
Asymptotically optimal frugal colouring

Michael Molloy∗ Bruce Reed†

June 18, 2009

Abstract

We prove that every graph with maximum degree ∆ can be properly (∆ + 1)-
coloured so that no colour appears more than O(log ∆/ log log ∆) times in the neigh-
bourhood of any vertex. This is best possible up to the constant multiple in the O(−)
term.

1 Introduction

In [9], Hind, Molloy and Reed defined a proper vertex coloring to be β-frugal if no ver-
tex has more than β members of any colour class in its neighbourhood. It is very easy
to (∆ + 1)-colour any graph with maximum degree ∆. The main result of that paper
was to show that every graph with maximum degree ∆ in fact has a β-frugal (∆ + 1)-
colouring with β = O(log8 ∆). Pemmaraju and Srinivasan[23] recently improved this to
β = O(log2 ∆/ log log ∆).

Alon (see [9]) provided a class of examples that do not have a (log ∆/ log log ∆)-frugal
(∆+1)-colouring. In fact, for every t > 0, and ∆ sufficiently large, there is a graph which does
not have a (log ∆/ log log ∆)-frugal t∆-colouring. In this paper, we close that asymptotic
gap by proving:

Theorem 1.1 There exists a constant ∆0 such that every graph G with maximum degree
∆ ≥ ∆0 has a (50 log ∆/ log log ∆)-frugal (∆ + 1)-colouring.

∗Dept of Computer Science, University of Toronto, molloy@cs.toronto.edu. Research supported by
NSERC.

†Canada Research Chair in the Combinatorics of Complex Networks, School of Computer Science, McGill
University, breed@cs.mcgill.ca. Research supported by NSERC.

∗A preliminary version of this paper appeared in the proceedings of SODA 2009.

1

We do not specify ∆0; we just assume that it is large enough to satisfy several inequalities
scattered throughout the paper. We made no attempt to optimize the constant “50”, and it
is chosen mainly for its “roundness”. In fact, it is very easy to lower it. However, we don’t
see a way to get it close to 1.

For a graph with maximum degree ∆ < ∆0, any (∆+1)-colouring is ∆0-frugal. Therefore,
Theorem 1.1 implies that every graph has a (T log ∆/ log log ∆)-frugal (∆+1)-colouring with
T ≤ max{∆0, 50}. (In our proof, ∆0 is much bigger than 50.)

The main motivation of the initial study of frugal colouring in [9] was an application
to total colouring, where one colours the vertices and edges of a graph so that the same
colour does not appear on any two adjacent vertices, incident edges, or an edge and its
endpoint. In [10] we proved that every graph with maximum degree ∆ has a ∆ + O(log8 ∆)
total colouring, by beginning with a O(log8 ∆)-frugal vertex colouring, and then carefully
colouring the edges. This result was later improved to ∆ + O(1) in [16]. A well-known
conjecture is that it can be improved to ∆ + 2 (see eg. [13]).

Amini, Esperet and van den Heuvel[2] study frugal colourings of planar graphs, as a
generalization of the problem of bounding the chromatic number of the square of a planar
graph. In [29], Yuster introduced linear colorings, which are proper colourings that are
both acyclic (the union of any two colour classes induces a forest) and 2-frugal; this is
equivalent to saying that the union of any two colour classes is a forest of paths. In their
aforementioned paper[23], Pemmaraju and Srinivasan show that every triangle-free graph
has an O(log2 ∆)-frugal O(∆/ log ∆)-colouring, and that every d-degenerate graph has a
β-frugal (d + 1)-colouring for β ≈ O(∆

d
log2 ∆).

Our proof is probabilistic. We use a randomized procedure to (∆ + 1)-colour the graph,
and we show that, with positive probability, the colouring produced will be β-frugal with
β = 50 log ∆/ log log ∆. Suppose that the neighbours of a vertex v all received independently
chosen uniformly random colours from {1, ..., ∆ + 1}. A simple calculation shows that the
expected number of colours chosen more than roughly β times is o(1) and so, with high
probability, no colour is chosen more than β times. By applying the Lovasz Local Lemma
(see Section 2.3), one can often move from “with high probability the neighbourhood of one
vertex is fine” to “with postitive probability the neighbourhood of every vertex is fine”.

Of course, we can’t always ensure that the colours appearing on N(v) are chosen indepen-
dently. For example, this is impossible if there are many edges in N(v). But on an intuitive
level, having many edges in N(v) should be to our advantage since they make it even less
likely that a colour would appear more than β times in N(v).

So our aim is to choose a randomized procedure in which, very roughly speaking, the
colours appearing on each N(v) are chosen in a manner that is similar to uniform and
independent. Similar enough to allow us to show that, with positive probability, no vertex
appears β times in any neighbourhood. Our procedure is a version of what is often called
the “Rodl Nibble”, the “semi-random method” or the “Naive Colouring Procedure” (see
[26, 19]).

2

In the case that the graph has girth at least 5, the resulting colouring on each neigh-
bourhood is in many senses very close to being a set of independent uniform colours. In
the case that 3- and 4-cycles are present, the procedure still works quite well so long as
no N(v) is close to being a ∆-clique (eg. it is sufficient for every N(v) to contain at most

(1 − ǫ)
(

∆
2

)

edges for some constant ǫ > 0). But in the presence of vertices with very dense
neighbourhoods, we need to modify the procedure further. To do so, we make use of the
dense decomposition introduced by Reed in [24], in which vertices with very dense neigh-
bourhoods are isolated so that they can be coloured more carefully. This decomposition has
been applied in [16, 18, 20, 24, 25]. (See [19] for a thorough presentation of this and related
techniques.

Our procedure has three phases. The first two are along the same lines as similar pro-
cedures from other applications of this dense decomposition. Most of the new ideas in this
paper appear in the third phase. There, we colour vertices one-at-a-time in a manner that
creates far too much dependency for us to be able to apply the most common form of the
Local Lemma; instead, we apply the Lopsided Local Lemma. Doing so requires an analysis
of the probability of a set of vertices X all receiving the same colour, conditioned on the
assignments of colours to vertices not in X. Conditioning on the assignments to vertices
coloured before those in X is straightforward, but conditioning on assignments made after
(or between) the vertices of X is the sort of thing that is often very problematic (see for
example, Kahn’s discussion in the epilogue of [14]). Fortunately, in this particular setting,
we were able to handle the conditioning adequately.

In the next section, we present the decomposition and our key probabilistic tools. We
close that section by giving an overview of our colouring procedure. In the following three
sections, we prove Theorem 1.1 by describing and analyzing our random colouring procedure
in three phases.

2 Preliminaries

2.1 A Dense Decomposition

We begin by describing the graph decomposition introduced in [24].

Consider any graph G with maximum degree ∆. It will be convenient to assume that G
is ∆-regular, which we can do since every graph with maximum degree ∆ is easily seen to
be a subgraph of a ∆-regular graph (see eg. [24]).

We begin by decomposing G into dense sets D1, ..., Dℓ and a collection S of sparse vertices
in the same way that we did in [16]. We set ǫ = 10−6. Section 2 of [16], in particular Lemmas
2.1(b,d), and 2.2 imply:

Lemma 2.1 For each Di:

3

(a) ∆ − 5ǫ∆ < |Di| < ∆ + 2ǫ∆;

(b) there are at most 4ǫ∆2 edges from Di to G − Di;

(c) every vertex v ∈ S has at least ǫ
(

∆
2

)

pairs of non-adjacent vertices in its neighbourhood;

(d) each vertex is in Di iff it has at least 3
4
∆ neighbours in Di.

We define D = ∪ℓ
i=1Di. Note that S = V (G) −D.

We wish to ∆ + 1 colour each Di. We do so by partitioning it into a set of colour classes
Ci each of size 1 or 2 so that either (i) the number of classes of size 2 is exactly ⌊10ǫ∆⌋ or
(ii) the number of classes of size 2 is less than ⌊10ǫ∆⌋ and the vertices in the classes of size
1 form a clique. Lemma 2.4 of [16] and the Fact preceding it say:

Lemma 2.2 For each Di:

(a) ∆ − 15ǫ∆ ≤ |Ci| ≤ ∆ + 1;

(b) each colour class in Ci has at most (1
4

+ 4
√

ǫ)∆ < 1
3
∆ external neighbours.

For each v ∈ S, it will be convenient to consider the set {v} to be a colour class so that
every vertex in G belongs to one colour class.

2.2 Ornery dense sets, kernels, Bigi and Notbig(i, x)

For each vertex v in any Di, we define:

• Outv is the set of neighbours of v that are not in Di;

• each member of Outv is an external neighbour of v.

We say that Di is ornery if |Ci| > ∆ − log4 ∆. For each ornery Di, we define:

• Ki, its kernel, is the set of vertices in Di with at most log6 ∆ external neighbours.

• Bigi is the set of vertices outside Di which have at least ∆7/8 neighbours in Di.

• Notbig(i, x) is the set of vertices in Di which do not have any external neighbours in
G − Bigi with colour x. Note that Notbig(i, x) can change during the course of our
colouring procedure.

4

We say that u, v are big-neighbours if they are both in Bigi for some i. In the first two
phases of our colouring procedure, we will require that no two big-neighbours receive the
same colour. Lemma 2.5 of [16] implies:

Lemma 2.3 For each ornery Di:

(a) |Di − Ki| < 3 log5 ∆.

(b) |E(Di, G − Di)| < ∆ log7 ∆.

(c) Ci has at most 2 log5 ∆ colour classes of size 2.

