
Caliper: Precise and Responsive Traffic Generation using
NetThreads∗

Monia Ghobadi∗, Geoffrey Salmon∗, Martin Labrecque†, Yashar Ganjali∗, J. Gregory Steffan†
∗Department of Computer Science, †Department of Electrical and Computer Engineering

University of Toronto
{monia, geoff, yganjali}@cs.toronto.edu, {martinl, steffan}@eecg.toronto.edu

ABSTRACT
This paper presents (i) Caliper, a highly-accurate packet
injection tool, and (ii) NetThreads, a new platform that
dramatically simplifies the development of low-level net-
work applications on the NetFPGA board. NetThreads pro-
vides a familiar environment to software developers where
multithreaded C programs can be compiled and run on the
NetFPGA. On top of NetThreads, we have built Caliper, a
precise and responsive traffic generator that takes packets
generated on a host computer and transmits them onto
a gigabit Ethernet network with precise inter-transmission
times. For packet injection, existing software traffic gen-
erators rely on generic Network Interface Cards which,
as we demonstrate, do not provide high-precision timing
guarantees. Hence performing valid and convincing ex-
periments becomes difficult or impossible in the context of
time-sensitive network experiments. Our evaluation shows
that Caliper is able to reproduce packet inter-transmission
times from a given arbitrary distribution while capturing
the closed-loop feedback of TCP sources. Specifically, we
demonstrate that Caliper provides three orders of magnitude
better precision compared to commodity NIC: with re-
quested traffic rates up to the line rate, Caliper incurs an error
of 8 ns or less in packet transmission times. Furthermore,
we explore Caliper’s ability to integrate with existing net-
work simulators to project simulated traffic characteristics
into a real network environment. Caliper and NetThreads
are both freely available online [1].

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

General Terms
Design, Experimentation, Measurement

Keywords
NetFPGA, Traffic Generation, Soft Processors
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1. INTRODUCTION
There are many challenges associated with perform-

ing valid experiments in network testbeds. Generating
realistic and responsive traffic that reflects different net-
work conditions and topologies is one of such key chal-
lenges. To perform network experiments, researchers
often use a collection of commodity Linux machines as
traffic generators. However, creating a large number
of connections in order to accurately model the traffic
shape in networks with thousands of flows is difficult
for several reasons. First, it is not always possible to
use real network traces since they do not maintain the
feedback loop behavior between the network and traffic
sources (for example the TCP closed-loop congestion
feedback). Second, the complexity of traffic generation
increases when trying to capture the heterogeneity of
link capacities using only a limited number of physical
machines. Finally, commodity hardware does not
guarantee the precision of generated traffic, which is
bounded by the system timer resolution.1 In ad-
dition, there are differences in implementation and
default settings (and sometimes lack of a way to
change those settings) in commodity hardware. Hence,
it is intrinsically difficult to perform time-sensitive
network experiments with confidence on the accuracy of
packet injection times. Time-sensitive experiments are
those that need very high-precision timings for packet
injections into the network. Experimenting with new
congestion control algorithms, buffer sizing in Internet
routers [2], and denial of service attacks which use
low-rate packet injections [3] are all examples of time-
sensitive experiments, where a subtle variation in packet
injection times can change the results significantly [4].

As an alternative, commercial traffic generators are
useful for some experiments, but they have their own
drawbacks. They are usually very expensive and their
proprietary nature makes them inflexible for research
purposes. As an example, Prasad et al. [5] describe dif-
ferences observed between a TCP Reno packet sequence

1A Linux kernel is typically capable of providing resolutions
of 1 ms. In comparison, a packet of 1500 bytes on a 1 Gbps
link has a transmission time of less than 12 µs.
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generated by a commercial traffic generator and the
expected behavior of the standard TCP Reno protocol.

A more precise solution is using hardware based
packet generators such as the traffic generator by Cov-
ington et al. [6] (hereafter referred to as the Stanford
Packet Generator or SPG). SPG is based on NetFPGA
[7, 8], a PCI-based programmable board containing
an FPGA, four gigabit Ethernet ports, and memory.
The SPG system generates more precise traffic by
accurately replicating the transmission times recorded
in a pcap trace file, similar to the operation of the
tcpreplay software program; this method eliminates
the dependence between the generated traffic and the
NIC model. While the traffic that SPG generates is
more precise than many prior approaches, it has several
limitations. The closed-loop feedback for TCP sources
(and any other protocol that depends on the feedback
from the system) is not kept because the trace files are
based on past measurements. Furthermore, replaying
a prerecorded trace on a link with different properties
(such as capacity and buffer size) does not necessarily
result in realistic traffic without performing non-trivial
adjustments. Finally, SPG can only (i) replay the exact
packet inter-arrival times provided by the trace file, or
(ii) produce fixed inter-arrival times between packets;
i.e., ignoring the variation of packet timings from the
original trace.

In this paper, we present the design, implementation,
and evaluation of Caliper, a precise and responsive
traffic generator based on the NetFPGA platform with
highly-accurate packet injection times that can be
easily integrated with various software-based traffic
generation tools. Caliper has the same accuracy level as
SPG, but provides a key additional feature that makes it
useful in a larger range of network experiments: Caliper
injects dynamically created packets, and thus, it can
react to feedback and model the closed-loop behavior of
TCP and other protocols. The ability to produce live
traffic makes Caliper useful to explore a variety of what-
if scenarios by tuning user, application, and network
parameters. Note that characterizing real-traffic is not
the goal of this work, instead, our objective is packet
injection accuracy.

