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Abstract

We consider a random graph on a given degree sequence

D, satisfying certain conditions. We focus on two pa-

rameters Q = Q(D), R = R(D). Molloy and Reed

proved that Q = 0 is the threshold for the random

graph to have a giant component. We prove that if

|Q| = O(n−1/3R2/3) then, with high probability, the size

of the largest component of the random graph will be of

order Θ(n2/3R−1/3). If Q is asymptotically larger/smaller

that n−1/3R2/3 then the size of the largest component is

asymptotically larger/smaller than n2/3R−1/3. In other

words, we establish that |Q| = O(n−1/3R2/3) is the scal-

ing window.

1 Introduction

The double-jump threshold, discovered by Erdős and
Rényi[17], is one of the most fundamental phenomena
in the theory of random graphs. The component
structure of the random graph Gn,p=c/n changes
suddenly when c moves from below one to above one.
For every constant c < 1, almost surely1 (a.s.) every
component has size O(log n), at c = 1 a.s. the largest
component has size of order Θ(n2/3), and at c > 1 a.s.
there exists a single giant component of size Θ(n) and
all other components have size O(log n).

Bollobás[8], ÃLuczak[28] and ÃLuczak et al.[29]
studied the case where p = 1+o(1)

n . Those papers
showed that when p = 1

n ±O(n−1/3), the component
sizes of Gn,p behave as described above for p = 1

n [29].
Furthermore, if p lies outside of that range, then the
size of the largest component behaves very differently:
For larger/smaller values of p, a.s. the largest com-
ponent has size asymptotically larger/smaller than
Θ(n2/3)[8, 28]. That range of p is referred to as the
scaling window. See eg. [9] for further details.
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1A property P holds almost surely if limn→∞Pr(P ) = 1.

This is a classical example of one of the leading
thrusts in the study of random combinatorial struc-
tures: to determine thresholds and analyze their scal-
ing windows. Roughly speaking, a threshold is a
point at which the random structure changes dra-
matically in a certain sense, and a study of the scal-
ing window examines the structure as it is under-
going that change. For example, the threshold for
random 2-SAT has been known since the early 90’s
[14, 16, 19]; Bollobás et al[10] determined that it also
has a scaling window of width O(n−1/3). Besides
mathematicians, these problems are also pursued by
statistical physicists, who model the sudden transi-
tions undergone by various physical systems. See
[12, 3, 20, 26, 31] for just a few other examples of
such studies.

Molloy and Reed[32] proved that something anal-
ogous to the cases c < 1 and c > 1 of the Erdős-Rényi
double-jump threshold holds for random graphs on a
given degree sequence. They considered a sequence
D = (d1, ..., dn) satisfying certain conditions, and
chose a graph uniformly at random from amongst all
graphs with that degree sequence. They determined
a parameter Q = Q(D) such that if Q < 0 then a.s.
every component has size O(nx) for some x < 1 and
if Q > 0 then a.s. there exists a giant component of
size Θ(n) and all others have size O(log n).

Aiello, Chung and Lu[1] applied the results of
Molloy and Reed[32, 33] to analyze the connectivity
structure of a model for massive networks. Those
results have since been used numerous times for other
massive network models arising in a wide variety of
fields such as physics, sociology and biology (see eg.
[36]).

The threshold Q = 0 was discovered more than
a decade ago. Yet despite the substantial multi-
disciplinary interest, there has been no progress
on what happens inside the scaling window. The
work of Kang and Seierstad[24] and Jansen and



ÃLuczak[23] established bounds on the width of the
scaling window, under certain conditions on D: the
largest component has size ¿ n2/3 for Q ¿ −n−1/3

and À n2/3 for Q À n−1/3 (see Section 1.2). These,
of course, are results that one would aim for if
motivated by the hypothesis that the scaling window
for these degree sequences behaves like that of Gn,p.
However, it was not known whether |Q| = O(n−1/3)
really is the scaling window we should be aiming for,
nor whether Θ(n2/3) is the component size that we
should be aiming for.

In this paper, we establish the scaling window
and the size of the largest component when Q is
inside the scaling window, under conditions for D
that are less restrictive than the conditions from[32,
33, 24, 23]. We will state our results more formally
in the next subsection, but in short: If

∑
d3

i =
O(n), then the situation is indeed very much like
that for Gn,p. The scaling window is the range
Q = O(n−1/3) and inside the scaling window, the
size of the largest component is O(n2/3). As discussed
below, the conditions required in [24, 23] imply that∑

d3
i = O(n), which explains why they obtained

those results. If
∑

d3
i À n, then the situation

changes: the size of the scaling window becomes
asympotically larger, and the size of the largest
component becomes asymptotically smaller.

