
Journal of Combinatorial Theory, Series B 134 (2019) 264–284
Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series B

www.elsevier.com/locate/jctb

The list chromatic number of graphs with small
clique number

Michael Molloy 1

Dept of Computer Science, University of Toronto, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 January 2017
Available online 13 July 2018

Keywords:
List colouring
Local lemma
Entropy compression

We prove that every triangle-free graph with maximum degree
Δ has list chromatic number at most (1 + o(1)) Δ

ln Δ . This
matches the best-known upper bound for graphs of girth
at least 5. We also provide a new proof that for any r ≥
4 every Kr-free graph has list-chromatic number at most
200rΔ ln ln Δ

ln Δ .
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We provide new proofs of two results of Johansson. The proofs are much shorter and
simpler, and obtain an improvement in the constant of the first result. We use entropy
compression, a powerful new take on the Lovász Local Lemma.

The first result bounds the list chromatic number of a triangle-free graph. The list
chromatic number of a graph G is the smallest q such that: for any assignment of colour-
lists of size q to each vertex, it is possible to give each vertex a colour from its list and
obtain a proper colouring. Johansson [17] proved that every triangle-free graph has list-

E-mail address: molloy@cs.toronto.edu.
1 Research supported by an NSERC Discovery Grant.
https://doi.org/10.1016/j.jctb.2018.06.007
0095-8956/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jctb.2018.06.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
mailto:molloy@cs.toronto.edu
https://doi.org/10.1016/j.jctb.2018.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2018.06.007&domain=pdf

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 265
chromatic number at most 9Δ/ lnΔ where Δ is the maximum degree of the graph. The
leading constant was improved to 4 in [25]. Here we obtain 1 + o(1):

Theorem 1. For every ε > 0 there exists Δε such that every triangle-free graph G with
maximum degree Δ ≥ Δε has χ�(G) ≤ (1 + ε)Δ/ ln Δ.

In other words: every triangle-free graph with maximum degree Δ has list chromatic
number at most (1 + o(1)) Δ

ln Δ .
The bound in Theorem 1 matches the best known upper bound for graphs of girth

five [19], and indeed for any constant girth. The best known lower bound is 1
2

Δ
ln Δ and

comes from random Δ-regular graphs. For constant Δ, random Δ-regular graphs are
essentially high girth graphs: For any constant K, we expect O(1) cycles of length greater
than K, and so we can form a high-girth graph by removing a relatively small number
of edges; furthermore, those edges form a matching, and so this changes the chromatic
number by at most one.

This bound matches what is called the shattering threshold for colouring random
regular graphs [32], which is often referred to as the “algorithmic barrier” [1,32]. This
threshold arises in a wide class of problems on random graphs, and finding an efficient
algorithm to solve any of these problems for edge-densities beyond the algorithmic barrier
is a major open challenge (see e.g. [1]); for colourings of random regular graphs, this
means finding an efficient algorithm using (1 − ε) Δ

ln Δ colours for some ε > 0. Our proof
of Theorem 1 yields an efficient randomized algorithm to find a colouring for maximum
degree up to the algorithmic barrier, not just for random regular graphs (where such
algorithms are previously known [4]), but for every triangle-free graph.

In a followup paper, Johansson [17] proved that for any constant r ≥ 4, every Kr-free
graph has list-chromatic number at most O(Δ ln ln Δ/ ln Δ). Here we match his bound,
even when r grows with Δ.

Theorem 2. For any r ≥ 4, every Kr-free graph G with maximum degree Δ has χ�(G) ≤
200rΔ ln ln Δ

ln Δ .

Theorem 2 holds for any r but it is trivial unless r < ln Δ/200 ln ln Δ. Note also that
this implies a bound on the chromatic number of H-free graphs for every fixed subgraph
H, as an H-free graph is also K|H|-free. (Here H-free means that there is no subgraph
isomorphic to H; the subgraph is not necessarily induced.)

These two results of Johansson were never published. His proof for triangle-free graphs
was presented in [21] and his proof for Kr-free graphs was presented in [25].

It is a longstanding conjecture [7] that for constant r, every Kr-free graph has
chromatic number O(Δ/ ln Δ). So we make no attempt to optimize the constant in
Theorem 2. Thus far, we do not even know whether the independence number is
large enough to support this conjecture. Prior to Johansson’s work, Shearer [29,30]
proved that every triangle-free graph on n vertices has independence number at least

266 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
(1 − o(1))n ln Δ/Δ (see also [5]) and that every Kr-free graph has independence number
at least Ω(n ln Δ/Δ ln ln Δ). His latter bound plays an important role in our proof of
Theorem 2. Ajtai et al. conjectured that the ln ln Δ term can be removed here [5].

Previous proofs of these, and similar results, used an iterative colouring procedure.
In each iteration, one would colour some subset of the vertices, where each vertex re-
ceived a random colour from its list. Every vertex that received the same colour as a
neighbour would be uncoloured. (See [21] for a presentation of this technique.) One of
the reasons for doing this is that the Local Lemma is much easier to apply when vertices
are assigned colours independently. Entropy compression allows us to use Local Lemma
like calculations for random colouring procedures where, roughly speaking, vertices are
coloured one-at-a-time with colours not appearing on any neighbours.

This technique began with Moser’s algorithm [22] which generated solutions to k-SAT
whose existence was guaranteed by the Local Lemma; this was then extended by Moser
and Tardos [23] to a very wide range of applications of the Local Lemma. (See [31,14] for
good expositions of the technique.) Subsequently, Grytczuk, Kozik and Micek [16] and
Achlioptas and Iliopoulos [2] noted that this algorithm in fact can be applied to yield
new existence results. Previous applications to graph colouring (e.g. [13,26,3,27,9,11,15])
involved situations where, throughout the algorithm, each vertex is guaranteed to have
a large number of available colours to choose from. That is not true in this paper since
the degree of a vertex can be much higher than its list-size. The novelty we use here is
to treat a vertex having a small number of available colours as a bad event.

2. Preliminary tools

We begin with a common version of the Local Lemma; see e.g. Chapter 19 of [21].

The Lovász Local Lemma. [12] Let A1, ..., An be a set of random events, each with prob-
ability at most 1

4 . Suppose that for each 1 ≤ i ≤ n we have a subset Di of the events such
that Ai is mutually independent of all other events outside of Di. If for each 1 ≤ i ≤ n

we have
∑
j∈Di

Pr(Aj) <
1
4 ,

then Pr(A1∩...∩An) > 0.

We say that boolean variables X1, ..., Xm are negatively correlated if

for all I ⊆ {1, ...,m} : Pr (∧i∈IXi) ≤
∏
i∈I

Pr(Xi).

Panconesi and Srinivasan [24] noted that many Chernoff-type bounds on independent
variables also hold on negatively correlated variables. We will use the following:

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 267
Lemma 3. Suppose X1, ..., Xm are boolean variables, and set Yi = 1 − Xi. Set X =∑m
i=1 Xi. Then for any 0 < t ≤ E(X):

(a) If X1, ..., Xm are negatively correlated then Pr(X > E(X) + t) < e−t2/3E(X).
(b) If Y1, ..., Ym are negatively correlated then Pr(X < E(X) − t) < e−t2/2E(X).