Proof Parts (a,b) are Lemma 2.5(b,c) of [16]. Lemma 2.5(a) of [16] says that |Di| <
∆+log5 ∆. Since |Ci| > ∆−log4 ∆, this implies that Ci has at most log5 ∆+log4 ∆ < 2 log5 ∆
classes of size 2. 2

Corollary 2.4 Every vertex in G has at most ∆1/4 log7 ∆ big-neighbours.

Proof Each vertex lies in Bigi for at most ∆/∆7/8 = ∆1/8 dense sets Di. By Lemma
2.3(b), each Bigi contains at most |E(Di, G − Di)|/∆7/8 ≤ ∆1/8 log7 ∆ vertices. 2

We say that u, v ∈ G are strongly non-adjacent if they do not both lie in one dense set
and if no member of the colour class containing v is a neighbour or big-neighbour of any
member of the colour class containing u.

Lemma 2.5 (a) Every v ∈ S has at least ǫ
80

∆2 pairs of strongly non-adjacent vertices in
N(s).

(b) Every v ∈ Di has at least ∆
10
|Outv| pairs of strongly non-adjacent vertices u, w where

u ∈ Outv and w ∈ N(v) is a colour class of size one in Ci.

Proof (a) follows from Lemma 2.9 of [16]. For (b): consider some v ∈ Di. If
|Outv| ≤ ∆

10
then by our assumption that G is regular, v has at least 9

10
∆ neighbours in Di.

There are at most ⌊10ǫ∆⌋ colour classes of size two in Ci, so at least 9
10

∆− 20ǫ∆ neighbours
of v are colour classes of size one in Ci. Consider any u ∈ Outv. If u ∈ S then by Lemma
2.1(d) and Corollary 2.4, u has fewer than 3

4
∆ + ∆1/4 log7 ∆ neighbours or big-neighbours

in Di. If u ∈ D then by Lemmas 2.2(b) and Corollary 2.4, the colour class containing u has
at most ∆

3
+ 2∆1/4 log7 ∆ neighbours or big-neighbours in Di. So u is strongly non-adjacent

to at least 9
10

∆ − 20ǫ∆ − (3
4
∆ + ∆1/4 log7 ∆) > ∆

10
neighbours of v that are colour classes of

size one in Ci.

If |Outv| > ∆
10

then, by Lemma 2.1(d) and an argument like that above, there are at
least |Outv|(3

4
∆ − 20ǫ∆) pairs of vertices u, w where u ∈ Outv and w ∈ N(v) is a colour

5

class of size one in Ci. By Lemma 2.1(b) there are at most 4ǫ∆2 edges from Di to Outv,
and each such edge can cause at most two of these pairs to be strongly non-adjacent. (The
worse case is when the edge is incident to one of two vertices forming a colour class in Cj ,
j 6= i.) By Corollary 2.4, the colour class containing any member of Outv has at most
2∆1/4 log7 ∆ big-neighbours in Di. It follows that the number of pairs of strongly non-
adjacent vertices u, w where u ∈ Outv and w ∈ N(v) is a colour class of size one in Ci is at
least |Outv|(3

4
∆ − 20ǫ∆ − 4∆1/4 log7 ∆) − 8ǫ∆2 > ∆

10
|Outv| (where the last inequality uses

|Outv| > ∆
10

). 2

2.3 Probabilistic Preliminaries

In this section, we present a few probabilistic tools that we will use in this paper. First, we
often use the following straightforward bound:

(

a

b

)

≤
(

ea

b

)b

.

The following tool is crucial in this paper, as it is in many applications of the probabilistic
method:

The Lovasz Local Lemma[6] Let A = {A1, ..., An} be a set of random events so that
for each 1 ≤ i ≤ n:

(i) Pr(Ai) ≤ p; and

(ii) Ai is mutually independent of all but at most d other events.

If pd ≤ 1
4

then Pr(A1 ∩ ... ∩ An) > 0.

In our final application of the Local Lemma, we will not have strict independence. For-
tunately, we can get away with something weaker, using the following version which follows
from the usual proof of the Local Lemma and was first used in [8]:

The Lopsided Local Lemma Let A = A1, ..., An be a set of random events. Suppose
that for each Ai, we have a subset Bi ⊆ A such that:

(i) for any subset B ⊂ A− Bi,

Pr(Ai| ∩Aj∈B Aj) ≤ p;

(ii) |Bi| ≤ d.

If pd ≤ 1
4

then Pr(A1 ∩ ... ∩ An) > 0.

6

The binomial random variable BIN(n, p) is the sum of n independent 0 − 1 random
variables where each is equal to 1 with probability p. The following is a derivation from
Chernoff’s original bound[5]. It follows from, eg Corollary A.1.10 and Theorem A.1.13 from
Appendix A of [1].

The Chernoff Bound [5] For any 0 < t ≤ np:

Pr(|BIN(n, p) − np| > t) < 2e−t2/3np.

Our next concentration bound is the Hoeffding-Azuma Inequality. Rather than using
the original statements from [3, 11], we will use the following common corollary (see eg.
Corollary 2.27 of [12]):

The Hoeffding-Azuma Inequality: Let X be a non-negative random variable deter-
mined by the independent trials T1, ..., Tn. Suppose that for every set of possible outcomes of
the trials, we have:

(i) changing the outcome of Ti can affect X by at most ci.

Then for any t ≥ 0, we have

Pr(|X −Exp(X)| > t) ≤ 2e
− t2

2
∑n

i=1
c2
i .

Talagrand’s Inequality requires another condition, but often provides a stronger bound
when Exp(X) is much smaller than n. Rather than using Talagrand’s original statement
from [28], we will use the following useful reworking, which is proved in [20]:

Talagrand’s Inequality Let X be a non-negative random variable determined by the in-
dependent trials T1, ..., Tn. Suppose that for every set of possible outcomes of the trials, we
have:

(i) changing the outcome of any one trial can affect X by at most c; and

(ii) for each s > 0, if X ≥ s then there is a set of at most rs trials whose outcomes certify
that X ≥ s.

Then for any t ≥ 50c
√

rExp(X)) + 256c2r we have

Pr(|X −Exp(X)| > t) ≤ 4e
− t2

32c2r(Exp(X)+t) .

7

McDiarmid extended Talagrand’s Inequality to the setting where X depends on indepen-
dent trials and permutations, a setting that arises often in this paper. Again, we present
a useful reworking rather than the original inequality; this reworking is also proved in [20].
Talagrand[28] derived this for the case where there is exactly one permutation.

In the context of this inequality, a choice means either (a) the outcome of a random trial
or (b) the position that a particular element gets mapped to in a permutation.

McDiarmid’s Inequality[15] Let X be a non-negative random variable determined by in-
dependent trials T1, ..., Tn and independent permutations Π1, ..., Πm. Suppose that for every
set of possible outcomes of the trials and permutations, we have:

(i) changing the outcome of any one trial can affect X by at most c;

(ii) interchanging two elements in any one permutation can affect X by at most c; and

(iii) for each s > 0, if X ≥ s then there is a set of at most rs choices whose outcomes
certify that X ≥ s.

Then for any t ≥ 50c
√

rExp(X)) + 256c2r we have

Pr(|X − Exp(X)| > t) ≤ 4e
− t2

128c2r(Exp(X)+t) .

2.4 An overview

We begin by taking a dense decomposition of the graph. Our colouring procedure then
proceeds in three phases.

In the first phase, we assign each vertex in S an independently and uniformly chosen
colour from {1, ..., ∆ + 1}. For each Di, we assign an independently and uniformly chosen
permutation of colours to the colour classes Ci. We then correct pairs of neighbours having the
same colour by uncolouring some vertices in S and labelling some vertices in D as being only
temporarily coloured. The same simple analysis described in the opening of this paper allows
us to show that with positive probability, the resulting partial colouring is 20 log ∆/ log log ∆-
frugal. We also show that it has several other useful properties that bound the size of every
Notbig(i, x) and the number of temporarily coloured vertices in each Di, and imply that
every vertex not lying in a kernel will always have many available colours in future phases.

In the second phase, we recolour all the temporarily coloured vertices in the kernels of
the ornery dense sets. We do so by swapping their colours with other vertices in the same
dense set. It is very useful to know that a vertex with colour x has many choices for a vertex
with which to swap. This follows from the bound on Notbig(i, x), which implies that very
few vertices have an external neighbour with colour x. Again, a fairly simple analysis shows

8

that, with positive probability, no colour is assigned to 20 log ∆/ log log ∆ vertices in any
neighbourhood during this phase.

In the final phase, we colour the remaining vertices one-at-a-time. None of these vertices
lie in kernels, and so at its turn, each vertex has a large list of available colours to choose
from. We choose one at random. There is an annoying subtlety here: the manner in which
we colour the vertices introduces too much dependence for us to apply the straightforward
version of the Lovasz Local Lemma. So instead we use the Lopsided Local Lemma to show
that, with positive probability, no colour is assigned to 4 log ∆/ log log ∆ vertices in any
neighbourhood during this phase.

This produces a colouring where no colour is assigned to (20 + 20 + 4) log ∆/ log log ∆ <
50 log ∆/ log log ∆ vertices in any one neighbourhood, as required. (The astute reader will
already see one way to reduce the constant “50”.)

3 Phase I: An initial colouring

In this phase, we obtain an initial partial colouring using the following random procedure.
All random choices are made independently.

1. We assign a uniformly random colour from {1, ..., ∆ + 1} to each vertex v ∈ S.

2. For each Di, we use |Ci| colours uniformly from {1, ..., ∆+1} and then assign a random
permutation of those colours to Ci.