1.1 The main results We are given a set of
vertices along with the degree dv of each vertex. We
denote this degree sequence by D. Our random graph
is selected uniformly from amongst all graphs with
degree sequence D. We assume at least one such
graph exists and so, eg.,

∑
v dv is even. We use

Cmax to denote the largest component of this random
graph.

We use E to denote the set of edges, and note
that |E| = 1

2

∑
v∈G dv. We let ni denote the number

of vertices of degree i. We define:

Q := Q(D) :=
∑

u∈G d2
u

2|E| − 2,

and

R := R(D) :=
∑

u∈G du(du − 2)2

2|E| .

The relevance of Q,R will be made clear in Section
2.3. The asymptotic order of R will be important; in
our setting, |E|/n and Q are bounded by constants,
and so R has the same order as 1

n

∑
u∈G d3

u. The
order of R was implicitly seen to be important in
the related papers [23, 24], where they required

1
n

∑
u∈G d3

u to be bounded by a constant (see Section
1.2).

Molloy and Reed [32] proved that, under certain
assumptions about D, if Q is at least a positive
constant, then a.s. |Cmax| ≥ cn for some c > 0 and if
Q is at most a negative constant then a.s. |Cmax| ≤ nx

for some constant x < 1. One assumption was
that the degree sequence was well-behaved in that it
converged in some sense as n →∞. We don’t require
that assumption here.

But we do require some assumptions about our
degree sequence. First, it will be convenient to
assume that every vertex has degree at least one. A
random graph with degree sequence d1, ..., dn where
di = 0 for every i > n′ has the same distribution
as a random graph with degree sequence d1, ..., dn′

with n − n′ vertices of degree zero added to it. So
it is straightforward to apply our results to degree
sequences with vertices of degree zero.

The case n2 = n − o(n) forms an anomaly. For
example, in the extreme case where n2 = n, we have
a random 2-regular graph, and in this case the largest
component is known to have size Θ(n) (see eg. [2]).
So we require that n2 ≤ (1 − ζ)n for some constant
ζ > 0, as did [23, 24]. See Remark 2.7 of [23] for a
description of other behaviours that can arise when
we allow n2 = n− o(n).

As in [32, 33] and most related papers (eg.
[18, 23, 24]), we require an upper bound on the
maximum degree, ∆. We take ∆ ≤ n1/3R1/3(ln n)−1

(which is higher than the bounds from [23, 24, 32, 33]
and comparable to that from [18]).

Finally, since we are concerned with Q = o(1), we
can assume |Q| ≤ ζ

2 , and that ζ is sufficiently small,
eg. ζ < 1

10 . In summary, we assume that D satisfies
the following:
Condition D: For some constant 0 < ζ < 1

10 : (a)
∆ ≤ n1/3R1/3(lnn)−1; (b) n0 = 0; (c) n2 ≤ (1− ζ)n;
(d) |Q| ≤ ζ

2 .
Our main theorems are:

Theorem 1.1. For any λ, ε, ζ > 0 there exist A,B
and N such that for any n ≥ N and any de-
gree sequence D satisfying Condition D and with
−λn−1/3R2/3 ≤ Q ≤ λn−1/3R2/3, we have

(a) Pr[|Cmax| ≤ An2/3R−1/3] ≤ ε;

(b) Pr[|Cmax| ≥ Bn2/3R−1/3] ≤ ε.

Theorem 1.2. For any ε, ζ > 0 and any function
ω(n) →∞, there exists B, N such that for any n ≥ N
and any degree sequence D satisfying Condition D
and with Q < −ω(n)n−1/3R2/3:



(a) Pr(|Cmax| ≥ B
√

n/|Q|) < ε.

(b) Pr(∃a component with more than one cycle) <
20

ω(n)3 .

Theorem 1.3. For any ε, ζ > 0 and any function
ω(n) →∞, there exists A,N such that for any n ≥ N
and any degree sequence D satisfying Condition D
and with Q > ω(n)n−1/3R2/3:

Pr(|Cmax| ≤ AQn/R) < ε.