In this paper, we only require part (b).
Part (a) follows from Corollary 3.3 of [24]. The proof of part (b) is very similar and

we sketch it here.
For independent variables, the bound follows from standard Chernoff-type bounds; e.g.

we refer to Theorem 2.3(c) in [20]. To adapt the proof so that it holds when Y1, ..., Ym

are negatively correlated, we only need one change. Set Y =
∑m

i=1 Yi = m − X. The
proof for independent variables uses that for any h > 0:

E(ehY) = E(
m∏
i=1

ehYi) =
m∏
i=1

E(ehYi).

We replace this with

E(ehY) = E(
m∏
i=1

ehYi) ≤
m∏
i=1

E(ehYi). (1)

The highlights of the proof from [20] are: Set pi = Pr(Yi) for each i and set p =
∑

pi/m =
E(Y)/m. For any h > 0 we have E(ehYi) = 1 − pi + pie

h and so (1) and the arithmetic
mean-geometric mean inequality yield

E(ehY) ≤
m∏
i=1

(1 − pi + pie
h) ≤ (1 − p + peh)m.

Thus Pr(Y ≥ s) ≤ e−hs(1 − p + peh)m. A good choice of h (see the proof of Lemma 2.2
in [20]) yields that for any 0 ≤ z ≤ 1,

Pr(X ≤ E(X) −mz) = Pr(Y ≥ E(Y) + mz) ≤
((

p

p + z

)p+z (1 − p

1 − p− z

)1−p−z
)m

.

Now set t = mz and apply some calculus (see the proof of Lemma 2.3(c) in [20]) to
obtain the bound for Lemma 3(b).

Remark. Intuitively, it seems that when X1,, Xm are negatively correlated then typ-
ically Y1, ..., Ym would also be negatively correlated. Indeed that is the case in the
application of Lemma 3 in this paper. However, it is not always the case. Choose a
string from an urn containing two copies of the strings {000, 011, 101, 110} and one copy

268 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
of each of the other boolean strings of length three. Let Xi be the event that the ith
digit is 1. Then X1, X2, X3 are negatively correlated but Pr(Y1 ∧ Y2 ∧ Y3) = 1

6 > 1
8 =

Pr(Y1)Pr(Y2)Pr(Y3).

3. Triangle-free graphs

Each vertex v has a list Cv of colours that may be assigned to v of size

|Cv| = q := (1 + ε) Δ
ln Δ .

It suffices to prove Theorem 1 for small ε; in particular we will assume ε < 1.
A partial list colouring σ is a colour assignment to a subset of the vertices, where the

colours are drawn from their lists. Given a partial colouring, it is helpful if each vertex
has many colours which do not appear on its neighbourhood. To this end, we set

L = Δε/2.

Note that if Δ neighbours of v are each independently given a uniformly random colour
from their lists, then the expected number of colours from Cv that are not chosen for any
neighbour of v is at least q (1 − 1/q)Δ ≈ (1 +ε)Δ

ε
1+ε / ln Δ > L. So it is plausible that we

can obtain a colouring in which every vertex has at least L colours which do not appear
on its neighbourhood. In fact we will prove that we can obtain such a partial colouring
with a substantial number of vertices coloured. From this, it will be straightforward to
complete the colouring.

It will be convenient to treat Blank as a colour, and the uncoloured vertices are viewed
as having been assigned this colour. Blank is the only colour that can be assigned to two
neighbours. Most of our work goes towards finding a partial list colouring with certain
properties that make it easy to complete to a full colouring.

We use Nv to denote the open neighbourhood of v (to be clear: v /∈ Nv). Given a
partial colouring σ, we define for each vertex v and colour c 	= Blank:

Lv is the set of colours in Cv not appearing on Nv, along with Blank;

Tv,c is the set of vertices u ∈ Nv such that σ(u) = Blank and c ∈ Lu.

Note that the preceding definition does not apply to Tv,Blank; it will be convenient to set
Tv,Blank = ∅ for all v.

Given a partial colouring, we define the following two flaws for any vertex v:

Bv ≡ |Lv| < L

Zv ≡
∑

|Tv,c| >
1
10L× |Lv|
c∈Lv

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 269
We say v is the vertex of flaw f = Bv or Zv, and we denote v(f) := v.

Observation 4. Bv is determined by the colours of the vertices in N(v) and Zv is deter-
mined by the colours of the vertices within distance two of v.

Remark. If we were content with proving the weaker bound of χ�(G) < (2 + o(1)) Δ
ln Δ

colours, then we could have defined Zv to be a much simpler flaw, namely that v has at
least L blank neighbours. We use that flaw in Section 4.

Our main goal is to find a partial colouring which has no flaws. The following proof
that such a colouring can be completed to a proper colouring with no blank vertices is
essentially the proof of the main result in [28].

Lemma 5. Suppose we have a partial list colouring σ such that for every vertex v, neither
Bv nor Zv hold. Then we can colour the blank vertices to obtain a full list colouring.

Proof. We give each blank vertex v a uniformly chosen colour from Lv\Blank. For any
edge uv and colour c ∈ Lu ∩Lv, c 	= Blank we define Auv,c to be the event that u, v both
receive c. Then Pr(Auv,c) = 1/(|Lu| − 1)(|Lv| − 1). Furthermore, Auv,c shares a vertex
with at most

∑
c′∈Lv

|Tv,c′ | +
∑

c′∈Lu
|Tu,c′ | other events. The number of such events is

at most 1
10L(|Lv| + |Lu|) since Zu, Zv do not hold. It is straightforward to check that

Auv,c is mutually independent of all events with which it does not share a vertex (see
e.g. the Mutual Independence Principle in Chapter 4 of [21]). So our lemma follows from
the Local Lemma as Bu, Bv do not hold and so

1
(|Lu| − 1)(|Lv| − 1) × L(|Lv| + |Lu|)

10

≤ L

10(|Lu| − 1) × |Lv|
|Lv| − 1 + L

10(|Lv| − 1) × |Lu|
|Lu| − 1

<
1
9 + 1

9 <
1
4 ,

for Δ > 202/ε; i.e. L > 20. �
In the next section, we will present an algorithm to find a flaw-free colouring.

3.1. Our colouring algorithm

Consider a partial colouring σ and any flaw f of σ. We will use a recursive algorithm
to correct f . Recall that every neighbourhood is an independent set, and so we recolour
the vertices in a neighbourhood independently.

We use the following ordering on the flaws: every Bv comes before every Zu, and the
Bv’s and Zu’s are each ordered according to the labels of v, u. We use dist(w, v) to denote
the distance from w to v; i.e. the number of edges in a shortest w, v-path.