Caliper is built on NetThreads, a platform we have
created for developing packet processing applications
on FPGA-based devices and the NetFPGA in partic-
ular. NetThreads is primarily composed of FPGA-
based multithreaded processors, providing a familiar yet
flexible environment for software developers: programs
are written in C, and existing applications can be ported
to the platform. In contrast with a PC or NIC-based
solution, NetThreads is similar to a custom hardware
solution since it offers direct network I/O and allows the
programmer to specify accurate timing requirements.

Our evaluation demonstrates that Caliper is able to

reproduce packet inter-arrival times from a given arbi-
trary distribution with high accuracy while capturing
the closed-loop feedback of TCP sources. We present
the accuracy of Caliper with various packet arrival rates
and demonstrate that with requested traffic rates up to
the line rate, the maximum error that Caliper incurs
is 8 ns which is the resolution of the measuring system
clock. We also present measurements of an existing net-
work emulator which clearly demonstrates the need that
Caliper fulfills. We further demonstrate integration of
Caliper with existing software-based traffic generators
as well as the ns-2 network simulator.

In summary, the contributions of this paper are two-
fold: (i) we present and evaluate Caliper, a tool that can
precisely control the inter-transmission times of packets
created in the host computer; (ii) we introduce Net-
Threads, a new platform that dramatically simplifies
the development of low-level network applications on
the NetFPGA.

2. NETTHREADS
In this section, we describe NetThreads [9], the

programmable platform that enables Caliper and lever-
ages an FPGA-based network card. FPGAs are in-
creasingly used in packet processing systems [10–12]
due to several advantages that they provide: (i) ease
of design and fast time-to-market compared to building
custom chips; (ii) the ability to connect to a number
of memory channels and network interfaces, possibly
of varying technologies; (iii) the ability to fully exploit
parallelism and custom accelerators; and (iv) the ability
to field-upgrade the hardware design.

To avoid implementing a packet generator in low-
level hardware-description language (how FPGAs are
normally programmed), we instead implement soft pro-
cessors – processors composed of programmable logic
on the FPGA. Despite the raw performance drawbacks,
a soft processor has several advantages: it is easier to
program (e.g., using C), portable to different FPGAs,
flexible (i.e., can be customized), and can be used
to communicate with other components/accelerators
in the design. In this work, our FPGA resides on a
NetFPGA board and communicates through DMA on
a PCI interface to a host computer. This configuration
is particularly well suited for packet generation: (i) the
load of the soft processors is isolated from the load
on the host processor, (ii) the soft processors suffer no
operating system overheads, (iii) they can receive and
process packets in parallel, and (iv) they have access to
a high-resolution system timer (much higher than that
of the host timer).

The rest of this section describes our infrastruc-
ture, including the system architecture and our base
platform, and how we do compilation, timing and
validation.
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Figure 1: The architecture of our soft multi-
threaded multiprocessor. We implement two
processors, although the architecture can be
scaled to larger numbers of processors.

System architecture: As shown in Figure 1, our
hardware design is sufficiently general to accommodate
a large variety of packet processing workloads. The
memory system is composed of a private instruction
cache for each processor, and three data memories that
are shared by all processors; this design is sensitive
to the two-port limitation of block RAMs available on
FPGAs. The first memory is an input buffer that
receives packets on one port and services processor
requests on the other port via a 32-bit bus, arbitrated
across processors. The second is an output memory
buffer that sends packets to the NetFPGA Ethernet
controllers on one port, and is connected to the pro-
cessors via a second 32-bit arbitrated bus on the second
port. Both input and output memories are 16KB, allow
single-cycle random access and are controlled through
memory-mapped registers; the input memory is read-
only and is logically divided into ten fixed-sized packet
slots. The third memory is a shared memory managed
as a cache, connected to the processors via a third
arbitrated 32-bit bus on one port, and to a DDR2
SDRAM controller on the other port. For simplicity, the
shared cache performs 32-bit line-sized data transfers
with the DDR2 SDRAM controller (similar to previous
work [13]), which is clocked at 200MHz. The SDRAM
controller services a merged load/store queue of 16
entries in-order; since this queue is shared by all
processors it serves as a single point of serialization
and memory consistency, hence threads need only
block on pending loads but not stores. Our base
soft processor is a single-issue, in-order, 5-stage, 4-
way multithreaded processor [14] and each processor
has a dedicated connection to a synchronization unit
that implements 16 mutexes and to control registers
that manage packet I/O. Those control registers provide
the option of sending a packet by default as soon as
possible, or at a given future time to avoid random

latencies introduced by bus contention and cache misses
when executing software on the processors. Non-
blocking software commands manage the hardware that
fills the input buffer with received packets and sends
packets from the output buffer. In the NetThreads C
programming model, the input and output memories,
system clock, mutexes and control registers to send and
receive packets are all memory-mapped.

Platform: Our processor designs are inserted inside
the NetFPGA 2.1 Verilog infrastructure [15] that
manages four 1GigE Media Access Controllers (MACs).
We added to this base framework a memory controller
configured through the Xilinx Memory Interface Gen-
erator to access the 64 Mbytes of on-board DDR2
SDRAM. The system is synthesized, mapped, placed,
and routed under high effort to meet timing constraints
by Xilinx ISE 10.1.03 and targets a Virtex II Pro 50
(speed grade 7 ns).