Note that the bounds on |Cmax| in Theorems 1.2
and 1.3 are B

√
n/|Q| < Bn−1/3R2/3/

√
ω(n) and

AQn/R > Aω(n)n2/3R−1/3. So our theorems imply
that |Q| = O(n−1/3R2/3) is the scaling window for
any degree sequences that satisfy Condition D, and
that in the scaling window the size of the largest
component is a.s. Θ(n2/3R−1/3).

Note also that Theorem 1.2(b) establishes that
when Q is below the scaling window, then a.s. every
component is either a tree or is unicyclic. This
was previously known to be the case for the Gn,p

model[28].
The approach we take for Theorems 1.1 and

1.3 closely follows that of Nachmias and Peres[34]
who applied some Martingale analysis, including the
Optional Stopping Theorem, to obtain a short elegant
proof of what happens inside the scaling window for
Gn,p=c/n. See also [35] where they apply similar
analysis to also obtain a short proof of what happens
outside the scaling window, including tight bounds
on the size of the largest component.

1.2 Related Work Van der Hofstad[21] obtained
similar results on the scaling windows for models of
inhomogeneous random graphs in which the expected
degree sequence exhibits a power law. (An inhomo-
geneous random graph is one in which the edges be-
tween pairs of vertices are chosen independently, but
with varying probabilities.) A critical point for such
graphs was determined by Bollobás et al[11]. Van der
Hofstad showed that if the exponent τ of the power
law is at least 4, then the size of the scaling win-
dow has size at least n−1/3, and in that window,
the size of the largest component is Θ(n2/3); when
3 < τ < 4, those values change to n−(τ−3)/(τ−1) and
Θ(n(τ−2)/(τ−1)). (Q = O(1) implies τ > 3.) In that
setting, τ ≥ 4 corresponds to R = O(1). These sizes
are equal to the corresponding values from Theorem
1.1, although in the case 3 < τ < 4, the expected
value of ∆ satisfies ∆ = O(n1/3R1/3) and so the ex-
pected degree sequence would not satisfy Condition
D. See also [5, 6] for more detailed results.

Cooper and Frieze[15] proved, amongst other
things, an analogue of the main results of Molloy and
Reed[32, 33] in the setting of giant strongly connected
components in random digraphs.

Fountoulakis and Reed[18] extended the work
of [32] to degree sequences that do not satisfy the
convergence conditions required by [32]. They require
∆ ≤ |E|1/2−ε which in their setting implies ∆ ≤
O(n1/2−ε).

Kang and Seierstad[24] applied generating func-
tions to study the case where Q = o(1), but is out-
side of the scaling window. They require a maxi-
mum degree of at most n1/4−ε and that the degree
sequences satisfy certain conditions that are stronger
than those in [32]; one of these conditions implies
that R is bounded by a constant. They determine the
(a.s. asymptotic) size of |Cmax| when Q ¿ −n−1/3 or
Q À n−1/3 log n. In the former, |Cmax| ¿ n2/3 and
in the latter, |Cmax| À n2/3. So for the case where
R = O(1) is bounded, this almost showed that the
scaling window is not larger than the natural guess
of Q = O(n2/3) - except that it left open the range
where n−1/3 ¿ Q = O(n−1/3 log n).

Jansen and Luczak[23] use simpler techniques to
obtain a result along the lines of that in [24]. They
require a maximum degree of n1/4, and they also
require R = O(1); in fact, they require 1

n

∑
v d4+η

v to
be bounded by a constant (for some arbitrarily small
constant η > 0), but they conjecture that having
1
n

∑
v d3

v bounded (i.e. R bounded) would suffice. For
Q À n−1/3, they determine |Cmax|, and show that it
is a.s. asymptotically larger than n2/3. Thus (in the
case that their conditions hold) they eliminated the
gap left over from [24]. They also use their techniques
to obtain a simpler proof of the main results from
[32, 33].

So for the case R = O(1), Theorems 1.2(a) and
1.3 were previously known (under somewhat stronger
conditions). But there was nothing known about
when Q is inside the scaling window. In fact, it was
not even known that Q = O(n−1/3) was the scaling
window; it was possibly smaller. And nothing was
known for the case when R grows with n.

