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Abstract

We describe a distributed datastore tailored for edge
computing that provides session consistency between
otherwise eventual consistent replicas. Existing solu-
tions for session consistency assume that the client is as-
sociated with the same replica through a session. How-
ever, in edge computing use-cases, a client interacts
with multiple replicas housed on different datacenters
over time, either as a result of application partitioning,
or client mobility. Our core algorithmic innovation is
our client reconciliation algorithm that enforces session
consistency by tracking and migrating only the client-
affected keys between the replicas. Our results show that
our approach provides session consistency at a fraction
of the latency and bandwidth costs of a strongly consis-
tent system, and with reasonable migration costs.

1 Introduction

Edge computing expands the traditional cloud architec-
ture with additional datacenter layers that provide com-
putation and storage closer to the end user [14, 5, 6, 8].
For example, a wide-area cloud datacenter which serves
a large country can be augmented by a hierarchy of data-
centers that provides coverage at the city, neighborhood
and building level. By adding datacenters closer to the
client device, edge computing makes possible next gen-
eration mobile and IoT applications that require low la-
tency or that produce large volumes of data [16, 9, 13].

Edge computing provides an opportunity to re-
envision the way web services are deployed. Whereas
existing web applications and services may be replicated
across wide-area cloud datacenters to improve scalabil-
ity and fault tolerance, edge computing encourages par-
titioning service functionality by placing components or
functions at the datacenter layer that best meets perfor-
mance and security requirements. For example, a wear-
able smart assistant could execute latency sensitive and

bandwidth intensive functions, such as face recognition
on a nearby edge datacenter, while running infrequent
and latency tolerant functions, such as user authentica-
tion and preference editing, on a traditional wide-area
cloud datacenter.

Web services are typically deployed on top of storage
systems that relax consistency between replicas in or-
der to provide high availability and performance [1]. A
common approach is to use eventual consistency, where
the storage system guarantees that if no new updates are
made to an object, eventually all reads will return the last
updated value [10]. Purely eventual consistent systems
are very hard to reason about. Instead, web applications
typically assume a stronger model called session con-
sistency that provides two additional useful properties:
read-your-writes, where subsequent reads by a client that
has updated an item will return the updated value or a
newer one; and, monotonic reads, where if a client has
seen a particular value for the object, subsequent reads
will return the same value or a newer one [18].

Session consistency is easy to implement by the use
of sticky sessions [1, 19, 2, 3], where all reads and writes
within a session maintained by a client are directed to the
same replica. Sticky sessions work very well for appli-
cations deployed on the wide area cloud, where (in the
absence of failure) a client communicates with a single
cloud datacenter for the duration of the session. Unfor-
tunately, this is not the case for edge computing where
a client interacts with multiple replicas housed on dif-
ferent datacenters over time, either as a result of appli-
cation partitioning, or client mobility and data/state mi-
gration for edge computing remains a challenge [15].
Existing solutions such as Spanner [7], which provides
global consistency between geo-distributed replicas, or
Bayou [17], which provides causal consistency between
weakly-connected or disconnected replicas do not scale
for edge deployments because, while these approaches
assume a low replication factor, popular edge services
may have hundreds or thousands of replicas.



In this paper, we argue that a storage system designed
for web service deployment on edge datacenters should
include support for session consistency across multiple
replicas located on different datacenters. We describe
the implementation of such a system based on Path-
Store [12], a hierarchical wide-column store that (pre-
vious to this paper had only) support for eventual con-
sistency. A PathStore hierarchy consists of a persistent
replica at its root, and an unlimited number of layers of
partial replicas below it. Data is replicated on demand
in response to application queries. PathStore supports
concurrent object reads and writes on all replicas of the
hierarchy; updates are propagated through the hierarchy
in the background, providing eventual consistency.

We added session consistency support to PathStore us-
ing replica reconciliation algorithms that executes when
a client switches from a source replica to a destination
replica. The basic reconciliation algorithm is simple, yet
effective: we track all the items either read or written on
the source replica by the session and ensure that the des-
tination has as up to date values by obtaining them from
the source. The extension provides read-your-writes and
monotonic reads guarantees for clients that switch be-
tween otherwise eventual consistent replicas.

We evaluated the performance of our implementation
on an emulated multi-layer hierarchical edge deploy-
ment. Our results show that session consistency can be
enforced as a client switches between arbitrary replicas at
a fraction of the bandwidth cost required for maintaining
full synchronization even within a small number of repli-
cas. Moreover, our client-reconciliation algorithms dra-
matically reduces the latency and bandwidth required to
enforce session consistency for server applications where
a given client only accesses a small fraction of the state
stored in a replica.