270 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
FIX(f, σ)
Set v = v(f) and assign each u ∈ Nv a uniformly selected colour from Lu.
While there are any flaws Bw with dist(w, v) ≤ 2 or Zw with dist(w, v) ≤ 3:

Let g be the least such flaw and call FIX (g, σ′) where σ′ is the current colouring.
Return the current colouring.

Remark. It is possible that f still holds after recolouring the neighbourhood of f , but
then f itself would count as a flaw within distance 2 or 3 in the next line (but is not
necessarily the least of those flaws). Note further that even if f does not hold after the
recolouring, it is possible for future recolourings to bring f back and so FIX may be
called again on f further down in the recursive calls.

Next we note that if FIX terminates, then we have made progress in correcting the
flaws.

Observation 6. In the colouring returned by FIX(f, σ):

(a) f does not hold; and
(b) there are no flaws that did not hold in σ.

Proof. Part (a) is true because we cannot exit the while loop if f holds. Part (b) is
true because any new flaw f ′ must have arisen during a call of FIX on some f ′′ whose
vertex is within distance two or three of v(f ′) (depending on whether f ′ is a B-flaw or a
Z-flaw), as these are the only calls in which a vertex within distance one or two of v(f ′)
can be recoloured (see Observation 4). But we would not have exited the while loop of
that call if f ′ still held. �

So we can obtain a flaw-free colouring by beginning with any partial colouring, e.g. the
all-blank colouring, and then calling FIX at most once for each of the at most 2n flaws of
that colouring. Thus it suffices to prove that FIX terminates with positive probability;
in fact, we will show that with high probability it terminates quickly (see the remark at
the end of Subsection 3.3).

In the next subsection we prove that the proportion of colourings of N(v) for which
f holds is at most Δ−4. In Subsection 3.3 we use that to show FIX terminates. Note
that there are at most 2Δ3 flaws g which could appear in the while loop in FIX (f, σ).
Since 2Δ3 ×Δ−4 < 1

4 (for large Δ) this feels like a Local Lemma computation. Entropy
compression allows us to use such a computation in a procedure like FIX, which is more
complicated than what we would typically apply the Local Lemma to; in particular note
how quickly dependency spreads amongst the various flaws while running FIX.

3.2. Probability bounds

In this section, we prove the key bounds on the probability of our flaws.

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 271
Setup for Lemma 7: Each vertex u ∈ Nv has a list Lu containing Blank and perhaps
other colours. We give each u ∈ Nv a random colour from Lu, where the choices are
made independently and uniformly. This assignment determines Lv, Tv,c.

Lemma 7.

(a) Pr(|Lv| < L) < Δ−4.
(b) Pr(

∑
c∈Lv

|Tv,c| > 1
10L × |Lv|) < Δ−4.

Remarks. (1) This looks like an analysis of the probability that the recolouring in the
first line of FIX produces another flaw on Nv. But we will actually apply it to count the
number of choices for the flawed colouring that was on Nv before the recolouring. This
subtlety is important if one attempts to adapt this proof by using a different recolouring
procedure designed to have a low probability of producing a flaw.

(2) Kim’s proof [19] for graphs of girth five was much simpler than Johansson’s
proof [17] for triangle-free graphs. The main reason was that if G has girth five then
the neighbours of v have disjoint neighbourhoods (other than v) which resulted in their
lists being, in some sense, independent of each other. In a triangle-free graph with many
4-cycles, we could have two neighbours u1, u2 of v whose neighbourhoods overlap a great
deal and thus their lists would be highly dependent. Intuitively, it was clear that this
should be helpful: if Lu1 and Lu2 are very similar then u1, u2 would tend to get the same
colour which would tend to increase the size of Lv. But, frustratingly, we did not know
how to take advantage of this. In the current paper, the fact that dependencies between
Lu1 , Lu2 do not hurt is captured by the stronger fact that Lemma 7 holds for any set of
lists on the neighbours of v, even lists produced by an adversary.

Proof. For each colour c ∈ Cv\{Blank} we define:

ρ(c) =
∑

u∈Nv:c∈Lu

1
|Lu| − 1 .

Thus, since each Lu has |Lu| − 1 non-Blank colours,

∑
c∈Cv\{Blank}

ρ(c) ≤
∑
u∈Nv

∑
c∈Lu\{Blank}

1
|Lu| − 1 ≤ Δ. (2)

Part (a): If c ∈ Lu then |Lu| ≥ 2 and so we have 1 − 1
|Lu| > e−1/(|Lu|−1). We apply this

inequality to obtain:

E(|Lv|) = 1 +
∑

c∈Cv\{Blank}

∏
u∈Nv:c∈Lu

(
1 − 1

|Lu|

)
>

∑
c∈Cv\{Blank}

e−ρ(c). (3)

By convexity of e−x, (2) and recalling that |Cv| = q = (1 + ε)Δ/ ln Δ we have

272 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
E(|Lv|) > qe−Δ/q = (1 + ε)Δ
ln Δ × Δ− 1

1+ε > 2Δε/2 = 2L,

for ε < 1.
To prove concentration, we set Xc to be the indicator variable that c ∈ Lv; thus

|Lv| = 1 +
∑

c∈Cv\{Blank} Xc. We wish to apply Lemma 3(b) to bound the probability
that |Lv| is too small, and so we set Yc = 1 −Xc and argue that the variables {Yc} are
negatively correlated.

Claim. For any I ⊆ Cv\{Blank}, Pr(∧c∈IYc) ≤
∏

c∈I Pr(Yc).

Proof. Consider any I ⊆ Cv\{Blank} and c′ /∈ I. We will first argue that

Pr(∧c∈IYc|Xc′) ≥ Pr(∧c∈IYc). (4)

To sample a colour assignment conditional on Xc′ we simply choose for each u ∈ Nv,
a uniform colour from Lu\{c′}. Since c′ /∈ I, it is clear that this does not decrease
the probability that every colour in I is selected at least once, i.e. Pr(∧c∈IYc). This
establishes (4). This is equivalent to Pr(∧c∈IYc|Yc′) ≤ Pr(∧c∈IYc), which is equivalent
to

Pr(Yc′ | ∧c∈I Yc) ≤ Pr(Yc′). (5)

Applying (5) inductively yields the claim. �
Now Lemma 3(b) yields:

Pr(|Lv| <
1
2E(|Lv|)) < e−

1
8E(|Lv|) < e−

1
4Δε/2

< Δ−4,

for Δ sufficiently large in terms of ε. This proves part (a).
Part (b): Let Ψ be the set of colours c ∈ Lv\{Blank} with ρ(c) > Δε/4. Using the same

calculations as those for (3), but this time applying 1 − 1
|Lu| < e−1/|Lu| < e−1/2(|Lu|−1)

for |Lu| ≥ 2, the probability that Lv contains at least one colour from Ψ is at most

E(|Lv ∩ Ψ|) <
∑
c∈Ψ

e−
1
2ρ(c) < qe−

1
2Δε/4

<
1
2Δ−4,

for Δ sufficiently large in terms of ε. For any c /∈ Ψ:

E(|Tv,c|) =
∑

u:c∈Lu

1
|Lu|

< ρ(c) ≤ Δε/4.