Compilation: Our compiler infrastructure is based
on modified versions of gcc 4.0.2, Binutils 2.16, and
Newlib 1.14.0 (a C library for embedded systems)
that target variations of the 32-bit MIPS-I ISA. This
toolchain allows to compile ordinary C code and Net-
Threads provides an API for memory-mapped opera-
tions [9]. Integer division and multiplication are both
implemented in software. Because network experiments
often need to be performed with a specific protocol
stack (e.g. a Linux kernel 2.6 TCP/IP stack), Caliper’s
program on NetThreads is protocol-agnostic and only
controls the timing of packets as generated from the
host computer (see Section 3.1.1).

Timing: Our processors run at the clock frequency
of the Ethernet MACs (125MHz) because there are no
free PLLs (a.k.a. Xilinx DCMs) after merging-in the
NetFPGA support components. Due to these stringent
timing requirements, and despite some available area
on the FPGA, (i) the private instruction caches and
the shared data write-back cache are both limited to
a maximum of 16KB, and (ii) we are also limited to a
maximum of two processors. These limitations are not
inherent in our architecture, and would be relaxed in a
system with more PLLs and a more modern FPGA.

Validation: At runtime in debug mode and in
RTL simulation (using Modelsim 6.3c) the processors
generate an execution trace that has been validated for
correctness against the corresponding execution by a
simulator built on MINT [16].

3. PRECISE TRAFFIC GENERATION
Caliper’s main objective is to precisely control the

transmission times of packets which are created in the
host computer, continually streamed to the NetFPGA,
and transmitted on the wire. The generated packets
are sent out of a single Ethernet port of the NetFPGA,
according to any given sequence of requested inter-
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Figure 2: Components of Caliper packet gener-
ator.

transmission times. It is important to note that because
packets are streamed, the generator can immediately
change the traffic in response to feedback. Unlike
previous works that replay packets with prerecorded
transmission times from a trace file, Caliper generates
live packets and supports closed-loop traffic. Therefore,
Caliper can easily be coupled with existing traffic
generators (such as Iperf [17] and Netperf [18]) to
improve their accuracy at small time scales.

3.1 Caliper’s Components
We have built Caliper on the NetThreads platform.

Caliper’s components are illustrated in Figure 2 show-
ing the life cycle of a packet through the system, from
creation to transmission. First, a user space process
or a kernel module on the host computer determines
when a packet should be sent. A description of
the packet, containing the transmission time and all
the information necessary to assemble the packet is
sent to the NetFPGA driver. In the driver, multiple
packet descriptions are combined and copied to the
NetFPGA card. Combining descriptions reduces the
number of separate transfers required and is necessary
for sending packets at the line rate of 1 Gbps. From
there, packet descriptions are processed in software on
the NetThreads soft multithreaded processors. Each
software thread assembles packets in the NetThreads’
output memory (shown in Figure 1). Next, a selected
thread sends all of the prepared packets in the correct
order at the requested transmission times. Finally,
the hardware pipeline of the NetFPGA transmits the
packets onto the wire.

In the rest of this section we explain each stage of
a packet’s journey through Caliper in detail. We also
describe the underlying limitations and challenges that
influenced our design. Note that users can edit all parts
of Caliper to modify and extend its functionality [1].

3.1.1 Packet Creation to Driver
The reasons and context of packet creation are

application-specific. To produce realistic traffic, we
envision that a network simulator, such as Swing [19],

will decide when to send each packet. This simulation
may be running in either a user space process, like
ns-2 [20], or a Linux kernel module, as in Model-
Net [21]. To easily allow either approach, we send
packets to the NetFPGA driver using Linux NetLink
sockets, which allow arbitrary messages to be sent
and received from either user space or the kernel. In
Section 4 we describe examples of using Caliper with
the ns-2 network simulator, Iperf traffic generator, as
well as our own user space program.

At this stage, the messages sent to the NetFPGA
driver do not contain the entire packet as it will
appear on the wire. Instead, packets are represented
by minimal descriptions which contain the size of the
packet and enough information to build the packet
headers. Optionally, the descriptions can also include
a portion of the packet payload. The parts of the
payload that are not set will be zeroed when the packet
is eventually transmitted. In Section 5, we mention a
work-around that may be useful when the contents of
packet payloads are important to an experiment.

3.1.2 Driver to NetThreads
We modified the driver provided with NetFPGA to

support Caliper. Its main task is to copy the packet
descriptions to the NetFPGA card using DMA over
the PCI bus. It also assembles the packet headers and
computes checksums.

Sending packets to the NetFPGA over the PCI bus
introduces some challenges. It is a 33-MHz 32-bit bus
with a top theoretical transfer rate of 1056 Mbps, but
there are significant overheads even in a computer where
the bus is not shared. Most importantly, the number
of DMA transfers between the driver and NetFPGA
is limited such that the total throughput is only 260
Mbps when individually transferring 1518 byte packets.
Limitations within the NetFPGA hardware pipeline
mean we cannot increase the size of DMA transfers to
the NetFPGA enough to reach 1 Gbps. Instead we work
around this problem by sending only the packet headers
across the PCI bus and rebuilding the packets inside the
NetFPGA. Currently, NetFPGA fills the payload with
zeros, which is sufficient both for our evaluation and for
many of the tests we are interested in performing with
Caliper.