2 Design Considerations

In this section, we elaborate on our design choices for
adding support for session consistency in the context of
a hierarchy of data centers that facilitate edge comput-
ing. We consider three dimensions: when to synchronize
state, what state to synchronize, and how to keep track or
identify the state that needs to be synchronized.

Session consistency can be enforced either proactively
or reactively. In a proactive implementation, writes are
committed only after they have been stored on all repli-
cas that may handle requests for a session. This approach
enables running code on behalf of the same session on
multiple replicas concurrently, and supports fast switch-
ing between replicas; however, this approach slows down
normal operation significantly, may result in high band-
width consumption and will not work unless all replicas
to which the writes need to be propagated are alive and

reachable. A reactive implementation ensures session
consistency only after a client switches between repli-
cas. Before running code on behalf of a session on a new
replica, all relevant data to the session has to be synched
with the state available on the last replica. This approach
has the disadvantage that a for a given session it can only
make use of a single replica at a time. We argue that the
reactive approach is more appropriate for edge comput-
ing because the replication factor can be high given the
large number of edge nodes that a client may switch to.
Our experiments confirm that a proactive implementation
incurs large update latencies and high data volumes even
for a modest replication factor. Conversely, the latency
to switch between replicas that are kept in synch using
reactive replication is modest.

State between replicas can be synchronized using ei-
ther full replication or session’s data replication. In the
former, the destination replica will have the union of all
records available at both replicas before the switch oc-
curs. The advantage of this method is that it is concep-
tually simple, however it may result in high switching
time and high bandwidth consumption for the transfer. In
the later, only data relevant to the session, including any
records that were read or written, are synced. This ap-
proach is efficient in terms of data transfer and switching
time; however, it is more complex and requires appli-
cation support to identify relevant data accessed by the
session. We argue that for multi-user services deployed
on the network where the same replica handles requests
from multiple clients, the second option where only the
session’s data is synchronized is more beneficial. Our
experiments show that this approach reduces bandwidth
requirements and migration latency, and the effort to la-
bel queries is modest.

To keep track or identify the state that needs to be syn-
chronized, we can either tag individual records with read
and write information, or use a higher level abstraction,
such as CQL or SQL to capture access patterns. The ben-
efit of tagging individual records is its simplicity, which
comes at the expense of potential significant additional
storage overhead. Instead, we opted to track data ac-
cesses by recording queries executed against the replica.
While this approach is more complex to implement, it
has modest storage requirements. In our experience, sim-
ple queries can stand in for a large number of rows.

3 Prototype

We developed a distributed storage systems for edge
computing that supports session consistency on other-
wise eventual consistent replicas. We first describe Path-
Store [12], the eventual consistent storage system that
we use as the basis for our implementation. We then de-
scribe extension that add support for session consistency.



3.1 PathStore
PathStore provides a hierarchical eventually consistent
database implemented as a tree of independent object
stores. A PathStore hierarchy consists of a persistent
replica at it root, and an unlimited number of layers of
partial replicas below it. PathStore uses Cassandra [11]
as its internal storage engine. Each PathStore replica runs
a separate independent Cassandra ring, with PathStore
in charge of data movement between otherwise indepen-
dent rings. PathStore replicates data at row granularity
on demand in response to application queries. To provide
low-latency, all read and write operations are performed
against the local replica. PathStore supports concurrent
object reads and writes on all replicas of the database
hierarchy; updates are propagated through the replica hi-
erarchy in the background. PathStore tags modifications
with a version timestamp that records the time the row
was inserted, and the ID of the PathStore replica where
the modification was originally recorded. PathStore as-
sumes that replicas are tightly synchronized using some
accurate mechanism, such as GPS atomic clocks. As
modifications propagated through the hierarchy, Path-
Store uses the version timestamp to determine ordering –
most recent timestamp wins.

PathStore’s API is based on CQL, Cassandras SQL
dialect, which organizes data into tables, and provides
atomic read and write operations at row granularity. CQL
lets users read and write table rows using the famil-
iar SQL operation SELECT, INSERT, UPDATE, and
DELETE; however, CQL operations are limited to a sin-
gle table there is no support for joins.

3.2 Session Consistency
We extend Pathstore by providing developers the ability
to select between eventual and session consistency. We
next describe how we group database accesses into ses-
sions, how we track data related to a session, how we
synchronize state when a client switches between two
replicas, and how we handle failures.