3. Let {(x1, y1), ..., (xℓ, yℓ)} be the set of all pairs of neighbours or big-neighbours that are
assigned the same colour. For each pair in that set, we choose one member, uniformly
at random, to correct. To correct v ∈ S, we uncolour v. To correct v ∈ D, we label v
as being only temporarily coloured.

To clarify: if x, y are both in the same colour class, then they will both receive the same
colour in Step 2, but possibly only one of them will be labelled as temporarily coloured in
Step 3. We define:

• U ⊆ S is the vertices of S that are uncoloured in Step 3;

• Tempi is the set of vertices of Di that are labelled as temporarily coloured in Step 3;

• Temp∗
i is the set of vertices u ∈ Di such that {u, v} ∈ Ci for some v ∈ Tempi;

• Temp+
i ⊆ Temp∗

i is the set of vertices u ∈ Di such that {u, v} ∈ Ci for some v ∈ Tempi

with |Outv| < |Outu|;

• for each 0 ≤ a ≤ ∆, Tempi(a) is the set v ∈ Tempi with |Outv| ≤ a;

9

• Temp = ∪iTempi; Temp∗ = ∪iTemp∗
i ; Temp+ = ∪iTemp+

i .

Note that possibly Temp ∩ Temp+ 6= ∅. All vertices in Temp will be recoloured during
Phases II and III. Vertices of Temp∗ might also be recoloured during Phase II. Vertices of
Temp+ − Temp might be moved to Temp during Phase II; those that are will be recoloured
during Phase III.

For each ornery Di, we will recolour the vertices in Tempi ∩ Ki during Phase II by
swapping their colours with other vertices in Di. To facilitate this, we carry out one more
step:

4. For each ornery Di, we select uniformly at random a set Fi of 9
10

∆ of the vertices of
Ki that are colour classes of size one in Ci.

The vertices of Fi will be eligible to swap their colours with the temporarily coloured vertices
in Ki. We use F to denote the union over all ornery Di of Fi.

Lemma 3.1 With positive probability:

(a) every v ∈ S has at least ǫ
109 ∆ colours that appear twice in N(v)− (U ∪Temp∪Temp∗∪

F);

(b) every v ∈ D with |Outv| ≥ log3 ∆ has at least ǫ
109 |Out(v)| colours that appear twice in

N(v) − (U ∪ Temp ∪ Temp∗ ∪ F);

(c) for each Di and integer a ∈ {⌈log3 ∆⌉, ..., ∆}, we have |Tempi(a)| ≤ 2a;

(d) for each vertex v ∈ G, no colour is assigned in Steps 1 and 2 to more than 20 log ∆/ log log ∆
vertices in N(v);

(e) for each colour x and ornery Di, |Notbig(i, x)| ≤ ∆19/20;

(f) for each vertex v ∈ G,

∑

u∈N(v)∩(Temp∪Temp+)

1

max(|Outu|, log3 ∆)
≤ 299999.

Lemma 3.1 proves the existence of a partial colouring satisfying properties (a) to (f). For
Phase I, we take such a colouring.

Proof We will use the Local Lemma. For each v ∈ S, A1(v) is the event that v
violates part (a). For each v ∈ D with |Outv| ≥ log3 ∆, A2(v) is the event that v violates
part (b). For each Di and a ≥ log3 ∆, A3(i, a) is the event that Di, a violates part (c). For
each v ∈ G, A4(v) is the event that v violates part (d). For each colour x and ornery Di,

10

A5(i, x) is the event that Di, x violate part (e). For each v ∈ G, A6(v) is the event that v
violates part (f).

We will prove that each event has probability at most ∆−8. The events A1(v), A2(v), A4(v), A6(v)
are determined by the colour assignment and choice of F for dense sets and vertices that
have neighbours or big-neighbours in N(v). A3(i, a) and A5(i, x) are determined by the
colour assignment and choice of F for dense sets and vertices that have neighbours or big-
neighbours in Di. It follows that each of these events is mutually independent of all events
A1(u), A2(u), A3(j, b), A4(u), A5(j, y), A6(u) where u and Dj are at distance at least 6 from
v or Di in the graph formed from G by adding edges between every pair of big-neighbours.
(Note that, eg., A1(v) and A1(u) could be dependent for some u, v of distance 5 in that
graph if there is a dense set that is adjacent to a neighbour of v and to a neighbour of u.)
Noting that graph has maximum degree less than 2∆ by Corollary 2.4, and multiplying by
the 6 types of events, and the at most ∆ + 1 choices of colours for A5(i, x) or values of a for
A3(i, a), we find that each event is mutually independent of all but at most 6(2∆)6× (∆ + 1)
other events. This will imply our lemma since 6(2∆)6(∆ + 1) × ∆−8 < 1/4.

The random experiment: We will use McDiarmid’s Inequality repeatedly. To do so,
we view our random choices as a collection of independent trials and independent permuta-
tions as follows: In Step 1, we have a trial for each vertex v ∈ S. In Step 2, we carry out
a permutation for each Di: from the colours {1, ..., ∆ + 1} to the colour classes of Ci plus
∆ + 1 − |Ci| artificial classes. In Step 3, we carry out a trial for each pair of neighbours or
big-neighbours which have the same colour. To avoid dependency, we will actually carry out
this trial for every pair of neighbours or big-neighbours and ignore the outcome for those
pairs which do not have the same colour; thus the set of trials is not dependent on the
outcomes of Steps 1 and 2. In Step 4, we carry out a permutation for each ornery Di: from
the colour classes of size one in Ki to the integers {1, ...}; Fi is the set of vertices mapped
to {1, ..., 1

10
∆}. Note that these steps are equivalent to the manner in which the procedure

was described above.

In the context of McDiarmid’s Inequality, a “choice” is either: the colour assigned to
a vertex or colour class in Step 1 or Step 2, the vertex chosen to be corrected in Step 3, or
the choice as to whether a particular vertex is placed into Fi in Step 4. “Changing the

outcome of a trial” is changing the colour assigned to a vertex in S during Step 1 or
changing which of a pair of vertices is corrected in Step 3. “Interchanging two elements

of a permutation” is swapping the colours assigned to two colour classes in some Ci during
Step 2 or removing a vertex from Fi and replacing it with another.

A1(v): Let X be the number of colours α satisfying: (a) α is assigned to at least two
vertices in N(v) and (b) no vertex in N(v) that is assigned α is in U ∪ Temp ∪ Temp∗ ∪ F .
Clearly X is a lower bound on the number of colours that appear at least twice in N(v) −
(U ∪ Temp ∪ Temp∗ ∪ F).

By Lemma 2.5(a), v has at least ǫ
80

∆2 pairs of strongly non-adjacent neighbours. X is
at least the number of such pairs u, w such that: (i) u, w are assigned the same colour; (ii)

11

that colour is not assigned to any neighbours of v outside of the colour classes containing
u, w; (iii) no vertices in the colour classes containing u, w are corrected in Step 3; and (iv)
u, w are not selected to be in F .

The probability that some non-adjacent pair u, w ∈ N(v) satisfies (i) is 1
∆+1

. The prob-

ability that (ii) is satisfied is easily seen to be at least 1
4
× 3

4
= 3

16
; the extreme case is when

v has nearly 3
4
∆ neighbours in one dense set and nearly 1

4
∆ neighbours in another. If Di

is ornery then by Lemma 2.3(a), the definition of “ornery” and the way the colour classes
were formed, there are at least ∆ − log4 ∆ − 3 log5 ∆ − 2⌈10ǫ∆⌉ > 99

100
∆ vertices eligible to

be chosen for Fi. So u, w satisfy (iv) with probability at least
(

1 − 9∆/10
99∆/100

)2
> 1

150
.

Let Ψ be the set of neighbours and big-neighbours of the colour classes containing u, w,
not including vertices that lie in the same dense set as one of those classes. By Lemma 2.2(b)
and Corollary 2.4, |Ψ| ≤ 2 × (∆ + ∆1/4 log7 ∆) (the extreme case is when u, w ∈ S). So at
most two dense sets contain more than 3

4
∆ vertices of Ψ. The colour of u, w can be assigned

to at most two vertices of Ψ in each of these dense sets. If it is assigned to four such vertices
the probability that this does not cause u or w to be corrected is at least (1

2
)8 as these 4

vertices yield at most 4× 2 conflicting pairs involving u or w. That colour is not assigned to
any other member of Ψ with probability at least 1

2
× (1

4
)2 − o(1); the extreme case is when

two dense sets each contain 3
4
∆ members of Ψ and another contains the remaining 1

2
∆+o(∆)

members. Therefore, the probability that (iii) is satisfied is at least (1
2
)8 × (1

2
)5 − o(1) > 1

104 .

Therefore,

Exp(X) ≥ ǫ

80
∆2 × 1

∆ + 1
× 3

16
× 1

104
× 1

150
>

ǫ

8 × 108
∆.

So if A1(v) holds then X must differ from its mean by at least ǫ
4×109 ∆.

We apply McDiarmid’s Inequality to show that X is highly concentrated. To do so, we
consider two related variables: X1 is the number of colours assigned to at least 2 vertices in
N(v); X2 is the number of colours assigned to at least 2 vertices in N(v) where at least one
of the vertices is in U ∪Temp∪F . Note that X = X1 −X2. Thus, if A1(v) holds then either
X1 or X2 must differ from its mean by at least ǫ

8×109 ∆.

