
Caliper: Precise and Responsive Traffic Generation using
NetThreads

Monia Ghobadi∗, Martin Labrecque†, Geoffrey Salmon∗, Kaveh Aasaraai†,
Soheil Hassas Yeganeh∗, Yashar Ganjali∗, J. Gregory Steffan†

∗Department of Computer Science, †Department of Electrical and Computer Engineering, University of Toronto
{monia, geoff, soheil, yganjali}@cs.toronto.edu, {martinl, aasaraai, steffan}@eecg.toronto.edu

1. INTRODUCTION AND MOTIVATION
There are many challenges associated with perform-

ing valid experiments in network testbeds. Generating
realistic and responsive traffic that reflects different net-
work conditions and topologies is one of such key chal-
lenges. To perform network experiments, researchers
often use a collection of commodity Linux machines as
traffic generators. However, creating a large number
of connections in order to accurately model the traffic
shape in networks with thousands of flows is difficult
for several reasons. First, it is not always possible
to use real network traces as they do not maintain
the feedback loop between the network and traffic
sources (for example the TCP closed-loop congestion
feedback). Second, the complexities of traffic generation
increase when trying to capture the heterogeneity of
link capacities using only a limited number of physical
machines. Finally, commodity hardware does not
guarantee the precision of generated traffic, which is
bounded by the system timer’s resolution.1 Hence,
it is intrinsically difficult to perform time-sensitive
network experiments with confidence on the accuracy
of packet injection times. Time-sensitive experiments
are those that need very high-precision timings for
packet injections into the network. Experimenting
with new congestion control algorithms, buffer sizing
in Internet routers, and denial of service attacks which
use low-rate packet injections are all examples of time-
sensitive experiments, where a subtle variation in packet
injection times can change the results significantly.

This demonstration has two objectives. First, we
present Caliper, a precise packet generator that controls
the transmission times of packets, created by arbi-
trary software on the host machine. We demonstrate
Caliper’s capabilities by visualizing the adverse effect
of ad-hoc packet inter-departure times on a commod-
ity NIC compared to the high precision achieved by
Caliper. The difference will be perceptible for the
audience by comparing two side-by-side video streams.

1A Linux kernel is typically capable of providing resolutions
of 1 ms. With links running at 1 Gbps, even a large packet
of 1500 bytes has a transmission time of less than 12 µs.

One video feed is transmitted using a commodity NIC
and the other using Caliper. As a commodity NIC
has an imprecise injection rate of packets onto the
network, its corresponding video will suffer from a much
higher packet drop rate than the other and consequently
deliver a much worse viewing experience. The second
part of our demonstration is to present NetThreads, the
software programmable system on the NetFPGA card
that enables Caliper, and its ease-of-use.

2. DESIGN AND IMPLEMENTATION
Caliper allows to specify programmable packet tim-

ing requirements because of NetThreads, a flexible
platform that we have created for developing packet
processing applications on FPGA-based devices and the
NetFPGA [1] in particular. NetThreads is primarily
composed of FPGA-based processors, providing a fa-
miliar yet flexible environment for software developers:
programs are written in C, and existing applications can
be ported to the platform. In the rest of this section,
we briefly go over the design and implementation of
NetThreads and Caliper.

2.1 NetThreads
While the Internet infrastructure is dominated by

vendors with proprietary technologies, there is a push
to democratize the hardware [2], to allow researchers to
revisit network protocols that have not evolved in more
than a decade. This desire to add programmability
in the network is formally embraced by large scale
projects such as CleanSlate, RouteBricks and GENI, in
turn supported by massive infrastructure projects such
as Internet2 and CANARIE. NetThreads is a possible
solution to fulfill that need as it allows to rapidly
develop low-level packet processing applications.

To avoid implementing a networking application in
low-level hardware-description language (which is how
FPGAs are normally programmed), we instead imple-
ment soft processors —processors composed of program-
mable logic on the FPGA. Despite the raw performance
drawbacks, a soft processor has several advantages:
it is easier to program (e.g., using C), portable to

1



different FPGAs, flexible (i.e., can be customized),
and can be used to communicate with other compo-
nents/accelerators in the design. In this work, our
FPGA resides on a NetFPGA board and communi-
cates through DMA on a PCI interface to a host
computer. This configuration is particularly well-suited
for networking: (i) the load of the soft processors is
isolated from the load on the host processor, (ii) the
soft processors suffer no operating system overheads,
(iii) they can receive and process packets in parallel,
and (iv) they have access to a high-resolution system
clock (much higher than that of the host clock). While
a number of other soft processors are available, Net-
Threads cores provide an increased pipeline efficiency
for control-flow intensive programs through the use of
multithreading [3].

2.2 Precise Traffic Generation
Caliper’s main objective is to precisely control the

transmission times of packets which are created in the
host computer, continually streamed to the NetFPGA,
and transmitted on the wire. The generated packets
are sent out of a single Ethernet port of the NetFPGA,
according to any given sequence of requested inter-
transmission times. Unlike previous works that replay
packets with prerecorded transmission times from a
trace file, Caliper generates live packets and supports
closed-loop traffic. Therefore, Caliper can easily be
coupled with existing traffic generators (such as Iperf,
the widely used traffic generation tool in the Linux
kernel, or as we demonstrate here a video streaming
application) to improve their accuracy at small time
scales. In the following we explain each stage of a
packet’s journey through Caliper.

Packet Creation to Driver: First, a user space
process or a kernel module on the host computer
determines when a packet should be sent. A description
of the packet, containing the transmission time and all
the information necessary to assemble the packet is sent
to the NetFPGA driver.

Driver to NetThreads: In the driver, multiple
packet descriptions are combined and copied to the
NetFPGA card. Combining descriptions reduces the
number of separate transfers required and is necessary
for sending packets at the line rate of 1 Gbps.