2 Preliminaries

2.1 The Random Model In order to generate
a random graph with a given degree sequence D, we
use the configuration model due to Bollobás[7] and
inspired by Bender and Canfield[4]. In particular,
we: (1) Form a set L which contains dv distinct
copies of every vertex v. (2) Choose a random perfect
matching over the elements of L. (3) Contract the



different copies of each vertex v in L into a single
vertex.

This may result in a multigraph, but a standard
argument yields:

Proposition 2.1. Consider any degree sequence D
satisfying Condition D. Suppose that a property P
holds with probability at most ε for a uniformly
random configuration with degree sequence D. Then
for a uniformly random graph with degree sequence
D, Pr(P) ≤ ε× e.

2.2 Martingales A random sequence X0, X1, ... is
a martingale if for all i ≥ 0, E(Xi+1|X0, ..., Xi) = Xi.
It is a submartingale, resp. supermartingale, if for all
i ≥ 0, E(Xi+1|X0, ..., Xi) ≥ Xi, resp. ≤ Xi.

A stopping time for a random sequence X0, X1, ...
is a step τ (possibly τ = ∞) such that we can deter-
mine whether i = τ by examining only X0, ..., Xi. It
is often useful to view a sequence as, in some sense,
halting at time τ ; a convenient way to do so is to
consider the sequence Xmin(i,τ), whose ith term is Xi

if i ≤ τ and Xτ otherwise.
In our paper, we will make heavy use of the

Optional Stopping Theorem. The version that we
will use is the following, which is implied by Theorem
17.6 of [27]:
The Optional Stopping Theorem Let X0, X1, ...
be a martingale (resp. submartingale, supermartin-
gale), and let τ ≥ 0 be a stopping time. If there
is a fixed bound T such that Pr(τ ≤ T ) = 1 then
E(Xτ ) = X0 (resp. E(Xτ ) ≥ X0, E(Xτ ) ≤ X0).

2.3 The Branching Process As in [32], we will
examine our random graph using a branching process
of the type first applied to random graphs by Karp in
[25]. Given a vertex v, we explore the configuration
starting from v in the following manner: At step t,
we will have a partial subgraph Ct which has been
exposed so far. We will use Yt to denote the total
number of unmatched vertex-copies of vertices in Ct.
So Yt = 0 indicates that we have exposed an entire
component and are about to start a new one.

1. Choose an arbitrary vertex v and initialize C0 =
{v}; Y0 = deg(v).

2. Repeat while there are any vertices not in Ct:

(a) If Yt = 0, then pick a uniformly random
vertex-copy from amongst all unmatched
vertex-copies; let u denote the vertex of
which it is a copy. Ct+1 := Ct ∪ {u};
Yt+1 := deg(u).

(b) Else choose an arbitrary unmatched vertex-
copy of any vertex v ∈ Ct. Pick as its
partner a uniformly random vertex-copy
from amongst all other unmatched vertex-
copies; let u denote the vertex of which it
is a copy. Thus we expose an edge uv.

i. If u /∈ Ct then Ct+1 := Ct ∪ {u};
Yt+1 := Yt + deg(u)− 2.

ii. Else Ct+1 := Ct; Yt+1 := Yt − 2.

For t ≥ 1 let

• ηt := Yt − Yt−1.

• Dt := Yt +
∑

u 6∈Ct
du, the total number of

unmatched vertex-copies remaining at time t.

• vt := ∅ if Ct−1 and Ct have the same vertex set;
else vt is the unique vertex in Ct \ Ct−1.

• Qt :=
∑

u6∈Ct
d2

u

Dt−1 − 2.

• Rt :=
4(Yt−1)+

∑
u6∈Ct

du(du−2)2

Dt−1 .

Note that Qt and Rt begin at Q0 ≈ Q and R0 ≈
R. Furthermore, for u 6∈ Ct, Pr[vt+1 = u] = du

Dt−1 ,
and so if Yt > 0 then the expected change in Yt is

E[ηt+1|Ct] = (
∑

u 6∈Ct

Pr[vt+1 = u]× du)− 2

=

∑
u 6∈Ct

d2
u

Dt − 1
− 2 = Qt.(2.1)

If Qt remains approximately Q, then Yt is a random
walk with drift approximately Q. So if Q < 0 then we
expect Yt to keep returning to zero quickly, and hence
we only discover small components. But if Q > 0 then
we expect Yt to grow large; i.e. we expect to discover
a large component. This is the intuition behind the
main result of [32].