Trivially, Exp(X1) ≤ ∆. For any s, if X1 ≥ s then there is a set of 2s choices whose
outcomes certify that X1 ≥ s, namely the colour assignments to s pairs of vertices. Changing
the colour of a vertex or colour class can only affect X1 by at most 2 since at worse it affects
whether X1 counts the old colour and the new colour. Similarly, changing the outcome of
any other trial or interchanging two elements in any permutation can affect X1 by at most
2. Therefore McDiarmid’s Inequality with c = r = 2 yields:

Pr(|X1 − Exp(X1)| >
ǫ

8 × 109
∆) ≤ 4e

−

(

ǫ
8×109

)2

∆2/(128×8×(2∆))
<

1

2
∆−8.

Similarly: Exp(X2) ≤ ∆. If X2 ≥ s then there is a set of at most 4s choices whose
outcomes certify that X2 ≥ s: the colour assignment for s pairs of vertices and for each

12

pair: either the choice to put one of the vertices in F or the assignment of the same colour
to a neighbour or big-neighbour of one vertex and the choice to correct the vertex. Also,
changing the outcome of a trial or interchanging two elements of a permutation can affect
X2 by at most 2 by the same reason as for X1. Therefore, McDiarmid’s Inequality with
c = 2, r = 4 implies that

Pr(|X2 −Exp(X2)| >
ǫ

8 × 109
∆) <

1

2
∆−8.

Therefore, Pr(A1(v)) ≤ ∆−8 as required.

A2(v): The same argument as for A1(v), this time using Lemma 2.5(b) and the fact that
1
10

∆|Outv| > ǫ
80

∆|Outv| yields that Pr(A2(v)) ≤ ∆−8. The main difference is that we are
bounding the probabilities that X1, X2 differ from their means by at least ǫ

8×109 |Outv| ≥
ǫ

8×109 log3 ∆ rather than ǫ
8×109 ∆. Nevertheless, the bounds obtained are easily seen to be less

than 1
2
∆−8.

A3(i, a): We first bound Exp(|Tempi(a)|). For each vertex v ∈ Di with outdegree at
most a, and each external neighbour u of v, the probability that u gets the same colour as
v is 1/(∆ + 1). So the probability that at least one external neighbour of v gets the same
colour is at most a/(∆ + 1). So Exp(|Tempi(a)|) ≤ |Di| × a/(∆ + 1) ≤ (1 + 2ǫ)a by Lemma
2.1(a).

Now we apply McDiarmid’s Inequality to show that |Tempi(a)| is highly concentrated.
For any s, if |Tempi(a)| ≥ s then the colours assigned to s members of Tempi(a) and to
a neighbour of each of them, plus the choices of which of these vertices to correct, will be
a set of at most 3s trials that certify this fact. Changing the colour of a vertex in S can
affect |Tempi(a)| by at most 2, since each colour is assigned to at most two vertices in Di.
Similarly, changing the choice of which of a pair of vertices is corrected can affect |Tempi(a)|
by at most one, and swapping the colours on two members of some Dj can affect |Tempi(a)|
by at most 4. So McDiarmid’s Inequality with c = 4, r = 3 yields:

Pr(A3(i, a)) ≤ Pr(|Tempi(a)| − Exp(|Tempi(a)|) >
1

2
a) ≤ 4e−

1
4
a2/(128×48×(2a)) < ∆−8,

since a ≥ log3 ∆.

A4(v): Consider any particular colour x, and set t = 20 log ∆/ log log ∆. If A4(v) holds,
then x is assigned to at least 1

2
t colour classes that intersect N(v). For any set of 1

2
t

colour classes, the probability that x is assigned to every member of X is at most (1
∆+1

)
1
2
t.

Multiplying this by the number of choices for x and the colour classes, yields:

Pr(A4(v)) ≤ (∆+1)

(

∆
1
2
t

)

(∆+1)−
1
2
t ≤ ∆

(

2e

t

)t/2

< ∆(log ∆/ log log ∆)−10 log ∆/ log log ∆ < ∆−8.

13

A5(i, x): We first bound Exp(|Notbig(i, x)|). For any v ∈ Di, the probability that
v ∈ Notbig(i, x) is at most |Outv|/(∆+1). By Lemma 2.3(b), the sum of the external degrees
of the vertices of Di is at most ∆ log7 ∆. So Exp(|Notbig(i, x)|) ≤ ∆ log7 ∆/(∆+1) < log7 ∆
and if A5(i, x) holds then |Notbig(i, x)| − Exp(|Notbig(i, x)|) > 1

2
∆19/20.

Now we apply the Hoeffding-Azuma Inequality. For this bound, it is convenient to regard
Notbig(i, x) as being determined by the following independent choices: for each v ∈ S, the
choice of whether to assign x to v and for each Dj , j 6= i, the choice of which (if any)
colour class in Cj is assigned x. For each vertex u /∈ Di ∪Bigi, we let di(u) be the number of
neighbours that u has in Di. For each colour class α, we let di(α) be the sum over u ∈ α\Bigi

of di(u). For each u ∈ S, changing the colour assignment for u can only affect whether the
neighbours of u are in Notbig(i, x) and so will affect |Notbig(i, x)| by at most di(u). Similarly,
for each j 6= i, changing which colour class of Cj gets colour x can affect |Notbig(i, x)| by at
most maxα∈Cj

di(α). The sum of the squares of these maximum effects is at most
∑

α di(α)2.

By Lemma 2.3(b),
∑

α di(α) ≤ ∆ log7 ∆, and we have di(α) ≤ 2∆7/8 since |α| ≤ 2 and
vertices of Bigi don’t contribute to δi(α). Therefore,

∑

u di(u)2 ≤ 1
2
∆1/8 log7 ∆ × (2∆7/8)2 =

2∆15/8 log7 ∆. So the Hoeffding-Azuma Inequality with t = 1
2
∆19/20 yields:

Pr(A5(i, x)) ≤ 2e
−

(1
2 ∆19/20)2

2∆15/8 log7 ∆ < ∆−8.

A6(i, x): Set

Y =
∑

u∈N(v)∩Temp

1

max(|Outu|, log3 ∆)

Y + =
∑

u∈N(v)∩Temp+

1

max(|Outu|, log3 ∆)

If u ∈ N(v) is in Temp then at least one member of Outu is assigned the same colour as

u. So Pr(u ∈ Temp) ≤ |Outu|/(∆ + 1). Therefore Exp(Y) ≤ ∑

u∈N(v)
|Outu|
∆+1

× 1
|Outu|

< 1.

If u ∈ Temp+ then at least one member of Outu′ is assigned the same colour as u′ for the
at most one u′ with {u, u′} ∈ Ci. We also must have |Outu′| < |Outu| and so the same
calculation shows Exp(Y +) < 1.

We begin by showing Y is concentrated. Again, we apply McDiarmid’s Inequality. Doing
so is a bit tricky, because single colour assignments can possibly have a very large affect on
Y ; there are two issues of this sort: The first is that it is possible for all neighbours of v
to receive the same colour and then the assignment to a single vertex which has the same
neighbourhood as v would cause all neighbours of v to enter Temp. To eliminate this unlikely
situation, we consider a set Temp′ ⊆ Temp defined to contain every vertex u ∈ D such that
(1) u has a neighbour or big-neighbour w which receives the same colour as u; (2) at most
log ∆ neighbours or big-neighbours of w receive that colour; and (3) u is the vertex from

14

{u, w} chosen to be corrected. We then define

Y ′ =
∑

u∈N(v)∩Temp′

1

max(|Outu|, log3 ∆)
.

Note that condition (2) in the definition of Temp′ implies that the colour assignment to
any one vertex can cause at most log ∆ neighbours or big-neighbours of v to enter Temp′.
We will show that Y ′ is highly concentrated. This will be sufficent because Y ′ ≤ Y so
Exp(Y ′) ≤ Exp(Y) and because:

Claim: Pr(Y 6= Y ′) < ∆−9.

Proof: By Corollary 2.4, at most ∆× (∆ + ∆1/4 log7 ∆) < 2∆2 vertices are neighbours or
big-neighbours of a neighbour of v. If Y 6= Y ′ then at least one of those vertices has at least
log ∆ neighbours that receive the same colour. The probability that some set of t colour
classes all receive the same colour is at most (∆ + 1)−(t−1) (it is zero if two of them lie in the
same dense set). If Y 6= Y ′ then this occurs for t ≥ 1

2
log ∆ colour classes that intersect the

neighbourhood of that vertex, so

Pr(Y 6= Y ′) ≤ 2∆2

(

∆
1
2

log ∆

)

(∆ + 1)−(1
2

log ∆−1) ≤ 2∆3

(

2e

log ∆

)
1
2

log ∆

< ∆−9.

The other issue we need to deal with is the fact that different vertices can contribute very
different amounts to Y ′, since the sizes of their external neighbourhoods can vary greatly.
This creates difficulties when applying McDiarmid’s Inequality directly. So instead, we break
Y ′ up into several sums taken over neighbours of v that have external neighbourhoods of
similar size.

We define I0 = {0, ..., 2 log3 ∆ − 1} and we define Ii = {2i log3 ∆, ..., (2i+1) log3 ∆ − 1},
for each of the roughly log ∆ values of i ≥ 2 for which this interval contains some values up
to 1

3
∆, the maximum possible external degree of a vertex (by Lemma 2.2(b)). For each i,

we define Ni ⊆ N(v)− S to be the neighbours of v which have external degree in Ii, and we
define

Y ′
i =

∑

u∈Ni∩Temp′

1

max(|Outu|, log3 ∆)
.