To obtain the line rate throughput, the driver com-
bines the headers of multiple packets and copies them
to the NetFPGA in a single DMA transfer. Next, the
NetFPGA hardware pipeline stores them into one of
the ten slots in the input memory of the NetThreads
system (shown in Figure 1). If there is no empty slot in
the memory then the pipeline will stall, which would
quickly lead to dropped packets in the input queue
of the NetFPGA. To avoid this scenario, the software
running on the NetThreads platform sends messages
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to the driver containing the number of packets that
it has processed. This feedback allows the driver to
throttle itself and to avoid overrunning the buffers in
the NetFPGA.

3.1.3 NetThreads to Wire
This last part of Caliper runs as software on the

NetThreads platform inside the NetFPGA. The driver
sends its messages containing the headers of multiple
packets and their corresponding transmission times.
Then, Caliper prepares these packets for transmission
and sends them at the appropriate times.

NetThreads takes advantage of multithreaded pro-
cessors, which have been shown to outperform single
threaded processor on parallel tasks [14,22]. To achieve
high throughput in NetThreads, it is therefore impor-
tant to maximize parallelism and the processor pipeline
utilization, meaning that all eight available threads
must be put to contribution (each processor is 4-way
multithreaded as explained in Section 3.2).

3.2 Leveraging the hardware threads in Net-
Threads

As explained in Section 2, NetThreads provides 8
hardware threads that implicitely all execute the same
program, but with a private stack space. In Caliper,
we implement thread-specific behavior by reading each
thread’s identifier with an API call [9]. We designate
one thread to be in charge of sending all the packets.
This way, packets are not reordered and we can easily
control their transmission time without using synchro-
nization and sorting. Each of the other seven threads
continually process jobs from a work queue. There
are two types of jobs: 1) interpreting a message from
the driver and scheduling further jobs to prepare each
outgoing packet, and 2) preparing an outgoing packet
and notifying the sending thread when completed.

When preparing outgoing packets, most of the work
performed by the threads involves copying the requested
packet headers from the input memory to the output
memory. As described in Section 2, buses to the
input and output memories are arbitrated between both
processors; i.e., on a given clock cycle, only one of the
processors can access the input memory, and only one
can access the output memory. Fortunately, these de-
tails are hidden from the software, and the instructions
squashed by an arbiter will be retried without impacting
the other threads [14]. Because of the fine-grained
interleaving of load and store instructions across the two
processors, threads from both processors will be able to
make forward progress. Additionally, multithreading
inside each processor prevents pipeline stalls (e.g. the
dependence from a load to a store in a copy operation)
by interleaving multiple threads (4 in this case), thus
providing an increased pipeline efficiency.

3.3 Integration with Existing Tools
Caliper is intended to be integrated with software

in charge of creating packets: in this section, we
explain the integration of Caliper with existing Linux-
based software traffic generators and in Section 4.5, we
describe and evaluate a prototype that we develop to
allow packets from the ns-2 simulator to be sent on a
real network using Caliper.

Caliper is able to receive packets directly from the
Linux network stack as well as over NetLink sockets.
Since Caliper is acting as a network card device in the
kernel, it can transmit packets generated within the
Linux kernel with any software packet generator (i.e.,
ping, Iperf, Netperf, etc.) according to user-specified
inter-arrival times. By using TCP sources, Caliper can
transmit live TCP connections and closed-loop sessions.
As a result, the generated traffic becomes “responsive”
to changing network conditions or competing applica-
tion traffic by capturing the congestion feedback of TCP
sources and any other Linux implemented protocols.
Another desirable advantage of using Caliper for TCP
sources is the ability to define an inter-packet gap
to provide TCP pacing [23] in hosts. TCP pacing
addresses the burstiness of TCP traffic by minimizing
the possibility of overflow in router buffers [2]. Towards
this goal, Caliper is able to adjust precisely the interval
between outgoing packets and produce smoothed and
stable traffic. In Sections 4.1 and 4.3, we demonstrate
that Caliper provides three orders of magnitude better
precision compared to commodity NIC when using Iperf
to generate TCP and UDP traffic.

In order to preserve the closed-loop sessions of TCP
based traffic generators, Caliper needs to receive pack-
ets from the wire, process them in the NetFPGA, and
copy them to the host computer over the PCI bus.
Because the PCI bus is highly contented (§3.1.2), the
receiving operations can interfere with the scheduled
transmissions of packets. Since the main focus of
Caliper is providing precision in transmission times, in
the current implementation of Caliper, we eliminate this
potential interference by using a separate physical PCI
Express NIC to receive the incoming acknowledgment
packets from the wire and reserving the NetFPGA for
transmitting packets. Caliper kernel module routes
packets appropriately, and as a result, the process
controlling Caliper is unaware that it is receiving
packets from one network interface and sending packets
out of a different one.2

4. EVALUATION
In this section we evaluate the performance of Caliper

by focusing on its accuracy and flexibility features. We
2The path that the sent and received packets follow in the
network does not have to be completely disjoint. Only the
closest hop to Caliper needs to be duplicated.
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Figure 3: Topology of experiments.

set-up our experiments to reflect Caliper’s intended use:
to complement existing traffic generators by allowing
them to precisely control when packets are transmitted.
Hence, we present our experiments where the most
important metric is the accuracy of packet transmission
times. We also present measurements of an existing
network emulator which clearly demonstrate the need
that Caliper fulfills. We further present a prototype
that integrates Caliper with the ns-2 simulator.