3.2.1 Sessions

We enforce session consistency by grouping related CQL
requests into a session. What constitutes a session, how-
ever, is left to the application developer to determine.
The developer can decide to make a session represent-
ing a user, a device belonging to a user, or a subset of the
request issued by a device. Our system simply enforces
session consistency semantics among those queries that
are identified as belonging to the same session.

We identify each session using a Session Token, or
stoken. The stoken consists of a unique session id (SID),
timestamp, current replica id, and status. The stoken is

encrypted and signed to prevent forging and misrepre-
sentation. Developers chose between eventual and ses-
sion consistency by including (or not) the stoken together
with their queries.

It is up to the the developer to determine how the sto-
ken is communicated between their client and the server
code running on the edge datacenter. In our experiments,
we use Java Servlets to run our server-side code and pass
the stoken using an HTTP cookie.

3.2.2 State Tracking

To keep track of data related to a session, we added to
each PathStore replica, a CommandCache that stores all
the CQL SELECT statements run on behalf of a ses-
sion s. The entries in the CommandCache[s] precisely
identify the data accessed by the s since there is a 1-
to-1 mapping between query results, and tuples in the
database. This is not true in general for SQL, but for
CQL, it holds because there are no joins and no aggrega-
tion operations (i.e., no GROUPBY ).

For INSERT , UPDAT E and DELET E commands,
we also keep track of modified keys affected by these
commands using individual SELECT queries. For ex-
ample if the session executes the command where a1 is
the primary key (key):

INSERT INTO pathstore.t1 values (a1,b1)

we store the following query in CommandCache[s]:

SELECT * FROM pathstore.t1 WHERE key=a1

In this way the key can be later accessed using this
query. To keep the CommandCache smaller, we don’t
keep queries for a given session that are sub-sumed by
more general ones. We also keep queries only for data
that is actually replicated by the Pathstore site. Through
a background garbage collection mechanism, Pathstore
deletes data that has not been accessed for a long time. To
support session consistency, our current implementation
can only run queries for a stoken at only one replica at a
time. We keep track of the location of this replica on the
stoken itself and every site also keeps track of sessions it
is serving.

3.2.3 Switching

PathStore leverages the stoken to detect when a client
switches between replicas (e.g., moves between edge
replicas ns, nd). The new replica (nd) is able to determine
the last location of the session’s data by examining the
Current Replica parameter on the stoken received. Using
this information and by identifying the session through
the SID, the destination replica can initiate the replica
switching process.



Figure 1: Network topology.

When the switching process for a session is initiated,
the status field on the stoken changes to Migrating to nd
where nd is the ID of the destination replica. A sepa-
rate thread then fetches the session’s data from nd . In
the meantime if the client moves to another edge ne, ne
will wait for the switching process on nd to finish and
then fetch the data from nd . To assure session consis-
tency, when a switching process is triggered on ns, ns’s
Pathstore replica will not process further commands for
that session. Furthermore, requests for the session are
not processed on nd until the switch is complete.

When a session moves to nd , the PathStore module of
nd sends a request to the PathStore module of ns asking
for all keys modified or accessed by s. Having recorded
all the commands executed by s, ns’s PathStore then re-
executes the queries in CommandCache[s] to find all
modified or accessed rows. It will then put the resulting
rows on the PathStore replica of nd and also move Com-
mandCache[s] to nd’s CommandCache. Using queries
to find accessed rows has the benefit of aggregation. A
single query can track many keys read or written by
s. Replication is done at full row level irrespective of
columns projected in the select query.

3.2.4 Failures

In case of network partitions where the source replicas is
unreachable, the application is informed about the issue
through an exception. The application can the decide to
wait and retry, or invalidate the session and restart.

4 Results

We first compare the performance of PathStore to an
alternative deployment of unmodified Cassandra on the
edge network shown in Figure 1. We then evaluate the
benefits of tracking and only propagating session state
when switching between replicas.

Our experimental setup consists of six servers each
acting as a different datacenter. Each server runs an in-
stance of unmodified Cassandra or PathStore, as well as
an instance of Apache Tomcat and a simple Java Sevlet

that issues CQL queries on either Cassandra or Path-
Store. The network between the servers is emulated by
using Linux’s Traffic Control [4], a tool that enabled us
to configure the Linux kernel packet scheduler. We as-
sume that the underlay IP network has the same topology
(e.g. the round trip time between e1,e2 is 2× t1). We op-
timistically assume t1 = 2ms, t2 = 20ms, which tilts the
comparison against PathStore and in favor of Cassandra,
which is more adversely affected by higher latency.