We will now apply McDiarmid’s Inequality to each Y ′
i . If Y ′

i ≥ s, then there is a set of at
most 3×2i+1 log3 ∆×s trials that certify this fact: the assignments to at most (2i+1 log3 ∆)s
members of Ni∩Temp′ (as each contributes more than 1/(2i+1 log3 ∆) to Y ′

i), the assignment
to a neighbour or big-neighbour of each of those vertices and the choice to correct each of
those vertices. Changing the colour assignment to any one colour class or changing the choice
of whether to correct a vertex will change Y ′

i by at most log ∆/(2i log3 ∆) = 2−i log−2 ∆. (The
greatest change is if the colour assignment causes log ∆ members of Ni to enter Temp′

i, each
of whom have external degree 2i log3 ∆.) Similarly, switching the colours of two colour classes
in some Cj can affect Y ′

i by at most 2 × 2−i log−2 ∆. We set ti = 30, 000 × 2−i/2, and note

15

that 1 + ti ≤ 30, 001. Note that Exp(Y ′
i) ≤ Exp(Y) ≤ 1. McDiarmid’s Inequality with

c = 2 × 2−i log−2 ∆ and r = 3 × 2i+1 log3 ∆ yields:

Pr(Y ′
i −Exp(Y ′

i) > ti) ≤ 4e−t2i /(128×(2×2−i log−2 ∆)2×3×2i+1 log3 ∆(1+ti)) < 4e
− 3×108

8×128(1+ti)
log ∆

< ∆−9.5.

Since there are fewer than log ∆ intervals, the probability that Y ′
i −Exp(Yi) ≤ ti for all i is

at least 1 − log ∆ × ∆−9.5 > 1 − ∆−9. If this happens, then

Y ′ −Exp(Y ′) <
∑

i≥0

ti = 30, 000 × 1

1 − 2−1/2
< 149, 999.

This implies that Pr(Y ≥ 149, 999) < 1
2
∆−9. A nearly identical argument shows that

Pr(Y + ≥ 149, 999) < 1
2
∆−9. Therefore:

Pr(A6(i, x)) ≤ ∆−9.

2

4 Phase II: The kernels of the ornery dense sets

In this phase, we colour all vertices in kernels that have the same colour as a neighbour.
I.e., we will colour the vertices of Tempi(log6 ∆) for each ornery Di. Note that, by Lemma
3.1(c), there are at most 2 log6 ∆ such vertices in any ornery dense set.

We use γ(w) to denote the colour of a vertex w at the beginning of this phase; i.e. the
colour, if any, that it had at the end of Phase I.

Consider any ornery Di and any v ∈ Tempi(log6 ∆). We will recolour v by swapping its
colour with a vertex in Fi. If {v, v′} is a colour class of size two in Ci, and if v′ ∈ Ki then
we swap its colour with the same vertex that v swaps with; we refer to v′ and v as swapping
partners. Note that, in this case, v′ ∈ Temp∗. But if v′ /∈ Ki, then we leave the colour of v′

as γ(v), and we place v′ into Tempi since v′ might now conflict with the vertex that v swaps
with. Note that, in this case, v′ ∈ Temp+.

For each v ∈ Tempi(log6 ∆), we define Swappablev to be the set of vertices u ∈ Fi such
that:

(i) u is a colour class of size one in Ci;

(ii) u /∈ Tempi ∪ Temp∗
i ;

(iii) γ(v) does not appear on Outu − Temp;

(iv) γ(u) does not appear on Outv − Temp;

16

(v) γ(u) does not appear on Outv′ − Temp for a swapping partner v′ of v.

Lemma 4.1 For each ornery Di and each v ∈ Tempi(log6 ∆), |Swappablev| ≥ 1
10

∆.

Proof The size of Fi is 9
10

∆. By Lemma 2.3(c), at most 2 log5 ∆ members of Fi

violate condition (i). Since Fi ⊆ Ki, every member of Fi has at most log6 ∆ external
neighbours. Therefore by Lemma 3.1(c), at most 2 log6 ∆ members of Fi are in Tempi, and
condition (i) implies none of them are in Temp∗

i . Thus at most 2 log6 ∆ members of Fi violate
condition (ii). Since |Outv| ≤ log6 ∆, at most log6 ∆ members of Fi violate condition (iv).
Similarly, at most log6 ∆ members of Fi violate condition (v).

If two big-neighbours received the same colour in Phase I, then one was corrected; i.e.
either uncoloured or placed into Temp. Therefore γ(v) appears on at most one member
of Bigi − Temp. This fact, along with Lemmas 3.1(e) and 2.1(d), implies that at most
3
4
∆ + ∆19/20 members of Fi violate condition (iii). Since 2 log5 ∆ + 2 log6 ∆ + 2 log6 ∆ + 3

4
∆ +

∆19/20 < 8
10

∆, the lemma follows. 2

Each v ∈ Tempi(log6 ∆) will select 20 members of Swappablev uniformly at random.
These 20 vertices will be denoted the candidates for v. (Swapping partners select the same
set of candidates.) Each such v will swap its colour with one of its candidates. Swappablev

was defined to ensure that making a single swap will not create a conflict. But we need to
be careful to ensure that conflicts are not created by making multiple swaps. We define a
candidate u of v to be bad if:

(i) u is a candidate of another vertex;

(ii) v or a swapping partner of v has an external neighbour w that has a candidate w′ with
γ(w′) = γ(u);

(iii) v or a swapping partner of v has an external neighbour w that is a candidate for exactly
one vertex w′ where γ(w′) = γ(u);

(iv) u has an external neighbour w that has a candidate w′ with γ(w′) = γ(v); or

(v) u has an external neighbour w that is a candidate for exactly one vertex w′ where
γ(w′) = γ(v).

A candidate u of v is good if it is not bad.

Lemma 4.2 With positive probability:

(a) For each ornery Di, every vertex in Tempi(log6 ∆) has a good candidate.

(b) For each vertex v ∈ G and each colour x, at most 20 log ∆/ log log ∆ neighbours of v
have a candidate with colour x or are a candidate of a vertex with colour x.

17

We present the proof below. First we note how this lemma enables us to complete Phase
II:

Lemma 4.2 proves the existence of a collection of candidates satisfying properties (a)
and (b); we take such a collection. For each v ∈ Tempi, we swap the colour of v and any
swapping partner of v with that of one of v’s good candidates. Property (a) ensures that we
can do so. If {v, v′} ∈ Ci and v′ /∈ Ki then we place v′ in Tempi.

We remove from Temp all vertices that were successfully coloured; i.e. all those vertices
of Temp that are in kernels of ornery sets. Note that no vertices in kernels are added to
Temp during this phase. Note also that every vertex whose colour changed during this phase
was in Temp ∪ Temp∗ ∪ F and that every vertex placed into Temp was in Temp+ ⊆ Temp∗.

Our definition of good ensures that we have a proper partial colouring on all the vertices
outside of U ∪ Temp. Property (b) ensures that for every vertex w ∈ G and each colour x,
at most 20 log ∆/ log log ∆ neighbours of w are given the colour x during Phase II.

Proof of Lemma 4.2 We will apply the Lovasz Local Lemma. For every ornery Di and
every vertex v ∈ Tempi(log6 ∆), we define A1(v) to be the event that v does not have a good
candidate. For every vertex v ∈ G and every colour x, we define A2(v, x) to be the event
that v, x violate (b). We will prove that each of these events has probability less than ∆−8.

Each event is determined only by candidate choices in dense sets that are adjacent to
v or to another vertex in the same dense set as v. It follows that each event is mutually
independent of all but 2∆5 × (∆ + 1) other events. (The extra ∆ + 1 term is for the number
of choices of x.) Since 2∆5(∆ + 1)× ∆−8 < 1/4, the Local Lemma shows that with positive
probability, none of these events occur.

A1(v): Consider some v ∈ Tempi(log6 ∆) where Di is ornery; we will bound Pr(A1(v)).
We first choose the candidates for all vertices other than v. Then we let Bad denote the set
of vertices in Swappablev which would be bad candidates for v. We will show that with high
probability, |Bad| < log13 ∆.

By Lemma 3.1(c), |Tempi(log6 ∆)| < 2 log6 ∆. Therefore, at most 20× 2 log6 ∆ members
of Swappablev meet condition (i) of the definition of bad. v has at most log6 ∆ external
neighbours, and if v has a swapping partner then it also has at most log6 ∆ external neigh-
bours. Each of those external neighbours has at most 20 candidates and so at most 40 log6 ∆
members of Swappablev meet condition (ii) or (iii) of the definition of bad.

Let W be the set of vertices in kernels of other ornery dense sets that have external
neighbours in Swappablev; if two swapping partners are both in W then we remove one of
them. Since every member of Swappablev is in Ki, |W | ≤ |Swappablev|× log6 ∆ < ∆ log6 ∆.
Each member of W selects a candidate of colour γ(v) with probability at most 20/(∆/10) =
200/∆, and these choices are independent. So the probability that more than 600 log6 ∆
members of W do so is at most

(

∆ log6 ∆

600 log6 ∆

)

(

200

∆

)600 log6 ∆

<

(

e∆ log6 ∆

600 log6 ∆
× 200

∆

)600 log6 ∆

< ∆−9.

18

If at most 600 log6 ∆ members of W select a candidate of colour γ(v) then, along with
possibly one swapping partner for each of them, at most 1200 log6 ∆ vertices in kernels that
have external neighbours in Swappablev do so. Since each of these vertices is in a kernel, it
has at most log6 ∆ neighbours in Swappablev. Therefore, the above calculations show the
probability that more than 1200 log6 ∆× log6 ∆ = 1200 log12 ∆ members of Swappablev meet
condition (iv) of the definition of bad is at most ∆−9.