The parameter Rt measures the expected value
of the square of the change in Yt, if Yt > 0:

E[η2
t+1|Ct] = Pr[vt+1 = ∅]× 4

+
∑

u 6∈Ct

Pr[vt+1 = u]× (du − 2)2

=
4(Yt − 1) +

∑
u 6∈Ct

du(du − 2)2

Dt − 1
= Rt.(2.2)

If Yt = 0, then the expected values of ηt+1 and
η2

t+1 are not equal to Qt, Rt, as in this case:

(2.3) E[ηt+1|Ct] =

∑
u6∈Ct

d2
u

Dt
,



(2.4) E[η2
t+1|Ct] =

∑
u 6∈Ct

d3
u

Dt
≥ Rt × Dt − 1

Dt
≥ Rt

2
.

Note that, for Yt > 0, the expected change in Qt

is approximately:

E[Qt+1 −Qt|Ct] ≈ −
∑

u 6∈Ct

Pr[vt+1 = u]× d2
u

Dt − 1

= −
∑

u 6∈Ct
d3

u

(Dt − 1)2

which, as long as Dt = n − o(n), is asymptotically
of the same order as −Rt

n . So if Rt remains approx-
imately R, then Qt will have a drift of roughly −R

n ;
i.e. the branching factor will decrease at approxi-
mately that rate. So amongst degree sequences with
the same value of Q, we should expect those with
large R to have |Cmax| smaller. This explains why
|Cmax| is a function of both Q and R in Theorem 1.1.

The proofs of the following concentration bounds
on Qt, Rt appear in the full version of the paper.

Lemma 2.1. For each 1 ≤ t ≤ ζ
400

n
∆ ,

Pr[|Rt −R| ≥ R/2] < n−10.

Lemma 2.2. For each 1 ≤ t ≤ ζ
1000

|Q|n
R +

2n2/3R−1/3,

Pr
[
|Qt −Q| > 1

2
|Q|+ 800

ζ
n−1/3R2/3

]
≤ n−10.

3 Proof of Theorem 1.2

Proof of Theorem 1.2(a). The proof is somewhat
along the lines of that of Theorem 1.1(b), but is much
simpler since Lemma 2.2 allows us to assume that the
drift Qt is negative for every relevant t. The details
appear in the full version of the paper. 2

Proof of Theorem 1.2(b) As noted by Karon-
ski for the proof of the very similar Lemma 1(iii) of
[28]: if a component contains at least two cycles then
it must contain at least one of the following two sub-
graphs:

• W1 - two vertices u, v that are joined by three
paths, where the paths are vertex-disjoint except
for at their endpoints.

• W2 - two edge-disjoint cycles, one containing u
and the other containing v, and a (u, v)-path
that is edge-disjoint from the cycles. We allow
u = v in which case the path has length zero.

We show that the expected number of such
subgraphs is less than ε. The details appear in the
full version of the paper. 2

4 Proof of Theorem 1.1(b)

In this section we turn to the critical range of Q; i.e.
−λn−1/3R2/3 ≤ Q ≤ λn−1/3R2/3. We will bound the
probability that the size of the largest component is
too big. Without loss of generality, we can assume
that λ > 1600

ζ . Our proof follows along the same
lines as that of Theorem 1 (see also Theorem 7) of
[34].

We wish to show that there exists a constant
B > 1 such that with probability at least 1 − ε,
the largest component has size at most Bn2/3R−1/3.
To do so, we set T := n2/3R−1/3 and bound the
probability that our branching process starting at a
given vertex v does not return to zero within T steps.
We do this by considering a stopping time that is at
most the minimum of T and the first return to zero.

Lemma 2.2 yields that, with high probability,
|Qt − Q| ≤ 1

2 |Q| + 800
ζ n−1/3R2/3 for every t ≤ T .

Since we assume λ > 1600
ζ , this implies |Qt| ≤

2λn−1/3R2/3. In order to assume that this bound al-
ways holds, we add it to our stopping time conditions,
along with a similar condition for the concentration
of R.

It will be convenient to assume that Yt is bounded
by H := 1

12λn1/3R1/3, so we add Yt ≥ H to our
stopping time conditions. Specifically, we define

γ := min{t : (Yt = 0), (Yt ≥ H),
(|Qt| > 2λn−1/3R2/3),
(|Rt −R| > R/2) or (t = T )}.