Since the choices of whether u ∈ Tv,c, i.e. whether u receives Blank, are made indepen-
dently, standard concentration bounds apply. E.g. Theorem 2.3(b) of [20] says that for
any ε > 0,

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 273
Pr(|Tv,c| > (1 + ε)E(|Tv,c|) < e−ε2E(|Tv,c|)/2(1+ ε
3),

which yields Pr(|Tv,c| > E(|Tv,c|) + Δε/4) < e−
3
8Δε/4 . So the probability that there is at

least one c /∈ Ψ with |Tv,c| > 2Δε/4 is at most

qe−
3
8Δε/4

<
1
2Δ−4,

for sufficiently large Δ. So with probability at least 1 − Δ−5 we have

∑
c∈Lv\{Blank}

|Tv,c| =
∑

c∈Lv\Ψ
|Tv,c| ≤ 2Δε/4|Lv| <

1
10L× |Lv|. �

3.3. The algorithm terminates

The basic idea behind entropy compression is that a string of random bits cannot
be represented by a shorter string. We will consider the string of random bits used for
the recolouring steps of FIX and show that as we run FIX we can record a file which
allows us to recover those random bits. Each time we call FIX (g, σ), we record the
name of g and the colours of the vertices that determine g. It is not hard to see that
this, along with the current colouring, will allow us to reconstruct all of the preceding
random colour choices. Because the colours which determine g indicate that something
unlikely occurred (namely the flaw g), we can represent those colours in a very concise
way. However, it may take a large amount of space to record the name of g. So instead,
we use the degree bound in our graph to record a concise piece of information that will
allow us to determine the name of g. This will lead to a compression of those random
colour choices if the algorithm continues for too many steps.

First we describe these concise representations. Consider any vertex v. Let N3(v)
denote the set of vertices within distance 3 of v (including v itself). For each 1 ≤ � ≤
|N3(v)| < Δ3 we let ω(�, v) denote the �th vertex of N3(v) when those vertices are listed
in order of their labels. When we call, e.g. FIX (Bw, σ′) while running FIX (Zv, σ′′), rather
than recording the name “Bw” it will suffice to just record “(B, �)” where w = ω(�, v).
So despite the fact that the number of vertices, and hence the size of the label of w, is
not bounded in terms of Δ, we are able to record w using only roughly 3 log2 Δ bits.

Suppose that we are given a collection of lists L = {Lu : u ∈ Nv} of available
colours for the neighbours of v. Let B(L), resp. Z(L) be the set of all colour assignments
from these lists such that Bv, resp. Zv, holds. Lemma 7 implies that |B(L)|, |Z(L)| <
Δ−4 ∏

u∈Nv
|Lu|. For each 1 ≤ � ≤ |B(L)| + |Z(L)|, we let β(�, L) denote the �th member

of B(L) ∪Z(L) in some fixed ordering. When we run, e.g. FIX (Bv) we record the colours
of Nv before they get recoloured; but instead of listing all the colours, we only need to
record the value � such that those colours are β(�, L).

We add some write statements to FIX as follows.

274 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
FIX(f, σ)
Set L = {Lu : u ∈ Nv(f)}.

Write “COLOURS = �” where β(�,L) is the colouring of Nv(f).
(*) Set v = v(f) and assign each u ∈ Nv a uniformly selected colour from Lu.
While there are any flaws Bw with dist(w, v) ≤ 2 or Zw with dist(w, v) ≤ 3:

Let g be the least such flaw and call FIX(g, σ′) where σ′ is the current colouring.
Write “FIX (B,�)” or “FIX (Z,�)” (depending on whether g is a B-flaw or an Z-flaw)

where v(g) = ω(v(f), �)
Return the current colouring.

Write “Return”

Let σ0 be any initial colouring and let f be any flaw of σ0. We will analyze a run of
FIX (σ0, f). After t executions of the line (*) we set

σt is the current colouring

Ht is the file that we write to

Rt is the string of random bits that were used for all executions of (*)

In our formal proofs, we will not in fact make use of Rt; we only use it to give an
intuitive picture of the compression of our random bits. Thus we are not careful about
issues such as ensuring that each random choice uses an integer number of bits.

Lemma 8. Given σ0, σt, f, Ht we can reconstruct the first t steps of FIX.

Proof. Let fi denote the flaw addressed during the ith execution of (*). First observe
that f1, ..., ft can be determined by σ0, f, Ht. Indeed, proceed inductively: We know
the sequence f1 = f, ..., fi−1. FIX (fi, σi−1) was called while executing FIX (fj , σj−1)
for some j < i. The locations of the “Return” lines in Ht are enough to determine
the value of j, and by induction we know fj. So the ith “FIX (-,�)” line tells us that
v(fi) = ω(v(fj), �) and also tells us whether fi = Bv(fi) or Zv(fi).

Next observe that, having determined f1, ..., ft, we can reconstruct the colours as-
signed in each execution of (*) from Ht and σt. To see this, note that we can reconstruct
σt−1 from Ht, σt, ft. We know that σt−1 = σt on all vertices other than Nv(ft). This and
the fact that our graph is triangle-free imply that for every u ∈ Nv(ft), the list Lu does
not change during step t. So the collection of lists L = {Lu : u ∈ N(v(ft))} does not
change during the tth recolouring and so σt and the tth “COLOURS=�” line allows us to
recover σt−1(Nv(ft)) = β(�, L). Furthermore, L and σt(Nv) tell us what colours were se-
lected during the tth execution of (*). Working backwards, this determines σt, σt−1, ..., σ1
and hence all of our random choices. �

So Rt can be represented by (σ0, σt, f, Ht). The essence of the remainder of our argu-
ment is that if FIX (σ0, f) continues for t steps, where t is large, then (σ0, σt, f, Ht) when
expressed in binary will be much shorter than Rt. Any method to represent a random
string of bits by a much shorter string must fail w.h.p. So this implies that w.h.p. we
terminate before very many steps.

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 275
The rough idea is: During the ith execution of (*), recall that fi is the flaw being
addressed and define:

Λi =
∏

u∈Nv(fi)

|Lu| at the time of the ith execution of (*).

The ith execution of (*) selects one of Λi possible colourings of Nv(fi) and so the total
number of random bits used during the first t executions is

∑t
i=1 log2 Λi. Note that this

number depends on the actual random choices that are made.
After t executions of (*) Ht consists of: (a) t − 1 “FIX(-,�)” lines in which � < Δ3; (b)

t “COLOURS = �” lines in which the ith such line has � ≤ |B(L)| + |Z(L)| < 2Δ−4Λi;
(c) fewer than t “Return” lines. So the total number of bits required to record Ht is

t∑
i=1

[3 log2 Δ + log2(2Δ−4Λi) + O(1)] = −t(log2 Δ + O(1)) +
t∑

i=1
log2 Λi.

Thus in each execution of (*) writing to Ht requires roughly log2 Δ fewer bits than the
number of random bits added to Rt.