The proof of the analogous fact for condition (v) is nearly identical: each member of W is
a candidate of the at most one colour class in its dense set of colour γ(v) with probability at
most 200/∆; however, this time the events are not independent. Fortunately, the dependency
goes in the right direction and so for every w1, ..., wt ∈ W , the probability that w1, ..., wt are
all candidates of vertices with colour γ(v) is at most (200/∆)t. Thus the probability that

there are at least t = 600 log6 ∆ such vertices in W is at most
(

|W |
t

)

× (200/∆)t < ∆−9. So

the probability that more than 600 log12 ∆ members of Swappablev meet condition (v) of the
definition of bad is at most ∆−9.

Therefore with probability at least 1− 2∆−9 we have |Bad| < 80 log6 ∆ + 1800 log12 ∆ <
log13 ∆. If that bound on |Bad| holds, then the probability that v has no good candidates,
i.e. that it only selects candidates from Bad, is at most

(

|Bad|
|Swappablev|

)20

<

(

log13 ∆

∆/10

)20

< ∆−9.

Therefore, Pr(A1(v)) < 3∆−9 < ∆−8.

A2(v, x): Consider any v ∈ G and any colour x. Set t = 20 log ∆/ log log ∆. Similar
analysis to that used above for conditions (iv) and (v) show that a particular member of
N(v) has a candidate of colour x or is a candidate of a vertex with colour x with probability
at most 2× (20/ ∆

10
) = 400

∆
. For A2(v, x) to hold, then this must occur for at least 1

2
t vertices

or pairs of swapping partners in N(v). Again, any dependency goes in the right direction
and so:

Pr(A2(v, x) ≤
(

∆

t/2

)

×
(

400

∆

)t/2

<

(

e∆

t/2
× 400

∆

)t/2

=

(

40e log log ∆

log ∆

)10 log∆/ log log ∆

< ∆−8.

2

5 Phase III: Completing the colouring

In this phase, we complete the colouring of G by assigning colours to every vertex in U∪Temp.
We use the following simple random procedure. At any point, we use L(u) to denote the set
of colours that do not appear on any neighbours of u. We are no longer concerned about
avoiding colours that appear on big-neighbours of u.

19

1. Uncolour every vertex in Temp.

2. Let v1, ..., vℓ be an ordering of the uncoloured vertices (i.e. U ∪ Temp) such that the
vertices of Temp appear in non-decreasing order of |Outvi

|.

3. For i = 1 to ℓ, assign to vi a colour chosen uniformly at random from L(vi).

Of course, we need to know that there will always be at least one colour available for
each vi; in fact, there will be many. We define:

• for each v ∈ U , Q(v) = ǫ
109 ∆;

• for each v ∈ Temp, Q(v) = ǫ
109 max{|Outv|, log3 ∆}.

Lemma 5.1 (a) when we colour v ∈ U ∪ Temp, we have |L(v)| ≥ Q(v);

(b) for each vertex v ∈ G,

∑

u∈N(v)∩(U∪Temp)

1

Q(u)
≤ 3 × 1014

ǫ
.

Proof Lemma 3.1(a) and the fact that only vertices in Temp ∪ Temp∗ ∪ F are
recoloured during Phases II and III imply: At the end of Phase I, each v ∈ S had at least

ǫ
109 ∆ colours that appeared twice in its neighbourhood on vertices whose colours do not
change in subsequent phases. Since the total number of colours is greater than the degree of
v, this implies part (a) for the case v ∈ U .

The case v ∈ Temp follows for vertices with |Outv| ≥ log3 ∆ from applying Lemma 3.1(b)
in the same manner. If a vertex v ∈ Tempi has |Outv| < log3 ∆, then Di is not ornery as
otherwise v would have been coloured in Phase II. Therefore, by the definition of ornery,
|Ci| < ∆− log4 ∆. After uncolouring all vertices in Temp, each colour class in Ci contains at
most one colour. Every vertex w coloured before v has |Outw| ≤ |Outv| < log3 ∆. Lemma
3.1(c) and the fact that all vertices added to Temp in Phase II have more than log3 ∆ external
neighbours imply that there are at most 2 log3 ∆ such vertices w. Therefore, when we colour
v, there are at most |Ci| + |Outv| + 2 log3 ∆ < ∆ − log3 ∆ colours appearing in N(v) and so
|L(v)| > Q(v) = ǫ

109 log3 ∆.

For each u ∈ U : since Q(u) = ǫ
109 ∆

∑

u∈N(v)∩U
1

Q(u)
≤ 109

ǫ
. Lemma 3.1(f) and the fact

that only vertices of Temp+ entered Temp during Phase II imply that at the beginning of
Phase III:

∑

u∈N(v)∩Temp
1

Q(u)
≤ 109

ǫ
× 299999. This yields part (b). 2

Lemma 5.1(a) guarantees that each vertex will always have an available colour, and so
our procedure will succeed in producing a proper colouring. Furthermore, it proves that the
probability of v receiving a particular colour x is at most 109/(ǫ∆) for v ∈ U and at most

20

109/(ǫ|Outv|) for v ∈ Temp. Part (b) implies that for each v ∈ G, the expected number of
neighbours of v to receive x is at most a constant. This will allow us to prove that with high
probability, the number of neighbours to receive x is sufficiently low.

Lemma 5.2 With positive probability: for each vertex v ∈ G and each colour x, at most
4 log ∆/ log log ∆ neighbours of v are assigned x during Phase III.

Lemma 5.2 proves the existence of a colouring of the remaining vertices in which no
colour is assigned to more than 4 log ∆/ log log ∆ vertices in any neighbourhood; For Phase
III, we take such a colouring. This, along with property (a) from Lemma 3.1 and Property
(b) from Lemma 4.2, ensures that no colour appears more than 50 log ∆/ log log ∆ times in
the neighbourhood of a vertex in our overall colouring of G. This proves Theorem 1.1.

Proof of Lemma 5.2: We will apply the Lopsided Local Lemma. For each vertex
v ∈ G, we define A(v) to be the event that there is a colour x which is assigned to at least
t = 4 log ∆/ log log ∆ neighbours of v. We define N2(v) to be the set of vertices of distance
at most 2 from v and we define B(v) = {A(u) : u ∈ N2(v)}. Note that |B(v)| ≤ ∆2. We
will prove that for any collection of events outside of B(v), conditioning on none of them
occurring will result in the conditional probability of A(v) being at most 1

4
∆2. The Lopsided

Local Lemma then proves Lemma 5.2.

To prove the desired bound on the conditional probabilities, we actually prove something
stronger, but conceptually a bit simpler. First, for each v ∈ U ∪ Temp, we define:

• L0(v) is the set of colours not appearing on any neighbours of v at the beginning of
Phase III.

Claim 1: For every u ∈ (U ∪ Temp) − N(v), choose any colour c(u) ∈ L0(v) such that
for every adjacent u1, u2 we have c(u1) 6= c(u2). Conditioning on the event that each such u
is assigned c(u) during Phase III, the conditional probability of A(v) is at most 1

4
∆2.

By observing that all events outside of B(v) are completely determined by the colours
assigned to (U ∪ Temp) − N(v), it is straightforward to show that Claim 1 will imply the
condition required for our application of the Lopsided Local Lemma. Indeed: let B be any
collection of events outside of B(v), and define the event E(B) = ∩A∈BA. For every possible
colour assignment σ to the vertices of U∪Temp−N(v), let E(σ) be the event that σ is selected
during Phase III. Since σ determines whether E(B) holds, we have Pr(A|E(σ) ∩ E(B)) =
Pr(A|E(σ)), which Claim 1 implies to be at most 1

4
∆2. Therefore:

Pr(A|E(B)) =
∑

σ

Pr(E(σ)|E(B))×Pr(A|E(σ)∩E(B)) ≤
∑

σ

Pr(E(σ)|E(B))
1

4
∆2 =

1

4
∆2.

(1)

To prove Claim 1, we start by proving:

21

Claim 2: Consider any set of vertices w1, ..., wt and any colour x. For every u ∈ U ∪
Temp − {w1, ..., wt}, choose any colour c(u) ∈ L0(u) such that for every adjacent u1, u2 we
have c(u1) 6= c(u2). Conditioning on the event that each such u is assigned c(u) during
Phase III, the conditional probability that w1, ..., wt are all assigned x is at most e6×1014t/ǫ ×
∏t

i=1
1

Q(wi)
.

At first glance, Claim 2 may appear trivial as Lemma 5.1(a) implies that regardless of
what colours are assigned to the vertices preceding wi in Phase III, the probability that wi

receives x is at most 1
Q(wi)

. So this should imply Claim 2, without the extra e6×1014t/ǫ term.
However, this argument only considers the way that the distribution of the colour assigned
to wi is affected by conditioning on the colours assigned to earlier vertices. We also need to
deal with the effect of conditioning on the colours assigned to future vertices. This latter
effect is more insidious.

To prove Claim 2, consider any such choice of colours C = (c(u) : u ∈ U). Let Ω = Ω(C)
be the set of all colour assignments α = (α1, ..., αt) to w1, ..., wt such that α and C yield a
proper colouring of G. The same simple arguments used in the proof of Lemma 5.1 imply
that

|Ω(C)| ≥
t
∏

i=1

Q(wi).

We refer to the assignment of α and C to U ∪ Temp as Θα and we use ρ(α) to denote the
unconditional probability that Phase III actually produces Θα.