Since ∆ ≤ n1/3R1/3/ ln n, we have T < ζ
400

n
∆ for

n sufficiently large. So Lemmas 2.1 and 2.2 imply
that, with high probability, we will not have |Qγ | >
2λn−1/3R2/3 or |Rγ − R| > R/2. So by upper
bounding Pr(Yγ ≥ H) and Pr(γ = T ), we can obtain
a good lower bound on Pr(Yt = 0) which, in turn, is
a lower bound on Yt reaching zero before reaching H.

For t ≤ γ, we have |Qt−1| ≤ 2λn−1/3R2/3 and so:

(4.5) H|Qt−1| ≤ 1
6R

For t ≤ γ, we also have Yt−1 > 0 and so E(ηt)
and E(η2

t ) are as in (2.1) and (2.2). We also have
Rt−1 ≥ 1

2R and (4.5). When |x| is sufficiently small
we have e−x ≥ 1 − x + x2/3. So for n sufficiently
large, |ηt/H| ≤ (2+∆)/H < (lnn)−1 is small enough



to yield:

E[e−ηt/H |Ct−1] ≥ 1− E[
ηt

H
|Ct−1] +

1
3
E[

η2
t

H2
|Ct−1]

= 1− Qt−1

H
+

Rt−1

3H2

≥ 1− R

6H2
+

R

6H2
= 1.

This shows that e−Ymin(t,γ)/H is a submartingale, and
so we can apply the Optional Stopping Theorem with
stopping time τ := γ. As Yγ−1 ≤ H, we have Yγ ≤
H + ∆ < 2H. Recalling that we begin our branching
process at vertex v and applying x/4 ≤ 1 − e−x, for
0 ≤ x ≤ 2, we have:

e−dv/H = e−Y0/H ≤ Ee−Yγ/H ≤ E
[
1− Yγ

4H

]
,

which, using the fact that for x > 0, e−x ≥ 1 − x,
implies

(4.6) E[Yγ ] ≤ 4H(1− e−dv/H) ≤ 4dv.

In particular

(4.7) Pr[Yγ ≥ H] ≤ 4dv

H
.

Now we turn our attention to Pr(γ = T ). We
begin by bounding:

E[Y 2
t − Y 2

t−1|Ct−1] = E[(ηt + Yt−1)2 − Y 2
t−1|Ct−1]

= E[η2
t |Ct−1] +

2E[ηtYt−1|Ct−1].

Now if Yt−1 > 0, then E[ηt|Ct−1] = Qt−1 and so
E[ηtYt−1|Ct−1] = Qt−1Yt−1, and if Yt−1 = 0, then
E[ηtYt−1|Ct−1] = 0. Also, for t ≤ γ, we must have
Yt−1 < H, Rt−1 ≥ 1

2R and (4.5) so:

E[Y 2
t − Y 2

t−1|Ct−1] ≥ Rt−1 + 2H min(Qt−1, 0)

≥ R

2
− R

3
=

R

6
.

Thus Y 2
min(t,γ)− 1

6R min(t, γ) is a submartingale, and
so by the Optional Stopping Theorem:

E
[
Y 2

γ −
Rγ

6

]
≥ Y 2

0 = d2
v ≥ 0.

This, together with (4.6) and the fact (derived above)
that Yγ ≤ 2H, implies that

Eγ ≤ 6
R
EY 2

γ ≤ 12H

R
EYγ ≤ 48Hdv

R
,

showing

(4.8) Pr[γ = T ] ≤ 48Hdv

RT
.

We conclude from (4.7), (4.8), and Lemmas 2.1
and 2.2 that, for n sufficiently large,

Pr[|Cv| ≥ T ] ≤ Pr[Yγ > H] + Pr[γ = T ]

+Pr[|Qt| > 2λn−1/3R2/3]
+Pr[|Rγ −R| > R/2]

≤ 4dv

H
+

48Hdv

RT
+ Tn−10 + Tn−10

≤ 48λn−1/3R−1/3dv

+
48n1/3R1/3dv

12λn2/3R2/3
+ 2Tn−10

< 50λn−1/3R−1/3dv.