Figure 2 shows the CDF of the latency for writing or
reading a single 1KB row on e1. The experiment is re-
peated for 10,000 different rows. The figure shows re-
sults for three different PathStore scenarios that assume
the rows being read are already replicated on e1, c1,
and cl , respectively. There is only one configuration for
write in PathStore as all writes are preformed on the lo-
cal replica (e1). The figure also shows results for three
potential ways in which a developer could attempt to de-
ploy unmodified Cassandra in order to provide a consis-
tent view of the database for a mobile client. In all Cas-
sandra experiments, all six instances of Cassandra (1 per
emulated datacenter) are configured as a single ring.

We consider three alternatives 1: Full Replication-All,
uses a replication factor of six and Cassandra’s All con-
sistency model which requires all replicas to respond
before a write operation returns. On the other hand,
reads can be served from any replica. Full Replication-
Quorum, also uses a replication factor of six and Cas-
sandras Quorum consistency model. This configuration
requires a responses from a quorum of replicas for both
reads and writes. Finally, Single Replication-One, which
uses a replication factor of one, and relies on Cassandras
standard hashing algorithm to uniformly distribute rows
among nodes in the Cassandra ring. Reads and writes in
this configuration involve a single server. Table 1 shows
the average data transferred aggregated across all links to
store or read a 1KB row for the various configurations.

All three Cassandra alternatives perform poorly, which
is hardly surprising given that Cassandra is not designed
to be used in this manner. Conversely, our results are
optimistic as real-world edge deployments will likely
consist of a much larger number of datacenters. Full
Replication-All handles reads very well, but pays for it
with high latency and bandwidth cost for writes. Full
Replication-Quorum is a little better for writes, but much
worse for reads. Finally, Single Replication-One read
and write performance varies widely between rows based
on their random allocation across the various datacenters.
In comparison, PathStore provides low latency for writes
and reads, particularly in cases where the row are already

1All three Cassandra configuration provide at least serial consis-
tency, which is much stronger that session consistency; however, the
stronger properties provide little benefit when the application does not
require consistency across different clients.
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Figure 2: CDF of latency required to read and write a 1KB row.

Scenario
Average data

transfer per row
Reads PathstoreFetch from cl 3245.8B

PathstoreFetch from c1 1620.7 B
PathStoreFetch From e1 0
Cassandra Full Replication 0
Cassandra Single Replication 1120.7 B

Writes Pathstore 2346.8 B
Cassandra Full Replication 6372.4 B
Cassandra Single Replication 1213.6 B

Table 1: Data transfer.

available on e1 or c1, and requires much less bandwidth.
Figure 3 shows the latency for migrating a session be-

tween e1,e3. We simulate a server application that in
the process of servicing a large number of clients reads
10000 1KB rows from a single table. We show results
for two PathStore configurations. The first configuration
labeled Full does not keep track of data accessed by in-
dividual sessions, and as a result has to copy all 10000
when the client moves between replicas. The second
configuration labeled Session Data Migration uses the
CommandCache to keep track of rows read by the client
that moves between the replicas. We vary the number
of commands executed by the client between 1,2056 and
we assume each command only affects a single row. As
shown in Figure 3, for cases where the mobile client ac-
cesses only a fraction of the total data used by the ser-
vice it is beneficial to track session data. However, as the
number of queries for a session increases, the overhead
also increase because each query in the CommandCache
has to be fetched, executed.

5 Conclusions

A key tenet of edge computing is the ability for clients
to be redirected seamlessly across the different edge data
centers hosting the replicas of a service, while ensuring
a consistent view of the underlying data accessed in the
same client session. In this paper, we present a novel

Figure 3: Session migration latency.

storage system that provides session consistency even
when the client switches between replicas in different
edge locations. Our client reconciliation algorithm en-
forces session consistency at minimal costs, by tracking
the accessed or affected keys and reconciling them on the
destination replica. Our results show that our approach
provides session consistency at a fraction of the latency
and bandwidth costs of a strongly consistent system, and
with reasonable migration costs.

In this paper, we have merely taken the initial steps
towards the goal of a fully realized system for session
consistency at the edge. There are three key directions
(among several others) that we plan to pursue to fulfill
this goal. First, while our reconciliation algorithms en-
sure that only data pertaining to a session is migrated,
we wish to explore other optimizations that reduce the
data transfer. For example, we can exploit the data prop-
agation of our hierarchical store to transfer data only if
the destination is out of date. Second, given the intri-
cate nature of the migrate algorithms, especially in the
presence of failures and network partitions, we wish to
theoretically analyze and prove the correctness of our al-
gorithms. Finally, we plan to integrate our solution with
a prevalent edge use-case (such as an edge file system)
and thoroughly evaluate performance.
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