For each vertex v ∈ U ∪Temp we use λ(v) ≤ |L0(v)| to denote the number of colours still
available for v when we reach it during Phase III, if each vertex z preceding v was assigned
Θα(z). Thus, ρ(α) =

∏

v∈U∪Temp 1/λ(v).

Suppose that we were to carry out Phase III, but skipped the vertices {w1, ..., wt}; i.e.
when we reached wi we did not assign a colour to it. For each vertex v ∈ U ∪ Temp we use
λ′(v) ≥ λ(v) to denote the number of colours still available for v when we reach it, if each
vertex z /∈ {w1, ..., wt} preceding v was assigned Θα(z).

Note that, for every choice of α, ρ(α) ≥ ∏

v∈U∪Temp 1/λ′(v). We are most interested in
the case α = α∗ = (x, x, ..., x); i.e. the case where each wi is assigned the colour x. (We
can assume α∗ ∈ Ω, as otherwise the conditional probability of α∗ is zero.) Note that in the
assignment Θα∗ , we have λ(v) ≥ λ′(v) − 1 for all v ∈ U ∪ Temp. Furthermore, using Y to
denote the set of vertices with a neighbour in {w1, ..., wt}, we have λ(v) = λ′(v) for every
v /∈ Y . Therefore, ρ(α∗) ≤ ∏

v∈Y 1/(λ′(v) − 1) ×∏

v∈U∪Temp−Y 1/λ′(v).

The probability that Phase III assigns α∗ to {w1, ..., wt}, conditional on C being assigned
to U ∪ Temp − {w1, ..., wt} is:

ρ(α∗)
∑

α∈Ω(C) ρ(α)
≤

∏

v∈Y 1/(λ′(v) − 1) ×∏

v∈U∪Temp−Y 1/λ′(v)
∑

α∈Ω(C)

∏

v∈U∪Temp 1/λ′(v)

≤ 1

|Ω(C)|
∏

v∈Y

λ′(v)

λ′(v) − 1

22

≤ 1
∏t

i=1 Q(wi)
×
∏

v∈Y

(1 +
1

λ′(v) − 1
)

< exp(
∑

v∈Y

1

λ′(v) − 1
) ×

t
∏

i=1

1

Q(wi)
.

By Lemma 5.1(a), λ′(v) − 1 ≥ Q(v) − 1 > 1
2
Q(v). That, along with Lemma 5.1(b) yields

that this probability is at most:

exp(
∑

v∈Y

2

Q(v)
) ×

t
∏

i=1

1

Q(wi)
< e6×1014t/ǫ ×

t
∏

i=1

1

Q(wi)
.

2

We complete our proof by showing how Claim 2 implies Claim 1. There are ∆+1 choices
of colour x, and

(

∆
t

)

choices of t neighbours of v to which x might be assigned. We consider

any choice {w1, ..., wt} of those neighbours, and use Claim 2 to bound the probability that
those neighbours are all assigned x. Claim 2 does not quite apply directly, since the event
it conditions on is different than the one that Claim 1 conditions on; specifically, Claim
2 conditions on colour assignments to all vertices outside of {w1, ..., wt}, not just to those
vertices outside of N(v). Nevertheless, the same reasoning that was used to derive (1)
applies here to show that under the conditioning of Claim 1, the probability that they are
all assigned x is at most e6×1014t/ǫ∏t

i=1
1

Q(wi)
. Therefore, under the conditioning of Claim 1,

the probability of A(v) is at most:

(∆ + 1) ×
∑

{w1,...,wt}⊂N(v)

ǫ6×1014t/ǫ
t
∏

i=1

1

Q(wi)
= (∆ + 1)e6×1014t/ǫ ×

∑

{w1,...,wt}⊂N(v)

t
∏

i=1

1

Q(wi)
.

We will bound S =
∑

{w1,...,wt}⊆N(v)

∏t
i=1

1
Q(wi)

subject to:

(i) 1
Q(w)

≥ 0 for all w;

(ii)
∑

w∈N(v)
1

Q(w)
≤ 3×1014

ǫ
(from Lemma 5.1(b)).

It is straightforward to prove that, subject to these constraints, S is maximized when for
all w ∈ N(v), Q(w) = ǫ|N(v)|

3×1014 ≤ ǫ∆
3×1014 . To see this, set q(w) = 1

Q(w)
for each w, and verify

that replacing q(w), q(w′) both by q(w)+q(w′)
2

does not decrease S. Therefore, the conditional
probability of A(v) is at most:

(∆ + 1)e6×1014t/ǫ

(

∆

t

)(

3 × 1014

ǫ∆

)t

< (∆ + 1)

(

e6×1014/ǫ × 3e × 1014

ǫt

)t

<
1

4

(

1

log1/2 ∆

)t

=
1

4
∆−2.

23

2

6 Algorithms

Our proof of Theorem 1 is an existence proof; in this section, we will discuss how to modify the
proof to yield an efficient algorithm which produces a frugal colouring. The basic technique
we use dates back to Beck’s seminal paper[4] in which he showed how to convert some
applications of the Local Lemma into efficient algorithms. We remark that the recent work
by Moser[21] and Moser and Tardos[22] would also apply to the first two phases of our
procedure (and, in fact, would yield much simpler algorithms with no loss in the constants)
but it does not seem to apply to the third stage.

Theorem 6.1 There is a constant T > 0 such that there is a randomized polynomial
expected-time algorithm which takes as input any graph G on n vertices and outputs a
(T log ∆(G)/ log log ∆(G))-frugal (∆ + 1)-colouring of G. For any constant D, there is a
polynomial time deterministic algorithm to produce such a colouring on graphs for which
∆(G) ≤ D.

There might, in fact, be a deterministic polytime algorithm for general graphs, i.e. with-
out bounded maximum degree. The key step required to produce such an algorithm is to
devise an efficient way to compute the conditional probabilities that the “bad events” from
our applications of the Local Lemma hold, conditioned on the outcomes of a subset of the
random trials.

As is usual in this sort of setting, we need to sacrifice a bit in our constants. Our algorithm
will find a (250 log ∆/ log log ∆)-frugal (∆ + 1)-colouring in any graph of maximum degree
∆0 for a particular constant ∆0 (which will be larger than the ∆0 required for Theorem 1.1).

The randomized algorithm to produce the partial colourings for Phases I and II nearly
follows from Theorem 2.1 of [27]; the deterministic algorithm nearly follows from Theorem
3.1 of [17] (see also Chapter 25 of [19]). We say “nearly” because both of those theorems
apply to settings where the random experiment is a series of independent random choices.
But in Step 2 of Phase I, when we assign a random permutation of |Di| colours to the
vertices of Di, the colour assignments to the vertices are not independent. However, it is
straightforward to check that the proofs of those two theorems also carry through for this
setting. The important thing to note is that we can choose the random permutation by
processing the vertices of Di in an arbitrary and non-predetermined order; each time we
come to a vertex, we give it a uniformly random colour from amongst those not yet assigned
to Di.

To apply each of these theorems to our setting, the main work is to show that we can
strengthen the requirement “pd ≤ 1

4
” from the Local Lemma to pd4 ≤ 1

20
and pd9 ≤ 1

512

24

respectively. The algorithms that these theorems guarantee are, at heart, much like Beck’s
algorithm from [4]. They are very similar to the algorithm that we describe below for Phase
III.

In Phase I, d is roughly 6∆7 and so it will suffice if each of our bad events has probability
at most ∆−64 as ∆−64 × (6∆7)9 < 1

512
for large ∆. The probabilities of events A1, A2, A3, A5

are all asymptotically lower than the inverse of any poynomial in ∆ and hence are less than
∆−64 for sufficiently large ∆. Increasing t to 100 log ∆/ log log ∆ in the analysis of A4 will
decrease Pr(A4) below ∆−64; this requires us to increase “20” to “100” in Lemma 3.1(d).
Increasing ti to 300, 000 × 2−i/2 in the analysis of A6 will decrease Pr(A6) below ∆−64; this
requires us to increase the bound in Lemma 3.1(f) to 2,999,999. This yields the desired
algorithms to complete Phase I so that no colour appears more than 100 log ∆/ log log ∆
times in any neighbourhood.

In Phase II, d is roughly 2∆6 and so it will suffice if each of our bad events has proba-
bility at most ∆−55. By taking 100 candidates for each v ∈ Tempi(log6 ∆) rather than 20
candidates, we decrease Pr(B1) below ∆−55. (This requires a straightforward readjustment
of some of the other constants in the analysis.) Increasing t to 100 log ∆/ log log ∆ in the
analysis of B2 will decrease Pr(B2) below ∆−55; this requires us to increase “20” to “100”
in Lemma 4.2(b). This yields the desired algorithms to complete Phase II so that no colour
is assigned more than 100 log ∆/ log log ∆ times to any neighbourhood.

For Phase III, we apply the Lopsided Local Lemma, and so the theorems from [17] and
[27] do not apply directly. Fortunately, Beck’s technique works very well for this particular
application of the Lopsided Local Lemma. Again, we sacrifice a bit in the constants: our
goal is that no colour will be assigned to a neighbourhood more than 24 log ∆/ log log ∆
times during this phase; i.e. we increase the constant “4” to “24”.

We define a hypergraph H as follows: The vertices of H are the vertices of G which are
still uncoloured at the end of Phase II. For every v ∈ G, the vertices of N(v) that are in H
form a hyperedge of H . So our goal for the remaining stages is to complete the colouring of
G so that no colour appears too many times in any hyperedge of H .