We perform our evaluations using Dell Power Edge
2950 servers running Debian GNU/Linux 5.0.1 (code-
name Lenny) each with an Intel Pro/1000 Dual-port
gigabit network card and a NetFPGA card. The topol-
ogy of our experiments is illustrated in Figure 3. In each
test, there is a single server sending packets and a single
server receiving packets via a NetFPGA-based router
in the middle that measures the packets inter-arrival
times. In the experiment described in Section 4.4, the
router is replaced with a server running a software
network emulator which routes packets between the
sender and receiver.

Since Caliper’s main goal is to transmit packets
exactly when requested, the measurement accuracy
is vital to the evaluation. Measuring arrival times
in software using tcpdump or similar applications is
imprecise: generic NICs combined with OS overheads
are intrinsically inaccurate at the level we operate [4].
Therefore, we use a NetFPGA router to measure
packet inter-arrival times at the middle node (router).
The NetFPGA router is configured with the “event
capturing module” of the NetFPGA router design
[2,24] which supports instrumenting the router’s output
queues:3 when a packet arrives, departs or is dropped,
the system clock time of the NetFPGA, which has an 8
ns granularity, is recorded. To reduce overhead, the
NetFPGA router batches multiple events in packets
that are periodically sent out and we obtain the packet
inter-arrival times at the router by subtracting succes-
sive timestamps in the payload of those event packets.

3To increase the accuracy of the timestamps even more, we
removed two parts of the router pipeline that could add
a variable delay to packets before they reach the output
queues. This is possible because we are only interested in
measuring packets that arrive at a particular port and the
routing logic is unnecessary.
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Figure 4: Comparing the 95th percentile of
absolute error (|DR −DM |) between Caliper,
SPG, and commodity NIC when injecting UDP
packets.

4.1 Sending UDP Packets at Fixed Intervals
The simplest test case for Caliper is to generate

UDP packets with a fixed inter-transmission time.
Comparing the requested inter-transmission time with
the observed inter-arrival times demonstrates Caliper’s
degree of precision. As explained in Sections 3.2
and 3, Caliper leverages software running on what
has previously been a hardware-only network device,
the NetFPGA. Even executing software, NetThreads
should provide sufficient performance and control for
precise packet generation.

To evaluate the above criteria we compare Caliper’s
transmission times against those of Stanford’s Packet
Generator (SPG), which is implemented on the NetFPGA
solely in hardware. Moreover, we demonstrate the lack
of precision when using a commodity NIC transmit-
ting Iperf traffic. Figure 4 shows the 95th percentile
of absolute error between the measured inter-arrival
times (DM ) and the requested inter-transmission times
(DR) corresponding to various packet transmission
rates (TR). It is important to note that the 95th

percentile error is a more conservative metric than the
average error as it captures the 5% largest errors. For
each transmission rate, we send 1,500,000 UDP packets
of size 1518 bytes (including Ethernet headers) using
Caliper, SPG, or an Intel commodity Ethernet NIC. To
generate constant bit rate traffic over the commodity
NIC we use the Iperf traffic generator with rate TR. We
then capture a portion of traffic in a trace file and replay
it with SPG while configuring SPG with the exact same
packet inter-arrival time that we used with Caliper, DR.

As Figure 4 illustrates, for all range of transmission
times up to 1 Gbps, the 95th percentile absolute error
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Figure 5: CDF of measured inter-arrival times
compared with an input Pareto distribution.
Only a single curve is visible since the two plots
match entirely.

is around 8 ns for both Caliper and STG. The clock
period of the sending and measuring NetFPGA systems
is 8 ns, and hence an error of 8 ns implies that most
of the inter-transmission times are within one clock
cycle (the measurement resolution). This shows that
even though NetThreads is executing software, it still
allows precise control on when packets are transmitted.
On the other hand, note that the commodity NIC’s
error is almost three orders of magnitude higher than
both Caliper and STG. At 1 Gbps rate, we notice that
the error is minimum for Caliper, STG as well as the
commodity NIC case because the network is operating
at its maximum utilization and packets are sent and
received back-to-back.

Although both Caliper and STG packet genera-
tors are of similar accuracy, SPG has a limitation
that makes it unsuitable for the role we intend for
Caliper. The packets sent by SPG must first be loaded
onto the NetFPGA as a pcap file before they can be
transmitted. This two-stage process means that SPG
can only replay relatively short traces that have been
previously captured.4 Although SPG can optionally
replay the same short trace multiple times, it can not
dynamically be instructed to send packets by a software
packet generator or network emulator using a series of
departure times that are not known a priori. Caliper,
on the other hand, can be used to improve the precision
of packet transmissions streamed by any existing packet
generation software.

4The largest memory on the board is 64 MB which is only
about 0.5 seconds of traffic at the 1 Gbps line rate.
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4.2 Variable Inter-arrival Times and Packet
Sizes

Another advantage of Caliper is its ability to generate
packets with an arbitrary sequence of inter-arrival times
and sizes that are both essential parts of performing
realistic large scale experiments. Figure 5 shows the
CDFs of both the requested and the measured trans-
mission times for an experiment with 4000 packets
with inter-arrival times following a Pareto distribution.
Interestingly, only a single curve is visible in the
figure since the two curves match entirely (for clarity
we add crosses to the figure at intervals along the
input distribution’s curve). As we will demonstrate
in Section 4.4, this property of Caliper is exactly the
component that the network emulators need. Caliper
can take a list of packets and transmission times and
send the packets when requested. The crucial difference
between Caliper and SPG is that SPG has a separate
load phase that prevents it from being used by network
emulators.