Letting n be the number of vertices, the number of choices for each of the partial list
colourings σ0, σt is at most qn and there are 2n choices for f . So to record (σ0, σt, f)
requires 2n log2 q + log2 n + 1 < 2n log2 Δ bits (for sufficiently large n). The main point
is that this does not change with t and so if t is large in terms of n then |(σ0, σt, f, Ht)| ≤
|Rt|, as required.

Annoying technical issues arise when Λi is not a power of 2, and so our formal proof
will use direct probability bounds in which sizes of the bitstreams are only implicit.

Lemma 9. For any partial colouring σ and any flaw f of σ, the probability that FIX (f, σ)
continues for at least 2n executions of (*) is at most Δ−n/2, where n is the number of
vertices.

Proof. Set T = 2n and run FIX (f, σ) until it either terminates or carries out T execu-
tions of (*).

Let Q be any possible run of FIX (f, σ) that lasts for at least T executions. At the ith
execution, recall that Λi =

∏
u∈Nv(fi)

|Lu| is the number of choices for the recolouring.
We choose this recolouring by taking a uniform integer xi from {1, ..., Λi}. Note that Λi

is determined by f, σ and x1, ..., xi−1. Set Λ = Λ(Q) =
∏T

i=1 Λi and set λ = λ(Q) =

log2 Λ� (intuitively, λ can be thought of as the number of random bits generated). The
probability that we carry out the run Q is 1/Λ ≤ 2−λ.

Note that Λi ≤ (q + 1)Δ for each i and so λ < TΔ log2(q + 1) < TΔ log Δ.
Given σ0 = σ and f , Lemma 8 says that HT , σT determine Q. So we will enumerate

the number of choices for Q by enumerating the number of choices for (HT , σT). We will
do this by considering the size of a string encoding (HT , σT) in binary.

276 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
The number of choices for σT is (q + 1)n, so it can be recorded with �n log2(q + 1)�
bits. The ith line of HT consists of: (1) a FIX line containing a number of size at most
2Δ3; it requires 3 log2 Δ + O(1) bits; (2) we either do or do not write a “Return” line;
this costs O(1) bits; (3) a COLOURS line containing a number of size at most 2Δ−4Λi;
it requires log2 Λi−4 log2 Δ +O(1) bits. So the total size of the string recording (HT , σT)
and hence recording Q is at most

n log2(q + 1) + log2 Λ(Q) − T (log2 Δ −O(1)) < λ(Q) − 2
3n log2 Δ,

for Δ sufficiently large and since T = 2n. So the total number of choices for a run Q of
length T and with λ(Q) = λ is at most 2λ− 2

3n log2 Δ = 2λΔ−2n/3. Thus the probability
that we continue for T = 2n steps is at most

TΔ log Δ∑
λ=1

2−λ × 2λΔ−2n/3 = 2nΔ log Δ × Δ−2n/3 < Δ−n/2. �

3.4. Proof of Theorem 1

As described above, the results of the preceding subsections provide a proof of Theo-
rem 1:

Proof of Theorem 1. Consider any ε > 0 and any assignment of lists of size q = (1 +
ε)Δ/ ln Δ colours to the vertices. We begin by assigning Blank to every vertex. Then we
repeatedly call FIX to eliminate any remaining flaws. More formally: While there is any
flaw f we call FIX (f, σ) where σ is the current partial colouring. By Lemma 9 each
call terminates within O(n) executions of (*) with probability at least 1 − Δ−n/2. By
Observation 6, the number of flaws decreases by at least one after each call. There are
at most 2n initial flaws and so we obtain a flaw-free partial colouring σ∗ after at most
2n calls of FIX (f, σ) with probability at least 1 − 2nΔ−n/2 > 0. Lemma 5 implies that
the Blank vertices of σ∗ can be recoloured to give the required proper list colouring. �
Remark. This easily yields a polytime algorithm to produce the list colouring. Calling
FIX at most 2n times w.h.p. produces σ∗ in O(n2Δ2 ln Δ) time; in fact, extending the
definition of Ht, Rt, σt to cover the sequence of colourings/executions produced over the
sequence of at most 2n calls of FIX can reduce this running time to O(n lnnΔ2 ln Δ)
(see e.g. the approach in [2]). The main result of [23] yields a polytime algorithm corre-
sponding to Lemma 5, which we use to complete the colouring.

4. Kr-free graphs

With a more complicated recolouring step, the same proof can be adapted to Kr-free
graphs. The setup is the same as in Section 3 except with a larger list size:

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 277
Each vertex v has a list of colours Cv that may be assigned to v of size

q := 200rΔ ln ln Δ
ln Δ

.

A partial list colouring σ is an assignment to a subset of the vertices, where the colours
are drawn from their lists. Given any partial colouring, Lv is defined to the set of colours
in Cv not appearing on any neighbours of v along with Blank.

Because we are not trying for a good constant, we can afford to be a bit looser in our
definition of L and our second flaw will be simpler than that in Section 3. We define

L = Δ9/10.

Given a partial colouring σ, we define the following two flaws for any vertex v:

Bv ≡ |Lv| < L

Zv ≡ at least L neighbours of v are coloured Blank.

Observation 10. Bv and Zv are determined by the colours of the vertices in N(v).

It is trivial to see that any flaw-free partial colouring can be completed greedily to
a full colouring of G, as the list of available colours for each vertex is greater than the
number of uncoloured neighbours.

Again, we say v is the vertex of flaw f = Bv or Zv, and we denote v(f) := v. We use
the same ordering on the flaws: Every Bv comes before every Zu, and the Bv’s and Zu’s
are each ordered according to the labels of v, u.

We find a flaw-free partial colouring using essentially the same algorithm we used for
triangle-free graphs, but we must be more careful about recolouring a neighbourhood.
It will be useful to represent a partial colouring of a neighbourhood as a collection of
disjoint independent sets.

We let C = ∪v∈GCv denote the set of all colours that may appear in the graph, and
define:

Definition 11. Given a vertex v and a fixed partial colouring of V (G)\Nv, a partial colour
assignment to Nv is a collection of disjoint independent sets (θ1, ..., θ|C|), each a subset
of Nv, such that for any u ∈ θi we have: i ∈ Cu and i does not appear on any neighbour
of u outside of Nv.

It is possible that θi = ∅, and we do not require that ∪|C|
i=1θi = Nv. Any u ∈ Nv that

is not in any of the θi is considered to be coloured Blank.
To recolour Nv, we take a uniformly random partial colour assignment to Nv and then

assign the colour i to every vertex in each θi. More specifically, given a colouring σ and

278 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
a vertex v, we let Ω denote the set of all partial colour assignments to Nv and we choose
a uniform member of Ω.

Note that if Nv contains no edges, then this recolouring is equivalent to giving each
u ∈ Nv a uniform colour from Nu, as we did in FIX.

We use the same flaw ordering as in Section 3; i.e. every Bv comes before every Zu,
and the Bv’s and Zu’s are each ordered according to the labels of v, u.