The algorithm runs in 3 stages as follows:

Stage 1: We colour the vertices of G one-at-a-time. When a colour is assigned, during
this stage, to 8 log ∆/ log log ∆ vertices in a hyperedge of H , then we freeze all remaining
uncoloured vertices in that hyperedge. When we come to v, if it is frozen then we do not
assign it a colour; if it is unfrozen we assign it a uniformly random colour from L(v) and we
remove that colour from L(u) for every u that is adjacent to v in G.

H ′ is the hypergraph formed by removing from H all vertices that are assigned a colour
during Stage 1. When some, but not all, of a hyperedge’s vertices are removed, the hyperedge
itself is not removed - it is merely reduced in size. The main outcome of Stage 1 is that
every component of H ′ is small:

Lemma 6.2 With probability at least 1
2
, every component of H ′ has at most ∆2 log n vertices.

25

This is a very standard lemma - it’s proof is nearly identical to, eg., that of Lemma 25.2
in [19] - so we omit the details. The key fact needed for this proof is: Consider any collection
of t disjoint hyperedges. The probability that they all become frozen during Stage 1 is at
most (1

4∆4)t. This follows from the same analysis as in the proof of Lemma 5.2: Increasing
the number of times a colour can be assigned to a neighbourhood from 4 log ∆/ log log ∆
to 8 log ∆/ log log ∆ decreases the probability of the bad event from Lemma 5.2 from 1

4∆2

to 1
4∆4 ; i.e. the probability that one particular such hyperedge becomes frozen, even after

conditioning on the event that some of the others become frozen, is at most 1
4∆4 . Thus the

probability that all become frozen is at most (1
4∆4)t.

After running Stage 1, if any components of H ′ have more than ∆2 log n vertices, then
we run Stage 1 over again. Lemma 6.2 implies that we probably won’t have to restart very
often; in fact the expected number of runs is at most 2.

Stage 2: We process the components of H ′ one-at-a-time. We repeat the procedure of
Stage 1 on each component.

H ′′ is the hypergraph formed by removing from H ′ all vertices that are assigned a colour
during Stage 2. Noting that each edge of H ′ is no bigger than the corresponding edge of H ,
the same argument as for Lemma 6.2 yields:

Lemma 6.3 With probability at least 1
2
, every component of H ′′ has at most ∆2 log(∆2 log n) <

2∆2 log log n vertices.

Again, if any components of H ′′ have more than 2∆2 log log n vertices then we run Stage
2 over again. We probably won’t have to restart very often.

Stage 3: In this stage, we colour all the vertices of H ′′; i.e. all the remaining uncoloured
vertices of G so that no colour is assigned to any hyperedge (i.e. any neighbourhood in G)
more than 8 log ∆/ log log ∆ times.

Note that we can process the components of H ′′ independently of each other. If we
colour the vertices of each such component so that no colour appears too many times in
any hyperedge of that component, then the overall colouring of G will be as desired. The
components of H ′′ are small enough that it will straightforward to find a suitable colouring
for each of them.

Case 1: ∆ ≤ log log n.

The analysis from Section 5 implies that the desired colouring exists. For each component
of H ′′, we will find that colouring by exhaustive search. The number of possible colourings
is at most (∆ + 1)2∆2 log log n < e(log log n)4 = no(1). Each such colouring can be generated and
checked in O(m∆) time.

Case 2: ∆ > log log n.

We process the uncoloured vertices of a component of H ′′ one-at-a-time, as in Section 5.
Each vertex appears in at most ∆ neighbourhoods (i.e. hyperedges) and so the number of

26

hyperedges of H ′′ is at most ∆ × 2∆2 log log n < 2∆4 The probability that a colour appears
too many times in a particular hyperedge is at most 1

4∆4 , and so the expected number of bad
hyperedges for which this happens is at most 1

2
. This allows us to find a suitable colouring

using the technique of Erdős and Selfridge [7], as follows.

Consider a partial colouring of a component Φ of H ′′, and consider a hyperedge e and
colour c. Let α denote the number of vertices in e with colour c, and let Ψ denote the set
of uncoloured vertices in e; we will assume that α ≤ 8 log ∆/ log log ∆. We define w(e, c)
to be the sum over all subsets Ψ′ ⊆ Ψ of size 8 log ∆/ log log ∆ − α of

∏

u∈Ψ′

1
Q(u)

. We set

W =
∑

e,c w(e, c). Suppose that we were to continue colouring the vertices of H ′ one-at-a-
time, as in Phase III, each time choosing for a vertex a uniformly random member of L(v).
By Lemma 5.1(a), the expected number of edges of H ′′ which contain the same colour more
than 8 log ∆/ log log ∆ times is at most W .

Initially, when Φ colours no vertices, the calculations above yield W ≤ 1
2
. (Note that

the calculations in Section 5 actually bounded W .) So we colour all vertices one-at-a-time.
Each time we come to a vertex v, there is at least one colour in L(v) that we can assign to v
without increasing W . We can easily find this colour in polytime by simply checking what
W would change to under each of the |L(v)| possible assignments to v. When all vertices
have been coloured, we will still have W ≤ 1

2
< 1 and so no edge will contain the same colour

more than 8 log ∆/ log log ∆ times.

Each stage runs in polytime. The resulting colouring is β-frugal for β = (100 + 100 +
24) log ∆/ log log ∆ < 250 log ∆/ log log ∆.

Acknowledgement We thank an anonymous referee for a careful reading and some
helpful corrections.

References

[1] N. Alon and J. Spencer, The Probabilistic Method. Wiley, New York (1992).

[2] O. Amini, L. Esperet and J. van den Heuvel, Frugal Colouring of Graphs. CDAM
Research Report CDAM-LSE-2007-11 (2007).

[3] K. Azuma, Weighted sums of certain dependent random variables. Tokuku Math. J. 19

(1967), 357 - 367.

[4] J. Beck, An algorithmic approach to the Lovasz Local Lemma. Rand. Str. & Alg. 2,
343 - 365 (1991).

[5] H.Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Ann. Math. Statist. 23 493 - 509 (1952).

27

[6] P. Erdős and L. Lovász, Problems and Results on 3-Chromatic Hypergraphs and Some
Related Questions. In: “Infinite and Finite Sets” (A. Hajnal et. al. Eds), Colloq. Math.
Soc. J. Bolyai 11, North Holland, Amsterdam, 609–627 (1975).

[7] P. Erdős and J. Selfridge, On a combinatorial game. J. Comb. Th. (A) 14 298 - 301
(1973).

[8] P. Erdős and J. Spencer, Lopsided Lovász Local Lemma and latin transversals. Disc.
Appl. Math. 30 151 - 154 (1991).

[9] H. Hind, M. Molloy and B. Reed, Colouring a graph frugally. Combinatorica 17 469 - 482
(1997).

[10] H. Hind, M. Molloy and B. Reed, Total colouring with ∆+poly(log ∆) colours. SIAM J.
Computing 28 816 - 821 (1998).

[11] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58, 713 - 721 (1963).

[12] S. Janson, T. Luczak and A. Ruciński. Random Graphs. Wiley, New York (2000).

[13] T. Jensen and B. Toft, Graph Colouring Problems. Wiley, New York (1995).

[14] J. Kahn, Asymptotics of the list chromatic index for hypergraphs. Rand. Struc. & Alg.
17 117 - 155 (2000).

[15] C. McDiarmid, Concentration for Independent Permutations. Combinatorics, Probabil-
ity and Computing 11, 163 - 178 (2002).

[16] M. Molloy and B. Reed, A bound on the total chromatic number. Combinatorica 18

241 - 280 (1998).

[17] M. Molloy and B. Reed, Further algorithmic aspects of the Local Lemma. Proceedings
of the 30th ACM Symposium on Theory of Computing, 524–529 (1998).

[18] M. Molloy and B. Reed, Colouring graphs whose chromatic number is near their maxi-
mum degree. Proceedings of Latin American Theoretical Informatics, 216 - 225 (1998).

[19] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method. Springer (2001).

[20] M. Molloy and B. Reed, Colouring graphs when the number of colours is almost the
maximum degree. Submitted. Preliminary version in: Proceedings of the 33rd ACM
Symposium on Computing (STOC) (2001).

[21] R. Moser. A constructive proof of the Lovasz Local Lemma. Proceedings of the 41st
ACM Symposium on Theory of Computing (2009).

28

[22] R. Moser and G. Tardos. A constructive proof of the general Lovasz Local Lemma.
Manuscript.

[23] S. Pemmaraju and A. Srinivasan, The randomized coloring procedure with symmetry-
breaking. Proceedings of the 35th International Colloquium on Automata, Languages,
and Programming (ICALP), 306 - 319 (2008).

[24] B. Reed, ω, ∆ and χ. J. Graph Th. 27, 177-212 (1998).

[25] B. Reed, A strengthening of Brooks’ Theorem. J.Comb.Th.(B) 76, 136 - 149 (1999).

[26] V. Rodl, On a packing and covering problem. Eur. J. Comb. 5 (1985), 69 - 78.

[27] A. Srinivasan, Improved algorithmic versions of the Lovsz Local Lemma. Proc. ACM-
SIAM Symposium on Discrete Algorithms (SODA), 611 - 620 (2008).

[28] M.Talagrand, Concentration of measure and isoperimetric inequalities in product spaces.
Instutut Des Hautes Etudes Scientifiques, Publications Mathematiques 81, 73 - 205
(1995).

[29] R. Yuster, Linear coloring of graphs. Discrete Math 185 293 - 297 (1998).

29