As another example, Figure 6 shows the CDFs of the
requested and the measured transmission times when
the requested inter-arrival of packets follows the spike
bump pattern probability density function observed in
the study on packet inter-arrival times in the Internet by
Katabi et al. [25]. In this distribution, a flow traverses a
low bandwidth bottleneck with an inter-arrival of 8 ms
followed by a high bandwidth bottleneck. Moreover, to
demonstrate Caliper’s ability in generating packets with
variable sizes, we choose the packet sizes according to
another realistic distribution from the same study: 50%
are 1518 bytes, 10% are 612 bytes, and 40% are 64 bytes.
Note that, again, Caliper generates the traffic exactly
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Figure 7: Comparing the 95th percentile of
absolute error (|DR −DM |) between Caliper and
a commodity NIC when injecting TCP packets.

as expected and hence only one curve is visible.

4.3 Generating Responsive Traffic
As explained in Section 4.5, Caliper has the ability

to receive packets from the Linux network stack and
hence it can be used to produce live TCP connections
and closed-loop sessions. In this section, we evaluate
the performance of Caliper to inject smoothed TCP
packets (paced TCP) at precise time intervals and
compare the precision of using TCP Iperf traffic with
Caliper and a commodity NIC.5 As in [2], we use the
Precise Software Pacer (PSPacer) [26] package as a
loadable kernel module to enforce pacing while using
the commodity NIC. The challenges to accomplish
precise packet pacing are discussed in [24]. PSPacer
paces packets by injecting gap packets between the
real packets. By knowing the speed of the link and
controlling the number and size of the gap packets,
PSPacer controls the timing of packets in software
without using timers. The trade-off is that packets are
being sent at the line rate through a regular NIC even
when the data rate has been limited by pacing. In both
experiments, we use an unmodified version of TCP, as
implemented by the Linux network stack.

Similar to experiments in Section 4.1, we calculate
the absolute error (|DR −DM |) between the mea-
sured inter-arrival times (DM ) and the requested inter-
transmission times (DR) corresponding to the requested
packet transmission rate (TR) of Iperf. As illustrated
in Figure 7, Caliper improves the 95th percentile of
absolute error by almost three orders of magnitude
compared to the commodity NIC. Hence, Caliper’s

5Note that in this set of experiments we are unable to
include SPG due to its open-loop limitation.

accuracy enables researchers to perform live and time-
sensitive network experiments with confidence on the
accuracy of packet injection times. As in Figure 4, at 1
Gbps rate, the error of both Caliper and the commodity
NIC is minimal because packets are sent and received
back-to-back.

4.4 Accuracy of Existing Software Network
Emulators

The goal of network emulators is to allow arbitrary
networks to be emulated inside a single machine or using
a small number of machines. Each packet departure
time is calculated based on the packet’s path through
the emulated network topology and on interactions
with other packets. The result of this process is an
ordered list of packets and corresponding departure
times. How close the actual transmission times are to
these ideal departure times is critical for the precision
of the network emulator.

Existing software network emulators have been built
on Linux and FreeBSD [21,27]. To minimize overhead,
they process packets in the kernel and use a timer or
interrupt firing at a fixed interval to schedule packet
transmissions. They effectively divide time into fixed-
size buckets, and all packets scheduled to depart in a
particular bucket are collected and sent at the same
time. Clearly, the bucket size controls the scheduling
granularity; i.e., packets in the same bucket will essen-
tially be sent back-to-back.

To quantify the scheduling granularity problem, we
focus on the transmission times generated by NIST Net
[27], a representative network emulator. Here, we
generate MTU-sized UDP packets at a fixed arrival rate
using Caliper. The packets are received by a server
running NIST Net, pass through the emulated network,
and are routed to a third server which measures the
resulting packet inter-arrival times. NIST Net is
configured to add 100 ms of delay to each packet.
Although adding a delay to every packet is a simple
application of a network emulator, by varying the
input packet inter-arrival times, NIST Net’s scheduler
inaccuracy is clearly visible.

Figure 8 is a CDF of the measured intervals between
packet arrivals in NIST Net’s input and output traffic
where the requested packet inter-transmission time is
70 µs. As shown, Caliper accurately delivers packets to
NIST Net in the intermediate sever, but NIST Net is
unable to preserve the precision. Here a packet is sent
by Caliper to NIST Net, and thus should depart from
NIST Net, every 70 µs. This interval is smaller than
the fixed timer interval used by NIST Net, which has a
period of 122 µs [27], thus NIST Net will either send
the packet immediately or in the next timer interval.
Consequently, in Figure 8, 40% of the packets are
received back-to-back if we consider that it takes just
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Figure 8: Effect of NIST Net adding delay to
packets sent 70 µs apart. T = 12.304µs is the time
it takes to transmit a single 1472-byte packet at
1 Gbps.

over 12 µs to transmit a packet of the given size on the
wire (the transmission time of a single packet is marked
with a “T” on the X-axis). Very few packets actually
depart close to the correct 70 µs interval between them.
Most of the remaining intervals are between 100 µs and
140 µs. Note that the server running NIST Net is using
a commodity NIC which also plays a negative role in
preserving the packet inter-transmission times.

