, and set the
light source color to the sum of pixel values within the region.

A1

A10 A11

A101

A110

A111

A100

A1001

A1100 A1101

A1110 A1111

A1011

A1010

A1000

(a) Cuts after 0 iterations (c) Cuts after 2 iterations

(d) Cuts after 3 iterations(b) Cuts after 1 iteration

Figure 3.7: Median Cut Algorithm

At each iteration of the algorithm, the region Ab is partitioned into regions

Ab0 and Ab1, such that
∑

aij∈Ab0
aij ≈ ∑

aij∈Ab1
aij . That is, the environment

35



map is subdividing the intensities of each region. Effectively, the resulting set

of regions have equal intensities.

Notice in figure 3.7 that the region A101 is subdivided horizontally, depicting

the subdivision of the longest dimension.

For spherical environment maps, recall that the mapping of the environment

to the discretized region is not a uniform distribution. To compensate, we

perform the scalar multiplication of matrices A and P before proceeding.

(c) Cuts after 3 iterations

(b) Cuts after 2 iterations

(a) Cuts after 1 iteration (d) Cuts after 4 iterations

(e) Cuts after 5 iterations

(f) Cuts after 6 iterations

Figure 3.8: Median Cut Algorithm on Grace Cathedral

By comparing figure 3.6 to figure 3.8, we notice that points congregate near

bright areas. However, the Median Cut algorithm attributes more points to

relatively darker regions. We achieve a better distribution of points over the

entire environment map.

Recall in definition 10 that there is a factor of 1
N associated with the BRDF

basis representation. Because we sum the pixel values of each region, we are

effectively evaluating every discrete light value in the environment map. There-
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fore, even though N = 2i lights are generated for some i ∈ Z+, the scaling

factor becomes 1∑
pij

.

% MedianCutAlgorithm
%
% Written by Matthew O'Toole (mpotoole@interchange.ubc.c a)
%
% The algorithm is based on Paul Debevec's "A Median Cut Algor ithm for
% Light Probe Sampling".
%
%
function result = MedianCutAlgorithm(img, fileinfo, n)

% Weighted average of color channels following ITU −R Recommendation
% BT.709
monocrome = img(:,:,1) * 0.2125 + img(:,:,2) * 0.7154 + img(:,:,3) * 0.0721;

N = fileinfo.width;
M = fileinfo.height;

x = 1:N;
y = 1:M;

phi = linspace( −pi/2,pi/2,M);

scale = repmat(cos(phi)',1,N);
mat = monocrome . * scale;

result = img; % zeros(M,N);
result = Helper(result, mat, n, 0, 0);

end

function result = Helper(result, mat, n, x, y)

half intensity x = 0;
half intensity y = 0;
total intensity = sum(sum(mat));

i = 0;
j = 0;

[M,N] = size(mat);

while (half intensity x < total intensity / 2)
i = i + 1;
half intensity x = half intensity x + sum(mat(:,i));

end
while (half intensity y < total intensity / 2)

j = j + 1;
half intensity y = half intensity y + sum(mat(j,:));

end
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if (n == 0)
c1 = y+j;
c2 = x+i;

[M,N] = size(result);

result(max(c1 −3,1):min(c1+3,M),max(c2 −3,1):min(c2+3,N),:) = 0;
result(max(c1 −2,1):min(c1+2,M),max(c2 −2,1):min(c2+2,N),:) = 255;

else if (M < N)
result(y+1:y+M,x+i,:) = total intensity;

result = Helper(result, mat(:,1:i), n −1, x, y);
result = Helper(result, mat(:,i+1:N), n −1, x+i, y);

else
result(y+j,x+1:x+N,:) = total intensity;

result = Helper(result, mat(1:j,:), n −1, x, y);
result = Helper(result, mat(j+1:M,:), n −1, x, y+j);

end

end

3.3 Results

The remainder of the implementation is given to writing the Cg fragment shaders

that compute the sum of products for the BRDF basis representation, and

evaluate the D-BRDF model for fitted BRDF data. This section lists a set of

figures that demonstrate a subset of the acquired BRDF data sets.

The performance averages at 30 FPS (real-time performance) for five orders

of spherical harmonics under a point light source, and 1-2 FPS (interactive

performance) for 128 directional light sources. For higher-order data sets of

seven or eight orders, the performance is affected by a drop to 15-20 FPS for

the point light source and 1 FPS for environment lighting. The D-BRDF model

does not suffer from such performance penalties, and can render over 100 FPS.

The performance was recorded on a 640 by 480 window, using a GeForce 7600

GT as the GPU.
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Figure 3.9: Blue Synthetic Fabric. A directional light vector illuminates the
teapot from above (left), and a set of 128 lights determined by using the Median-
Cut algorithm illuminates the teapot with the Grace Cathedral light probe
(right).

Figure 3.10: Blue Silk. The rendered images of blue silk applies the same
illumination model described in figure 3.9. The blue silk fabric is an example of
the strong anisotropic properties encoded into the material’s BRDF.
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Figure 3.11: Lindt Chocolate Wrapping Paper (D-BRDF). The data for this
specular paper is acquired using a higher order set of the basis functions, and
fitted to the analytical D-BRDF model.

Figure 3.12: Gold Dust Paint. The gold dust paint is a highly specular material
represented using the basis representation of the BRDF. Because the material
is highly specular, the data is acquired using a higher order set of spherical
harmonic basis functions.
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Figure 3.13: Teal Paint. As with figure 3.12, the green teal paint is an example
of a highly specular material.

Figure 3.14: Magenta Plastic. The plastic material demonstrates the diffuse
property of the BRDF data.

Figure 3.15: Red Velvet. The renderings demonstrate the BRDF for the red
velvet material.
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Chapter 4

Conclusion

This thesis focuses on the methods of rendering acquired BRDF data sets in real-

time. By identifying certain key concept that simplify the rendering equation,

we offload pixel illumination computations to the GPU. The result is a set

of generated images that are synthesized significantly faster than conventional

ray tracing approaches, at the cost of providing a rough approximation of the

solution.

With the ability to render images efficiently, a set of animated sequences

were generated using the renderer described in this thesis. The visualized data

was extracted by observing the coefficients of the BRDF directly in a basis

function during the acquisition process [7].

The work presented in this paper allows real-time applications to utilize

acquired BRDF data sets. The cost reduction of using BRDFs allows photo-

realistic illuminations to be approximated in applications where offline rendering

is not an option. By enhancing the aspect of realism in such applications, we

provide a more immersive and entertaining visual experience to the user.
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