The following procedure differs from FIX only in the distances: Observation 10 allows
us to recurse on flaws Zw within distance two rather than three. And we increase the
distance for flaws Bw from two to three so that we get Observation 12 below, which will
be very useful in our analysis.

FIX2(f, σ)
Set v = v(f).
Choose a uniformly random partial colour assignment to Nv and then recolour Nv accordingly.
While there are any flaws Bw with dist(w, v) ≤ 3 or Zw with dist(w, v) ≤ 2:

Let g be the least such flaw and call FIX(g, σ′) where σ′ is the current colouring.
Return the current colouring.

Observation 12. Whenever we call FIX (Zu, σ) we have that Bw does not hold for any
w ∈ Nu.

This observation follows from our flaw ordering, and the fact that we call FIX on flaws
Bw with w up to distance three from v rather than two.

The analog of Observation 6 holds again here, and so to prove Theorem 2 it suffices
to prove that FIX2 terminates with positive probability.

We will assume throughout the remainder of this section that Δ ≥ 2200r as otherwise
the bound of Theorem 2 is trivial.

4.1. More probability bounds

We begin with some key lemmas from Shearer’s paper on the independence number of
a Kr-free graph [30]. We rephrase the short proofs here for completeness and to extract
a useful fact from them.

Given a graph H, we define:

I(H) is the number of independent sets of H.

Lemma 13. For any r ≥ 2, if H is Kr-free then 2|V (H)| ≥ I(H) ≥ 2|V (H)|
1

r−1 −1.

Proof. The upper bound is simply the number of subsets of V (H). For the lower bound,
we will prove that H has an independent set of size at least |V (H)|1/r−1 − 1; the bound
follows by considering all subsets of that independent set.

We proceed by induction on r. The trivial base case is r = 2. For r ≥ 3: If any
vertex u ∈ H has degree at least d = |V (H)|

r−2
r−1 then since the neighbourhood of u in

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 279
H is Kr−1-free, there is a sufficiently large independent set in that neighbourhood by
induction. Otherwise, the maximum degree in H is less than d and so the straightforward
greedy algorithm finds an independent set of size at least |V (H)|/(d +1) > |V (H)|1/r−1−
1. �
Lemma 14. If H 	= ∅ is Kr-free, r ≥ 4, then half of the independent sets in H have size
at least 1

2r log2 I(H)/ log2 log2 I(H).

Proof. It suffices to show that at most 1
2I(H) subsets of V (H) have size at most � =

 1
2r log2 I(H)/ log2 log2 I(H)�; i.e.:

�∑
i=0

(
|V (H)|

i

)
≤ 1

2I(H). (6)

We can assume log2 I(H) ≥ 2 as otherwise � = 0 and so the lemma is trivial (since
H 	= ∅). We can also assume r ≤ log2 I(H)/2 log2 log2 I(H) else � = 0. We set x =
log2 I(H) ≥ 2. Rearranging the second inequality of Lemma 13 gives |V (H)| ≤ (1 +
log2 I(H))r−1 and so we substitute h = (1 + log2 I(H))r−1 ≥ 27 for |V (H)| in (6).
So h = (1 + x)r−1 < 1

4x
2r for x ≥ 2. Also, a simple induction on � confirms that ∑�

i=0
(
h
i

)
≤

∑�−1
i=0

(
h
i

)
+ h�

�! ≤ 2h� for � ≥ 0, h ≥ 2. So the LHS of (6) is at most

2h� <
1
2x

2r� ≤ 1
22log2 x× x

log2 x = 1
22x = 1

2I(H).

This proves (6). �
Remarks. (1) Lemma 13 is the only place where we use the fact that our graph is Kr-free.
Our proof shows that the bound of Theorem 2 holds whenever every subgraph H ⊆ G

satisfies the implication of either Lemma 13 or Lemma 14. In fact, it is enough for this
to hold for every v and H ⊆ N(v).

(2) Note that the argument in Lemma 14 can in fact show that the average size of the
independent sets of H is at least 1

2r log2 I(H)/ log2 log2 I(H), which is Lemma 1 of [30].
(3) Alon [6] proves that if G is locally r-colourable, meaning that every neighbourhood

can be r-coloured, then for any v and H ⊆ Nv, the median size of the independent sets of
H is at least 1

10 log2(r+1) log2 I(H). Plugging this bound into the rest of our proof yields
that χ� ≤ O(ln r Δ

ln Δ) for such graphs, as shown in [18].

We use these to bound the probabilities of our flaws.
Setup for Lemma 15: Each vertex u ∈ Nv has a list L∗

u containing Blank and perhaps
other colours; specifically, L∗

u is the set of colours of Cu not appearing on any neighbour
of u outside of Nv along with Blank. We give the vertices of Nv a random partial colour
assignment consistent with these lists. This assignment determines Lv – the set of colours
in Cv that do not appear in the partial colour assignment.

280 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
Lemma 15.

(a) Pr(|Lv| < L) < Δ−4.
(b) The probability that at least L neighbours of v are coloured Blank and |Lu| > L for

all u ∈ Nv is at most Δ−4.

Proof. We begin with a method for sampling a partial colour assignment.
Define Ω to be the set of all partial colour assignments to Nv, and let W =

(W1, ..., W|C|) be a uniform member of Ω. Define Q1 to be the vertex set consisting
of W1 and all blank vertices which can be given the colour 1; i.e. all blank u ∈ Nv with
1 ∈ L∗

u. Select a uniformly random independent set W ′
1 of Q1 and form W ′ by replacing

W1 with W ′
1.

Claim 1. W ′ is a uniform member of Ω.

Proof of Claim 1. For any |C| − 1 disjoint independent sets S2, ..., S|C| ⊆ Nv we
define ΩS2,...,S|C| ⊆ Ω to be the set of partial colour assignments (θ1, ..., θ|C|) with
θ2 = S2, ..., θ|C| = S|C|; so this yields a partition of Ω. Note that W ′ is a uniform member
of ΩW2,...,W|C| . Furthermore, because W is a uniform member of Ω, the part ΩW2,...,W|C|

is selected with the correct distribution, i.e. with probability |ΩW2,...,W|C| |/|Ω|. So W ′ is
a uniform member of Ω.

Repeating this argument, we can resample W2, ..., W|C| in the same manner. Specifi-
cally:

Let W = (W1, ...,W|C|) be a uniform member of Ω.
For i = 1 to |C|

Define Qi to be the subgraph induced by Wi and all vertices that are blank at this step
and can be given the colour i.

Let W ′
i be a uniform independent set of Qi

Modify W by replacing Wi with W ′
i .

To be clear: the blank vertices in the definition of Qi are blank in the current partial
colour assignment W = (W ′

1, ..., W
′
i−1, Wi, ..., W|C|). By repeating the argument from

Claim 1, we see that the partial colour assignment produced by this procedure is a
uniform member of Ω.