Even when the interval between arriving packets is
larger than NIST Net’s bucket size, the actual packet
transmission times are still incorrect. We repeated the
same experiment with inter-transmission times of 640
µs and 700 µs arrivals and observed that in both cases,
70% of the intervals are actually either 610 µs or 732
µs, which are multiples of NIST Net’s 122 µs bucket
size. It is only possible for NIST Net to send packets
either back-to-back or with intervals that are multiples
of 122 µs. When we vary the inter-arrival time of the
input traffic between 610 µs and 732 µs, it only varies
the proportion of the output intervals that are either
610 µs or 732 µs.

The cause of the observed inaccuracies is not specific
to NIST Net’s implementation of a network emulator.
Any software that uses a fixed-size time interval to
schedule packet transmissions will suffer similar failures
at small time scales, and the generated traffic will
not be suitable for experiments that are sensitive to
the exact inter-arrival times of packets. The exact
numbers will differ, depending on the length of the
fixed interval. To our knowledge, Modelnet [21] is
the software network emulator providing the finest
scheduling granularity of 100 µs with a 10KHz timer.
Although higher resolution timers exist in Linux that
can schedule a single packet transmission relatively

accurately, the combined interrupt and CPU load of
setting timers for every packet transmission would
overload the system. Therefore, our conclusion is
that an all-software network emulator executing on a
general-purpose operating system requires additional
hardware support (such as the one we propose) to
produce realistic traffic at very small time scales.

4.5 Network Emulation by Integrating Caliper
with ns-2

Simulation and testbed construction represent the
two most important methodologies available to net-
work researchers for the design and evaluation of both
novel and existing networking elements. Employing
an emulation capability in network simulation provides
the ability for real-world traffic to interact with a
simulation. Since many researchers are already familiar
with the Network Simulator ns-2, this is a useful tool
to test real network devices together with simulated
networks. Such integrations will enable researchers to
repeat simulation experiments under different link and
environment conditions.

Compared to previous attempts to connect ns-2 to a
real network [28], our integration of Caliper with ns-2
enables generating real packets with transmission times
that match the ns-2 simulated times even on very small
time scales. In our integration, we mark a particular
link in ns-2’s simulated network to be mapped to
physical link(s). When the simulation starts, the
simulated packets are built and traverse the simulated
links and nodes until they reach the specific marked
queue (caliper queue) connecting the simulation and
physical worlds. At this point, Caliper builds real pack-
ets and transmits them according to their simulated
inter-arrival times. The mapping between simulated
node IDs and physical IP/MAC addresses and port
numbers is also specified in the simulation configuration
file. On the other end of the caliper queue, there is
another simulation running, which receives the physical
packet, and fires the appropriate simulation event
indicating that the corresponding simulated packet has
been received.

Our implementation only requires a few additional
commands to a simulation program written in the Tcl
language which makes it extremely convenient to work
with. As an example, Figure 9 illustrates a simple
topology expressed in our extension. Lines 1 to 6
define the topology and the nodes conventionally in
ns-2 language. In line 8, we define the link between
node 2 (n2) and node 3 (n3) as caliper queue so that
when packets depart the link’s queue the simulator will
send the packet to Caliper’s driver. In line 10, we create
a mapping table for the physical IP and MAC addresses
corresponding to the physical ends of wire between n2

and n3. Finally in line 14 we assign a traffic source to
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1.#Caliper’s interval in seconds:

2.set caliper_interval 0.001

3.#define the nodes n0, n1, n2, and n3

4.#define the links (n0, n2), (n2, n3), and (n3, n1)

5.#obtain the queue of the specific caliper queue:

6.set caliper_queue_ [$ns simplex-link-op $n2 $n3 queue]

7.#call use-caliper function:

8.$cliper_queue_ use-caliper

9.#set the physical IP/MAC addresses mapping table:9.#set the physical IP/MAC addresses mapping table:

10.$ns insert_nat IP_N2 IP_N3 PORT_N2 PORT_N3 MAC_N2 MAC_N3

11.#Create a UDP agent and attach it to node n0

12.#Create a CBR traffic source and attach it to udp0

13.#set the rate of the CBR source:

14.$cbr0 set interval_ $caliper_interval

Figure 9: Illustration of a simple topology ex-
pressed in our integration of ns-2 with Caliper.

n0 with the packet inter-arrival time defined in line 2
(1 ms).

Figure 10 compares the CDF of measured physi-
cal packets’ inter-transmission times with the simu-
lated packet logs from the ns-2 trace file. The ns-2
sources are set to send UDP packets with 1 ms inter-
transmission times and our integration of Caliper with
ns-2 is able to preserve the inter-arrival times of 80%
of the packets. One of the challenges to integrate
Caliper with simulation software is synchronizing the
simulation time and real-time. In our approach, we
make the intuitive assumption that the simulation world
is always faster than the real world. In order to keep
the difference between real-time and simulation time
minimum, we pause the simulation scheduler and as a
result, we maintain the same simulation clocks between
the simulated world and the real world. We envision
that the main cause for the inaccuracy in 20% of the
packets is due to our inefficiency in synchronizing real
and simulated times.

