1. (12 pts) Short Answers.

(a) (4 pts) Name any NP-complete problem.

 \textit{CNF-SAT}

(b) (4 pts) State Church's Thesis.

 Any logic-based algorithm can be encoded as a Turing Machine

(c) (4 pts) What does it mean for a verification algorithm to run in polynomial time?

 A verification algorithm takes two inputs: \(I, C \).

 To run in polytime, it must always run in at most \(f(\|I\|) \) steps, where \(f \) is a polynomial.
2. (10 pts) This figure represents a Turing Machine at some point during its run.

(a) (5 pts) Give the configuration that represents this figure.

(b) (5 pts) Part of the transition function says:

\[(q_3, y) \rightarrow (q_5, t, \text{Left})\]

Draw a figure representing the Turing Machine after the next step.
3. (30 pts) Consider the following language:

\[A = \{ \langle P, k \rangle : \text{there are at least } k \text{ integers } x \text{ such that } P(x) \text{ halts and returns a number that is at least } xk + 5 \} \]

\(P \) is a Turing Machine with non-negative integers as inputs and outputs; \(k \) is a non-negative integer.

(a) (15 pts) Is \(A \) decidable? Prove your answer.

NO

Suppose that \(Q \) decides \(A \). Then the following algorithm will solve the Halting Problem:

Input: \(\langle H, y \rangle \)

Create the following text file:

\[\langle P \rangle \\
\text{Input } x \\
\text{Run } U(\langle H, y \rangle) \\
\text{return } 3x + 5 \]

Run \(Q(\langle P, 3 \rangle) \) to determine whether \((\langle P, 3 \rangle) \in A \)

If \((\langle P, 3 \rangle) \notin A \) then accept \(\# \) indicating \(H(y) \) does not halt
If \((\langle P, 3 \rangle) \in A \) then reject \(\# \) indicating \(H(y) \) halts

Note that to create the text file, we simply copy \(\langle H, x \rangle \) from the input into the appropriate place.

If \(H(y) \) does not halt, then for every \(x \), \(P(x) \) will not halt, so \((\langle P, 3 \rangle) \notin A \)

If \(H(y) \) halts, then \(P(x) \) returns a value that is at least \(3x + 5 \), so \((\langle P, 3 \rangle) \in A \)

This decides the Halting Problem. But the Halting Problem is not decidable. **CONTRADICTION.**

A, \(\langle P, 3 \rangle \), \(H \) is a \(\langle \rangle \) which is possible.
(b) (15 pts) Either A or \overline{A} is recognizable. Which one? Prove that it is recognizable.

A is recognizable. The following algorithm will recognize it:

Input $\langle P \rangle, k$

For $s = 1$ to ∞

$c := 0$

For $j = 1$ to s

Run $U(\langle P \rangle, j)$ for s steps

U is the Universal Turing Machine

if $U(\langle P \rangle, j)$ halts within s steps and
returns a value $\geq j \cdot k + 5$ then $c := c + 1$

if $c = k$ then halt accept

If this halts accept, then there were k distinct values
of j for which $P(j)$ halts and returns $\geq j \cdot k + 5$.

So $\langle \langle P \rangle, k \rangle \in A$

If $\langle P \rangle, k \in A$ then there are at least k values x_1, x_2, \ldots, x_k for which $P(x_i)$ returns $\geq x_i \cdot k + 5$. There is some integer s^*

that is greater than each of x_1, x_2, \ldots, x_k and s^* is

greater than the number of steps taken by $U(\langle P \rangle, x_1), \ldots, U(\langle P \rangle, x_k)$

This procedure will halt accept when $s = s^*$.
4. (24 pts) Consider the following problems.

COST-OF-MAX-PATH
Input: A connected graph G, with an integer weight $w_e \geq 0$ on each edge e, and two specified vertices u, v.
Output: The total cost of a path in G from u to v with the greatest total weight.

Note: a path cannot repeat any vertices. So a maximum weight path can only visit each vertex at most once. The total weight of a path is the sum of the weights of all the edges on the path.