For some constant B ≥ 1, let N be the num-
ber of vertices lying in components of size at least
K := Bn2/3R−1/3 ≥ T . An easy argument yields∑

v dv = 2|E| < 3n (see the full version of the pa-
per). Therefore:

Pr[|Cmax| ≥ K] ≤ Pr[N ≥ K] ≤ E[N ]
K

≤ 1
K

∑

v∈V

Pr[Cv ≥ K]

≤ 1
K

∑

v∈V

Pr[Cv ≥ T ]

≤ 1
K

∑

v∈V

50λn−1/3R−1/3dv

=
50λ

nB

∑
v

dv <
150λ

B
,

which is less than ε for B sufficiently large. This
proves that Theorem 1.1(b) holds for a random
configuration. Proposition 2.1 implies that it holds
for a random graph. 2

5 Proof of Theorem 1.1(a)

In this section we bound the probability that the size
of the largest component is too small when Q is in
the critical range. Our proof follows along the same
lines as that of Theorem 2 of [34].

Recall that we have −λn2/3R2/3 ≤ Q ≤
λn−1/3R2/3. We can assume that λ > 1600

ζ . We wish
to show that there exists a constant A > 0 such that
with probability at least 1− ε, the largest component
has size at least An2/3R−1/3.

We will first show that, with sufficiently high
probability, our branching process reaches a certain



value h. Then we will show that, with sufficiently
high probability, it will take at least An2/3R−1/3

steps for it to get from h to zero, and thus there
must be a component of that size.

We set T1 := n2/3R−1/3 and T2 := An2/3R−1/3.
For t ≤ T1 + T2 ≤ 2n2/3R−1/3 (for A ≤ 1), Lemma
2.2 yields that, with high probability, |Qt − Q| ≤
1
2 |Q|+ 800

ζ n−1/3R2/3 and thus (since λ > 1600
ζ )

Qt ≥ −2λn−1/3R2/3.

We set
h := A1/4n1/3R1/3

so that if Qt ≥ −2λn−1/3R2/3 and A < (16λ)−4 then

(5.9) hQt ≥ −2λA1/4R ≥ −R

8
.

We start by showing that Yt reaches h, with
sufficiently high probability. To do so, we define τ1

analogously to γ from Section 4, except that we allow
Yt to return to zero before t = τ1.

τ1 = min{t : (Yt ≥ h), (Qt < −2λn−1/3R2/3),
(|Rt −R| > R/2), or (t = T1)}.

We wish to show that, with sufficiently high prob-
ability, we get Yτ1 ≥ h. We know that the proba-
bility of Qτ1 < −2λn−1/3R2/3 or |Rτ1 − R| > R/2 is
small by Lemmas 2.1 and 2.2. So it remains to bound
Pr(τ1 = T1). For t ≤ τ1, if Yt−1 > 0, then by (2.1),
(2.2), (5.9) and the fact that Yt−1 < h:

E[Y 2
t − Y 2

t−1|Ct−1] = E[η2
t |Ct−1] +

2E[ηtYt−1|Ct−1]
≥ Rt−1 + 2hmin(Qt−1, 0)

≥ R

2
− R

4
≥ R

4
,

Also if Yt−1 = 0, then by (2.4) we have

E[Y 2
t − Y 2

t−1|Ct−1] = E[η2
t |Ct−1] ≥ Rt−1

2
≥ R

4
.

Thus Y 2
min(t,τ1)

− 1
4R min(t, τ1) is a submartingale,

so we can apply the Optional Stopping Theorem to
obtain:

EY 2
τ1
− R

4
Eτ1 ≥ Y 2

0 ≥ 0,

and as Yτ1 ≤ 2h,

Eτ1 ≤ 4
R
EY 2

τ1
≤ 16h2

R
.

Hence

(5.10) Pr[τ1 = T1] ≤ 16h2

RT1
.

By the bound ∆ ≤ n1/3R1/3/ ln n, we have T1 +
T2 < ζ

400
n
∆ . So Lemmas 2.1 and 2.2 imply that for

sufficiently large n,

Pr[Yτ1 < h] ≤ Pr[τ1 = T1]
+Pr[Qτ1 < −2λn−1/3R2/3]
+Pr[|Rτ1 −R| > R/2]

≤ 16h2

RT1
+ 2T1n

−10 < 20
√

A.(5.11)

This shows that with probability at least 1 −
20
√

A, Yt will reach h within T1 steps. If it does
reach h, then the largest component must have size
at least h, which is not as big as we require. We will
next show that, with sufficiently high probability, it
takes at least T2 steps for Yt to return to zero, hence
establishing that the component being exposed has
size at least T2, which is big enough to prove the
theorem.