Part (a): Let A1 be the set of colours i ∈ Cv such that I(Qi) ≤ Δ1/20, and
set A2 := Cv\A1. Since the subgraph induced by Nv is Kr−1-free, Lemma 14 im-
plies that for each i ∈ A2 the median independent set of Qi has size at least

1
2(r−1) log2 I(Qi)/ log2 log2 I(Qi) > 1

40r log2 Δ/ log2 log2 Δ. (When applying Lemma 14
note that if Qi = ∅ then i ∈ A1.)

At iteration i: If colour i ∈ A1 then the probability that we choose W ′
i = ∅ is 1

I(Qi) ≥
Δ−1/20. Note that if W ′

i = ∅ then i will be in Lv. If i ∈ A2, then with probability at
least 1

2 we choose a W ′
i with |W ′

i | ≥ 1
40r log2 Δ/ log2 log2 Δ. Since the total size of the

sets W ′
i is at most Δ, this cannot happen for more than 40rΔ log2 log2 Δ colours.
log2 Δ

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 281
We consider two random binary strings, each of length |Cv|. In the first, each bit is
1 with probability Δ−1/20, and 0 otherwise. In the second, the bits are uniform. By
coupling the choice of W ′

i with these bits, we ensure that: (a) for each i ∈ A1, if the
corresponding bit in the first stream is 1 then W ′

i = ∅; (b) for each i ∈ A2, if the
corresponding bit in the second stream is 1 then |W ′

i | ≥ 1
40r log2 Δ/ log2 log2 Δ. For

example, in iteration i if we have I(Qi) < Δ1/20 and so i ∈ A1 then we look at the next
bit of the first string. If that bit is 1 then we set W ′

i = ∅; otherwise we set W ′
i = ∅ with

probability 1
I(Qi) − Δ−1/20. Similarly when i ∈ A2.

Set � = 1
2 |Cv| = 100rΔ log2 log2 Δ/ log2 Δ, and so we must have either A1 ≥ � or

|A2| ≥ �.

Claim 2. If the outcomes of this procedure yield |Lv| < L then at least one of these two
events must hold:

• E1 = at most L of the first � bits of the first string are 1
• E2 = at most 40rΔ log2 log2 Δ

log2 Δ of the first � bits of the second stream are 1

Proof. If W ′
i = ∅ then i ∈ Lv. So E1 and the event |A1| ≥ � imply that at least L colours

in A1 are in Lv. E2 and the event |A2| ≥ � imply that for more than 40rΔ log2 log2 Δ
log2 Δ

colours i ∈ A2 we have |W ′
i | ≥ 1

40r log2 Δ/ log2 log2 Δ, which contradicts the fact that
the sets W ′

i are disjoint and have total size at most |Nv| ≤ Δ. Since we must have either
|A1| ≥ � or |A2| ≥ � then if |Lv| < L we must have E1 ∨E2.

Claim 2 implies Pr(|Lv| < L) ≤ Pr(E1) + Pr(E2). Note that the expected number
of 1’s in the first � bits of the first string is � × Δ−1/20 � L = Δ9/10 and the expected
number of 1’s in the first � bits of the second string is 1

2� = 50rΔ log log Δ/ log Δ. So
the Chernoff Bounds (or Lemma 3) imply that each of E1, E2 occur with probability less
than 1

2Δ−4 for r ≥ 4 and Δ ≥ 2500r. This proves part (a).
Part (b): Consider any L neighbours u1, ..., uL ∈ Nv. We will prove the probability

that each ui is coloured blank and satisfies |Lui
| > L is at most 1/L!. This proves part

(b) as
(Δ
L

)
/L! < Δ−4 for Δ ≥ 100.

Fix a colouring of V (G)\Nv and let ΩB ⊂ Ω be the set of partial colour assignments
in which every ui is coloured Blank and satisfies |Lui

| > L. (Note: a partial colour
assignment in ΩB may also have additional blank vertices.) Take any W ∈ ΩB and
extend it to a partial colour assignment W2 in which each of u1, ..., ut are not blank as
follows:

begin with the colouring W
for i = 1 to L

give ui a colour from L∗
u which does not appear on any of its neighbours in Nv.

This yields a colouring W ′ of Nv which can be viewed as the partial colour assignment
(θ1, ..., θ|C|) where θj is the set of vertices with colour j in W ′.

282 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
By definition of ΩB, each ui has at least L available colours in W . By the time we
reach iteration i, at most i − 1 of those colours have been assigned to a neighbour of ui

in {u1, ..., ui−1}. So there are always at least L − i + 1 choices for a colour to assign to
ui and so the number of choices for W ′ is at least L!. Each partial colour assignment
W ′ can arise from at most one W ∈ ΩB , namely the W obtained from W ′ by colouring
u1, ..., uL all Blank. So |ΩB | ≤ |Ω|/L!, which is what we need to establish part (b). �
4.2. FIX2 terminates

Now the same argument from Section 3.3 implies that FIX2 terminates with positive
probability, and thus proves Theorem 2.

Each time we call FIX2 (v, σ) we let L = {L∗
u : u ∈ Nv} be the lists of available colours

on the neighbours of v in the colouring obtained from σ by uncolouring Nv; i.e. L∗
u is the

set of colours in Cu that do not appear on any neighbours of u outside of Nv, along with
Blank. We let Ω(L) be the set of partial colour assignments to Nv consistent with L. We
let B(L) ⊂ Ω(L) be the set of partial colour assignments that have the flaw Bv. We let
Z(L) ⊂ Ω(L) be the set of partial colour assignments which have the flaw Zv.

We define Ht, Rt analogously to Section 3.3. At each step: If we are addressing the
flaw Bv then Lemma 15(a) implies that the number of choices for the colouring of Nv

before the recolour line is at most |B(L)| ≤ Δ−4|Ω(L)|. If we are addressing the flaw
Zv then by Observation 12, each u ∈ Nv has at least L available colours in σ and so
must have |Lu| ≥ L before uncolouring Nv; thus |L∗

u| ≥ |Lu| ≥ L. So Lemma 15(b)
implies that the number of choices for the colouring of Nv before the recolour line is
at most |Z(L)| ≤ Δ−4|Ω(L)|. This yields that the size of what is written to Ht is
3 log2 Δ + log2 |Ω(L)| − 4 log2 Δ + O(1) whereas the number of random bits used is
log2 |Ω(L)|. This is enough for the analysis from Section 3.3, in particular the proof of
Lemma 9 to carry through.

Remark. This time it is not clear how to obtain a polytime algorithm; the challenge is to
select a uniform partial colour assignment efficiently. Johansson’s proof yields a polytime
algorithm (see [8]).

5. Lopsided local lemma

Bernshteyn notes that the proofs of Theorems 1 and 2 could have been carried out
using the Lopsided Local Lemma rather than an entropy compression argument. One
considers taking a uniformly random partial colouring of the entire graph. The bad events
are: Bv and Zv ∧ Bv. By conditioning on the colours of all vertices at distance at least
two or three from v, Lemmas 7 and 15 imply that the probability of the bad events is
sufficiently small, even when conditioning on the outcomes of distant events. See [10] for
more details and for an extension of these results to DP-colouring.