NetThreads to Wire: This last part of Caliper
runs as software on the NetThreads platform inside the
NetFPGA. The driver sends its messages containing
the headers of multiple packets and their corresponding
transmission times. Then, Caliper prepares these pack-
ets for transmission and sends them at the appropriate
times. NetThreads takes advantage of multithreaded
processors, which have been shown to outperform single
threaded processor on parallel tasks [4].

3. DEMONSTRATION
In this section, we describe the two experiments that

we will perform, highlighting the key characteristics of
Caliper and NetThreads.

3.1 Demonstrating Precision and its Impor-
tance

The goal of this part of the demonstration is to
show graphically the adverse effects of imprecise packet
injections by commodity NICs. For this purpose, we
design a time-sensitive experiment, as we explain next.

The continuous growth in network link speeds makes
it increasingly difficult to design routers with buffer
sizes equal to the standard bandwidth-delay product.
As a result, many network providers revert to using
routers with small buffers. Those routers have the
drawback of losing packets when the traffic is bursty,
so they are usually used in conjunction with software
packet pacing techniques that reduce traffic burstiness.
Software pacing is however not completely effective, due
to timing inaccuracies introduced by commodity NICs
and their software drivers. Commodity hardware does
not guarantee the timing of outgoing packets, which is
determined by the system’s timer resolution.2

As shown in Figure 1, we use one video transmitter
software running on a host equipped with two interfaces:
a commodity NIC, and Caliper. Video is transmitted
on both interfaces: the NIC traffic is software-paced by
the Linux kernel, while Caliper enforces pacing on the
other interface. Both interfaces are directly connected
to two identical NetFPGA router cards with small
buffers, both installed on a single host. Each router
forwards packets to separate NICs on the receiving
machine. Finally, we display videos side-by-side with a
single receiver software. Packet drops result in obvious
reduced video quality for the software-paced traffic,
showing that pacing with Caliper is substantially more
effective. Figure 2 shows the demo in action. Two HD
videos are visible in the picture where the right hand
side of the image shows the stream from the NIC and
the left hand side image is from Caliper. As it can be
seen, the right hand side picture is suffering from packet
drops and exhibits worse quality.

3.2 Demonstrating Usability
Caliper relies on some software executing inside the

NetFPGA network card. Since our compiler infras-
tructure for that program is based on a modified
gcc compiling ordinary C code, users need no special
introduction to the programming environment. We
plan to demonstrate the flexibility of NetThreads by
allowing users to change a program that modifies a
2A Linux kernel is typically capable of providing resolutions
of 1 ms. In comparison, a packet of 1500 bytes on a 1 Gbps
link has a transmission time of about 12 µs.

2



Transmitter

NIC

Caliper

NetFPGA
Router

NetFPGA
Router

NIC

NIC

Receiver
Ph

ys
ic

al
 M

od
el

C
on

ce
pt

ua
l M

od
el

Sender Router Receiver

✘
✘

Figure 1: The conceptual (top) and physical
(bottom) setup of the demonstration.

Type Description
power 2500 Watts combined

(5 power outlet connections)
cables 4 regular CAT-5 cables

machines 3 PCs with 2 gigabit
Ethernet ports each

(1 sender, 1 receiver, 1 for routers)
NetFPGA boards 3 NetFPGA

(2 Routers, 1 Caliper)
visual equipment a video projector,

and a LCD monitor
space 4× 4 m2

related publications [3, 5–7]
space needed standard booth

with space to project
our demonstration

screen (poster size minimum)
setup time required ∼30 minutes to connect

the machines, power them
and setup the projector.

Table 1: Demo Equipments

video stream on-the-fly. In particular they would be
able to insert a closed captioning of their choice updated
in real time on the video stream sent by Caliper. This
experiment uses the same setup as in Section 3.1: only
the NetThreads software program is changed. We
hope to give attendees a first hand experience with
NetThreads so that they can earn confidence to write
gigabit applications on their own.

3.3 Demonstration details
Table 1 summarizes the requirements for our demon-

stration. This demo is eligible for a travel grant: pre-
senters would be Monia Ghobadi and Martin Labrecque
from the University of Toronto.

4. REFERENCES
[1] J. Naous, G. Gibb, S. Bolouki, and N. McKeown,

Figure 2: The demonstration in action.

“NetFPGA: reusable router architecture for
experimental research,” in PRESTO, 2008, pp. 1–7.

[2] J. He, M. Suchara, M. Bresler, J. Rexford, and
M. Chiang, “Rethinking internet traffic
management: from multiple decompositions to a
practical protocol,” in CoNEXT ’07: Proceedings
of the 2007 ACM CoNEXT conference. New
York, NY, USA: ACM, 2007, pp. 1–12.

[3] M. Labrecque, J. G. Steffan, G. Salmon,
M. Ghobadi, and Y. Ganjali, “NetThreads:
Programming NetFPGA with threaded software,”
in NetFPGA Developers Workshop, Palo Alto,
California, August 2009.

[4] M. Labrecque and J. G. Steffan, “Improving
pipelined soft processors with multithreading,” in
FPL’07, August 2007.

[5] Caliper wiki. http://netfpga.org/foswiki/bin/view/
NetFPGA/OneGig/PreciseTrafGen.

[6] G. S. M. Ghobadi, Y. Ganjali, M. Labrecque, and
J. G. Steffan, “NetFPGA-based precise traffic
generation,” in NetFPGA Developers Workshop,
Palo Alto, California, August 2009.

[7] M. Ghobadi, G. Salmon, M. Labrecque, Y. Ganjali,
and J. G. Steffan, “Caliper: Precise and responsive
traffic generation using NetThreads,” in ANCS,
submitted, May 2010.

3