5. DISCUSSION AND FUTURE WORK
The limitations of Caliper stem from copying packets

between the host computer and the NetFPGA over
the 32-bit, 33-MHz PCI bus, which has a bandwidth
of approximately 1 Gbps. As explained in Section 3,
the payloads of packets sent by Caliper are usually all
zeros, which requires sending only the packet headers
over the PCI bus. This is sufficient for network
experiments that do not involve packet payloads. A
larger body of experiments ignore most of the packet
payloads except for a minimal amount of application-
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Figure 10: CDF of simulated packets’ and
physical packets’ inter-transmission times when
integrating Caliper with ns-2.

layer signaling between sender and receiver. To support
this, arbitrary custom data can be added to the start
of any packet payload. This additional data is copied
to the NetFPGA card and is included in the packet. In
the future, we plan to allow a number of predefined
packet payloads to be copied to the NetFPGA in a
preprocessing phase to later be attached to outgoing
packets without the need to repeatedly copy them over
the PCI bus. We envision this feature would support
many experiments where multiple flows send packets
with the same or similar payloads.

We are working on extending the Caliper software on
NetThreads to enable more features while preserving
the precision of the traffic. For NetThreads applications
in general, the maximum achievable packet rate de-
pends on the amount of computations done per packet
and hence it also is a function of the packet size (the
shortest packets are the worst case leaving less cycle
budget per packet: the 125MHz clock allows for 1 cycle
per packet byte per processor). Finally, we made both
NetThreads and Caliper available as free software to
download [1].

6. RELATED WORK
There have been many software- and hardware-based

packet generators presented in the literature. Some
of the software workload generators try to characterize
network traffic by empirically deriving models for web
traffic [29, 30], or other network applications, such
as TELNET, SMTP, NNTP, and FTP [31]. Cao et
al. [32] model the HTTP traffic and parameterize the
network characteristics such as the round-trip times
at the clients rather than capturing it empirically.
Netspec [33] builds source models to generate traffic
for TELNET, FTP, HTTP, voice and video.

One popular way to generate traffic for testbeds is

10



through packet traces from existing networks. RAMP [34]
generates high bandwidth traces using a simulation
environment involving source-level models for HTTP
and FTP. Rupp et al. [35] introduce a packet trace
manipulation framework for testbeds. They present a
set of rules to manipulate a given network trace, for
instance, stretch the duration of existing flows, add new
flows, change packet size distributions, etc. Hernandez
et al. [36] generate realistic TCP workloads using a one-
to-one mapping of connections from the original trace to
the test environment. Swing [19] can create responsive,
closed-loop traffic with similar burstiness characteristics
on multiple time scales to existing traces by estimating
wide-area network characteristics.

Another popular way to create realistic traffic is
to use network emulators. For example, Swing uses
ModelNet [21] to emulate a network of links each
with its own bandwidth, delay and drop probability.
Unfortunately, relying on network emulators has its
own limitations. The network is emulated in software,
and the position of packets within the network is only
updated e.g. 10000 times per second or once every
100 µs for ModelNet. Thus, the packets sent do not
have high precision timings as roughly 8 MTU sized
packets can be transmitted at 1 Gbps in 100 µs. Using
the discrete event simulator ns-2 as the network emula-
tor also suffers from similar timing issues. Mahrenholz
et al. [37] recommend several modifications to ns-2 to
improve the accuracy of its network emulation feature.

The NetFPGA-based packet generator introduced
by Covington et al. [6] can reliably replay a trace
file and capture packets at Gbps line rate. However,
as mentioned in Section 1 the traces are based on
prior recording and it would be difficult to extrapolate
them to closed-loop traffic and other workload/topology
scenarios.

There are a number of other available software tools
for traffic generation such as Harpoon [38] and tcplib
[39]. However, they are all designed to match the
property distributions of a trace at a coarse granularity
and none attempt to guarantee the behavior of traffic
at short time scales. They ignore the unavoidable
timing issues introduced by the users’ hardware and
OS choices. Our efforts are complementary to the
above mentioned works as we focus only on constructing
real packets and providing exact transmission times.
To the best of our knowledge, we present the first
framework for generating precise closed-loop traffic
providing guarantees for inter-transmission times at
very short time scales.

Soft processors have been previously used for net-
working [40] and provide an easy path to leverage
the close integration of FPGAs with the network con-
trollers. While a number of soft processors are avail-
able (e.g. Vespa [41]), NetThreads cores provide an

increased pipeline efficiency for control-flow intensive
programs through the use of multithreading [14].

7. CONCLUSIONS
Generating realistic traffic in network testbeds is

challenging yet crucial for performing valid experi-
ments. Software network emulators schedule packet
transmission times in software, incurring unavoidable
inaccuracy for inter-transmission intervals in the sub-
millisecond range – hence they are insufficient for ex-
periments sensitive to the inter-arrival times of packets.
In this paper we present the NetThreads platform and
Caliper, a precise and responsive traffic generator built
on NetThreads. NetThreads allows network devices
to be quickly developed for the NetFPGA card in
software while still taking advantage of the hardware-
level resolution. Caliper allows packets generated on the
host computer to be sent with extremely accurate inter-
transmission times and is designed to be integrated
with existing software traffic generators and network
emulators. We demonstrate Caliper’s precision and in-
tegration with existing softwares to generate traffic that
is realistic and accurate at almost all time scales. In our
experiments, the maximum error that Caliper incurs is
around 8 ns which is the NetFPGA’s clock cycle time
and also our measurement resolution. Overall, Caliper
allows researchers to perform experiments that were
previously infeasible.
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