DCMP
Input: A connected graph G, with an integer weight $w_e \geq 0$ on each edge e, two specified vertices u, v, and an integer $T \geq 0$.
Question: Is there a path in G from u to v of total weight at least T?

DCMP stands for Decision-Cost-of-Max-Path.

(a) (6 pts) Prove that DCMP is in NP.

This is a decision problem.
If the answer is YES, then the certificate is
a sequence of vertices $V_0 = (x_0, x_1, x_2, \ldots, x_e = V$ which form a path of weight $\geq T$.

The verification algorithm confirms:
(i) (x_i, x_{i+1}) is an edge for each i;
(ii) the weights of the edges total $\geq T$

Part (i) takes $O(n)$ time (on an n-vertex graph).
The time required for (ii) is proportional to the total # of digits in the weights on the path which is \leq the size of the input file containing those weights.

So this is a poly time verification algorithm.
(b) (8 pts) Show that if there is a polytime algorithm for DCMP then there is a polytime algorithm for COST-OF-MAX-PATH.

Let W be the total of all the weights.
The # of digits in W is \leq the total # of digits of all weights which is \leq the size of the input file.

So $\log W$ is $O(\text{input file})$

Every path in G has total weight $\leq W$

If Q solves DCMP in poly-time, then we can use Q, along with binary search, to find the largest $0 \leq T \leq W$ such that DCMP(G, u, v, T) returns YES. T is the correct answer for COST-OF-MAX-PATH (G, u, v).

Binary search requires $\log W$ calls to Q.

Since Q and $\log W$ are both polynomial in the size of the input, this is a polytime algorithm.
(c) (10 pts) Recall the problem:

HAM-PATH

Input: A connected graph G and two specified vertices u, v.

Question: Is there a Hamilton path in G from u to v?

Recall that a Hamilton path visits every vertex in G exactly once. (Usually we don’t specify that G is connected, but it is convenient to do so here, and it makes little difference since the condition is easy to check.)

Prove that $\text{DCMP} \geq_P \text{HAM-PATH}$

G, u, v is an input to HAM-PATH

Set n = the # of vertices in G.

We create an input for DCMP as follows:

a) Give every edge weight $w_e = 1$

b) Set $T = n - 1$

A path π from u to v has weight ≥ 2 iff it contains at least $n - 1$ edges; i.e., iff it is a Hamilton path.

$\therefore \text{DCMP}(G, u, v, T)$ has the same answer as $\text{HAM-PATH}(G, u, v)$

Take 1 step for each edge

b) Takes 1 step

The trans for motion takes poly time

$\therefore \text{DCMP} \geq_P \text{HAM-PATH}$
5. (8 pts) A, B, C are recognizable languages. Prove that \(A \cup B \cup C \) is recognizable.

\[
\begin{align*}
\text{Suppose } Q_A & \text{ recognizes } A \\
Q_B & \text{ recognizes } B \\
Q_C & \text{ recognizes } C \\
\text{The following algorithm will recognize } A \cup B \cup C \\
\end{align*}
\]

\[
\begin{align*}
\text{Input } x \\
\text{for } s = 1 \text{ to } \infty \\
\text{run } Q_A(x) \text{ for } s \text{ steps} \\
\text{run } Q_B(x) \text{ for } s \text{ steps} \\
\text{run } Q_C(x) \text{ for } s \text{ steps} \\
\text{if either one halts accept, then accept.}
\end{align*}
\]

If \(x \in A \cup B \cup C \) then neither of \(Q_A(x), Q_B(x), Q_C(x) \) will halt accept, so this algorithm will not halt accept.

If \(x \in A \cup B \cup C \) then at least one of \(Q_A(x), Q_B(x), Q_C(x) \) will halt accept. Let \(s_x \) be the number of steps it takes. Then this algorithm will accept at iteration \(s = s_x \).

\[\therefore \text{This algorithm recognizes } A \cup B \cup C\]