Let Θh denote the event that Yτ1 ≥ h. Note that
whether Θh holds is determined by Cτ1 . Much of
what we say below only holds if Cτ1 is such that Θh

holds.
Define

τ2 = min{s : (Yτ1+s = 0),
(Qτ1+s < −2λn−1/3R2/3),
(|Rτ1+s −R| > R/2), or (s = T2)}.

We wish to show that, with sufficiently high probabil-
ity, we get τ2 = T2 as this implies Yτ1+T2−1 > 0. We
know that the probability of Qτ1+τ2 < −2λn−1/3R2/3

or |Rτ1+τ2−R| > R/2 is small by Lemmas 2.1 and 2.2.
So it remains to bound Pr[Yτ1+s = 0].

Suppose that Θh holds. It will be convenient to
view the random walk back to Yt = 0 as a walk from
0 to h rather than from h to 0; and it will also be
convenient if that walk never drops below 0. So we
define Ms = h − min{h, Yτ1+s}, and thus Ms ≥ 0
and Ms = h iff Yτ1+s = 0. If 0 < Ms−1 < h, then
Ms−1 = h− Yτ1+s−1 and since Ms ≤ |h− Yτ1+s|, we
have:

M2
s −M2

s−1 ≤ (h− Yτ1+s)2 − (h− Yτ1+s−1)2

= 2h(Yτ1+s−1 − Yτ1+s)
+Y 2

τ1+s − Y 2
τ1+s−1

= ητ1+s(Yτ1+s + Yτ1+s−1 − 2h)
= ητ1+s(ητ1+s − 2Ms−1)
= η2

τ1+s − 2ητ1+sMs−1.(5.12)



If Ms−1 = 0, then Yτ1+s−1 ≥ h and so

(5.13) M2
s −M2

s−1 = M2
s ≤ η2

τ1+s.

Consider any Cτ1+s−1 for which Θh holds. For 1 ≤
s ≤ τ2, we have Ms−1 < h and by (2.4) we have
E[η2

τ1+s|Cτ1+s−1] = Rτ1+s ≤ 3
2R since |Rτ1+s −R| ≤

R/2. Applying those, along with (5.12), (5.13) and
(5.9) we obtain that

E[M2
s −M2

s−1|Cτ1+s−1]

is bounded from above by

max(E[η2
τ1+s|Cτ1+s−1],

E[η2
τ1+s − 2ητ1+sMs−1|Cτ1+s−1])

≤ max
(

3R

2
,
3R

2
− 2hQτ1+s−1

)

≤ 3R

2
+

R

4
< 2R.

So for any Cτ1 for which Θh holds, M2
min(s,τ2)

−
2R min(s, τ2) is a supermartingale, and the Optional
Stopping Theorem yields:

E[M2
τ2
− 2Rτ2] ≤ EM2

0 = 0.

This, along with the fact that τ2 ≤ T2 yields:

EM2
τ2
≤ 2REτ2 ≤ 2T2R.

By (5.11) we have that for any event E, Pr(E|Θh) ≤
Pr(E)/Pr(Θh) ≤ Pr(E)/(1 − 20

√
A). Hence Lem-

mas 2.1 and 2.2 yield that for n sufficiently large
Pr[τ2 < T2|Θh] is at most:

Pr[Mτ2 ≥ h|Θh] +
Pr[Qτ1+τ2 < −2λn−1/3R2/3|Θh] +
Pr[|Rτ1+τ2 −R| > R/2|Θh]

≤ EM2
τ2

h2
+

2T2n
−10

1− 20
√

A

≤ 2T2R

h2
+

2T2n
−10

1− 20
√

A

≤ 3T2R

h2
.

Combining this with (5.11) we conclude

Pr[|Cmax| < T2] ≤ Pr[τ2 < T2]
≤ Pr[Yτ1 < h] + Pr[τ2 < T2|Θh]

≤ 20
√

A +
3T2R

h2
= 23

√
A < ε,

for A < ( ε
23 )2. (Recall that we also require A <

(16λ)−4.) This proves that Theorem 1.1(a) holds for

a random configuration. Proposition 2.1 implies that
it holds for a random graph. 2

Proof of Theorem 1.3 We can apply essentially
the same argument as for Theorem 1.1(a). In fact, the
argument is a bit simpler here as we will always have
the drift Qt > 0. The details are in the full version
of the paper. 2
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