1. **(30 pts)**

 A **vertex cover** is a set S of vertices so that every edge of G has an endpoint in S.

 Consider the following problem:

 WEIGHTED-VERTEX-COVER

 Input: A graph G with a positive integer weight on every vertex.

 Output: A vertex cover S with the smallest possible total weight.

 We’ll use the abbreviation WVC.

 Find a Yes/No problem in NP which is equivalent to WVC.

 Prove (i) that any polytime algorithm for your problem can be used to provide a polytime algorithm for WVC, and (ii) that any polytime algorithm for WVC can be used to provide a polytime algorithm for your problem.

 Then prove that your problem is in NP, using either a verification algorithm or a Non-deterministic Turing Machine.

2. **(25 pts)** The Bin Packing problem is: You are given a set of items (eg. files), each with a certain size. You must pack them into bins (eg. discs) each with the same given capacity, using as few bins as possible. The decision version is:

 BIN-PACK

 Input: A list of integers $x_1, ..., x_n$, a capacity W and a target T.

 Question: Is there a partition of $\{1, ..., n\}$ into $B_1, ..., B_t$, for some $t \leq T$, such that for every j we have $\sum_{i \in B_j} x_i \leq W$?

 (a) Prove that BIN-PACK is in NP using a verification algorithm.

 (b) Prove that BIN-PACK is in NP using a Non-deterministic Turing Machine.

 (c) Prove that BIN-PACK is NP-complete.
3. **(30 pts)**

KILL-CYCLES

Input: A directed graph G, and a target T.

Question: Is it possible to remove T or fewer edges from G so that the remaining graph does not have any directed cycle?

A *directed cycle* is a cycle where all the edges point in one direction around the cycle. Eg. $u \rightarrow v, v \rightarrow w, w \rightarrow x, x \rightarrow y, y \rightarrow u$.

(a) Prove that KILL-CYCLES is in NP.

(b) Prove that KILL-CYCLES is NP-complete.

 Hint: Show that VERTEX-COVER \leq_p KILL-CYCLES. Given an input G for VERTEX-COVER, you must construct an input D for KILL-CYCLES. For each vertex $v \in G$, there will be two vertices $v_1, v_2 \in D$. Think about: in VERTEX-COVER you are looking for a small set of vertices, while in KILL-CYCLES you are looking for a small set of edges. So each vertex in G should correspond to an edge in D.

4. **(30 pts)** For each of the following, either prove that the problem is in P or prove that it is NP-complete. You do not have to prove that the problems are in NP.

 (a) **5-SAT**

 Input: A CNF boolean formula F in which every clause contains exactly 5 literals.

 Question: Is F satisfiable?

 (b) **LONG-PATH**

 Input: An undirected graph G with two specified vertices u, v, and a target T.

 Question: Does G have a path from u to v of length at least T?

 Clarification: A path does not repeat any vertices. Its length is the number of edges.

 (c) **CONNECTED-SUBGRAPH**

 Input: An undirected graph G with an integer weight $w_e \geq 0$ on each edge e, and a target T.

 Question: Does G contain a connected subgraph using every vertex of G whose edges have total weight at most T?

5. **(12 pts)** Prove that for every language $L \in NP$, there is a constant c such that L can be decided in time $O(2^{n^c})$.

6. **(12 pts)** Prove that if there is an NP-complete language Q in co-NP, then NP=co-NP.