NAME:

Calculators are not permitted (nor would they be useful).

This is a closed book exam.
You can assume that the following problems are NP-complete.

SAT
Input: A boolean formula, F.
Question: Is F satisfiable?

3-SAT
Input: A CNF boolean formula, F, in which every clause has exactly 3 literals.
Question: Is F satisfiable?

IND-SET
Input: A graph G, and an integer K.
Question: Does G have an independent set of size at least K?

CLIQUE
Input: A graph G, and an integer K.
Question: Does G have a clique of size at least K?

VERTEX-COVER
Input: A graph G, and an integer K.
Question: Does G have a vertex cover of size at most K?

PARTITION
Input: A list of positive integers a_1, \ldots, a_n.
Question: Can the list be partitioned into 2 parts A_1, A_2 such that the sum of each part is the same?

KNAPSACK
Input: A list of weights w_1, \ldots, w_n and values v_1, \ldots, v_n along with a capacity W and a target T. All numbers are positive integers.
Question: Is there a subset of indices $I \subset \{1, \ldots, n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i \geq T$?

HAM-PATH
Input: A graph G, with two specified vertices u, v.
Question: Does G have a Hamilton path from u to v?

HAM-CYCLE
Input: A graph G.
Question: Does G have a Hamilton cycle?
1. (21 pts) For each of the following statements, say that it is one of:

 A True.
 B False.
 C No one knows, but most researchers think it is True.
 D No one knows, but most researchers think it is False.

Do not explain your answer.

(a) $P = NP$

(b) $P = NP \cap \text{co-NP}$

(c) $L = NL \cap \text{co-NL}$

(d) $L = \text{PSPACE}$

(e) $\text{HAM-PATH} \in \text{PSPACE}$

(f) There is a 2-approximation algorithm for the non-decision version of CLIQUE

(g) There is an algorithm to determine whether a given algorithm will output the square of the input.
2. (12 pts) Only short answers are required here.

 (a) (4 pts) Name a problem in NP that is not NP-complete and is not thought to be in P.

 (b) (4 pts) Name a problem that is NL-complete

 (c) (4 pts) How is the transition function of a Nondeterministic Turing Machine different than the transition function of the usual kind of Turing Machine?
3. (17 pts) Recall that the Halting Problem is:

Input: \(< P >\), the description of an algorithm (i.e. Turing Machine), and \(X\) an input for \(P\).

Question: Does \(P\) halt when given input \(X\)?

Prove that there is no algorithm (i.e. Turing machine) that solves the Halting Problem. Do not use a reduction from another undecidable problem.
4. (20 pts) Consider the set

\[A = \{(< P, k>) | \text{ for all } x \geq k, P(x + 1) \geq P(x) + 2\} \]

\(P \) is a Turing machine that has positive integers as input and output, and \(k \) is a positive integer.

The condition “\(P(x + 1) \geq P(x) + 2 \)” means that \(P(x + 1), P(x) \) both halt and \(P(x + 1) \) returns a number that is at least 2 more than what \(P(x + 2) \) returns.

(a) (15 pts) Is \(A \) decidable? Prove your answer.
(a) \(5\text{ pts}\) Answer Yes or No. You don’t need to prove your answer.

(i) Is \(A\) recognizable?

(ii) Is \(\overline{A}\) recognizable?
5. (36 pts) Prove that each of the following problems is NP-complete. You do not have to prove that they are in NP (until later in the exam).

(a) (12 pts)

4-SAT

Input: A CNF boolean formula F where every clause has exactly 4 literals.

Question: Does F have a satisfying assignment?
(b) (12 pts)

WEIGHTED-IND-SET

Input: A graph G, with a positive integer weight on each vertex, and an integer W.

Question: Does G have an independent set with total weight at least W?
(c) (12 pts)

BIG-CYCLE

Input: A graph G.

Question: Does G have a cycle going through at least $\frac{1}{3}$ of the vertices of G?
6. **(12 pts)** Choose any two problems from the previous question and prove that they are both in NP. For one problem, do this using a verification algorithm. For the other problem, do this using a nondeterministic Turing Machine.
7. **(12 pts)** A satisfying assignment of a boolean formula is *unlocked* if there is a variable which you can change to obtain another satisfying assignment. A satisfying assignment is *locked* if it is not unlocked; i.e. if it is not possible to obtain another satisfying assignment by changing exactly one variable. Eg. for the formula:

\[
(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3)
\]

The satisfying assignment \(x_1 = F, x_2 = F, x_3 = F\) is *unlocked* because changing \(x_3\) produces \(x_1 = F, x_2 = F, x_3 = T\) which is also satisfying.

The satisfying assignment \(x_1 = T, x_2 = T, x_3 = T\) is *locked* because none of the three assignments obtained by changing exactly one of the variables is satisfying.

LOCK-SAT

Input: A boolean formula \(F\).

Question: Does \(F\) have a locked satisfying assignment?

Prove that \(\text{LOCK-SAT} \in \text{PSPACE}\)