M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284 283
Acknowledgments

My thanks to Dimitris Achlioptas and Fotis Iliopoulos for some very helpful discus-
sions. I am also grateful to two anonymous referees for many helpful comments and to
Zdenek Dvorak for pointing out a problem with Lemma 3 in an earlier version. This
research is supported by an NSERC Discovery grant.

References

[1] D. Achlioptas, A. Coja-Oghlan, Algorithmic barriers from phase transitions, in: Proceedings of
FOCS, 2008, pp. 793–802. Longer version available at arXiv :0803 .2122.

[2] D. Achlioptas, F. Iliopoulos, Random walks that find perfect objects and the Lovasz Local Lemma,
J. ACM 63 (3) (2016) 22, https://doi .org /10 .1145 /2818352. Preliminary version in Proc. of FOCS.

[3] D. Achlioptas, F. Iliopoulos, Focused local search and the Lovasz Local Lemma, in: Proc. of SODA,
2016.

[4] D. Achlioptas, C. Moore, Random k-SAT: two moments suffice to cross a sharp threshold, SIAM J.
Comput. 36 (2006) 740–762.

[5] M. Ajtai, P. Erdős, J. Komlós, E. Szemerédi, On Turan’s theorem for sparse graphs, Combinatorica
1 (1981) 313–317.

[6] N. Alon, Independence numbers of locally sparse graphs and a ramsey type problem, Random
Structures Algorithms 9 (1996) 271–278.

[7] N. Alon, M. Krivelevich, B. Sudakov, Coloring graphs with sparse neighborhoods, J. Combin. Theory
Ser. B 77 (1999) 73–82.

[8] N. Bansal, A. Gupta, G. Guruganesh, On the Lovász Theta function for independent sets in sparse
graphs, in: Proceedings of STOC, 2015.

[9] B. Bartlomiej, S. Czerwiński, J. Grytczuk, P. Rzażewski, Harmonious coloring of uniform hyper-
graphs, Appl. Anal. Discrete Math. 10 (2016) 73–87.

[10] A. Bernshteyn, The Johansson–Molloy theorem for DP-coloring, arXiv :1708 .03843.
[11] V. Dujmović, G. Joret, J. Kozik, D.R. Wood, Nonrepetitive colouring via entropy compression,

Combinatorica 36 (2016) 661–686.
[12] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions,

in: A. Hajnal, et al. (Eds.), Infinite and Finite Sets, in: Colloq. Math. Soc. János Bolyai, vol. 11,
North-Holland, Amsterdam, 1975, pp. 609–627.

[13] L. Esperet, A. Parreau, Acyclic edge-coloring using entropy compression, European J. Combin. 34
(2013) 1019–1027.

[14] L. Fortnow, A Kolmogorov complexity proof of the Lovász Local Lemma. Blog post. http://blog .
computationalcomplexity.org /2009 /06 /kolmogorov -complexity -proof -of -lov .html.

[15] A. Gagol, G. Joret, J. Kozik, P. Micek, Pathwidth and nonrepetitive list coloring, Electron. J.
Combin. 23 (4) (2016) 4.40.

[16] J. Grytczuk, J. Kozik, P. Micek, A new approach to nonrepetitive sequences, Random Structures
Algorithms 42 (2013) 214–225.

[17] A. Johansson, Asymptotic choice number for triangle free graphs, Unpublished manuscript, 1996.
[18] A. Johansson, The choice number of sparse graphs, Unpublished manuscript, 1996.
[19] J.H. Kim, On Brooks’ Theorem for sparse graphs, Combin. Probab. Comput. 4 (1995) 97–132.
[20] C. McDiarmid, Concentration, in: M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed (Eds.),

Probabilistic Methods for Algorithmic Discrete Mathematics, Springer, 1998, pp. 195–248.
[21] M. Molloy, B. Reed, Graph Colouring and the Probabilistic Method, Springer, 2002.
[22] R. Moser, A constructive proof of the Lovász Local Lemma, in: Proceedings of the 41st ACM

Symposium on Theory of Computing, 2009.
[23] R. Moser, G. Tardos, A constructive proof of the general Lovász Local Lemma, J. ACM 57 (2)

(2010).
[24] A. Panconesi, A. Srinivasan, Randomized distributed edge coloring via an extension of the Chernoff–

Hoeffding Bounds, SIAM J. Comput. 26 (1997) 350–368.
[25] S. Pettie, H. Su, Distributed coloring algorithms for triangle-free graphs, Inform. and Comput. 243

(2015) 263–280.

http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6163s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6163s1
https://doi.org/10.1145/2818352
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616932s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616932s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib61656B73s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib61656B73s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6E61s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6E61s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616B73s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib616B73s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6767s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6767s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib62636772s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib62636772s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6162s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib646A6B77s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib646A6B77s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib656C31s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib656C31s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib656C31s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6570s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6570s1
http://blog.computationalcomplexity.org/2009/06/kolmogorov-complexity-proof-of-lov.html
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib676A6B6Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib676A6B6Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib676B6Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib676B6Ds1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A686Bs1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib636D73757276s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib636D73757276s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6D72626F6F6Bs1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib726D31s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib726D31s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6D746Cs1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6D746Cs1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib707332s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib707332s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib7073s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib7073s1
http://blog.computationalcomplexity.org/2009/06/kolmogorov-complexity-proof-of-lov.html

284 M. Molloy / Journal of Combinatorial Theory, Series B 134 (2019) 264–284
[26] J. Przybyło, On the facial Thue choice index via entropy compression, J. Graph Theory 77 (2014)
180–189.

[27] J. Przybyło, J. Schreyer, E. S̆krabùláková, On the facial Thue choice number of plane graphs via
entropy compression method, Graphs Combin. 32 (2016) 1137–1153.

[28] B. Reed, The list colouring constants, J. Graph Theory 31 (1999) 149–153.
[29] J. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983)

83–87.
[30] J. Shearer, On the independence number of sparse graphs, Random Structures Algorithms 7 (1995)

269–271.
[31] T. Tao, Moser’s entropy compression argument, Blog post. https://terrytao .wordpress .com /2009 /

08 /05 /mosers -entropy -compression -argument/.
[32] L. Zdeborová, F. Krzakala, Phase transitions in the colouring of random graphs, Phys. Rev. E 76

(2007) 031131.

http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A70s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A70s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib707373s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib707373s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib62726C697374s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A7331s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A7331s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A73s1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib6A73s1
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib7A6Bs1
http://refhub.elsevier.com/S0095-8956(18)30062-5/bib7A6Bs1
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/

	The list chromatic number of graphs with small clique number
	1 Introduction
	2 Preliminary tools
	3 Triangle-free graphs
	3.1 Our colouring algorithm
	3.2 Probability bounds
	3.3 The algorithm terminates
	3.4 Proof of Theorem 1

	4 Kr-free graphs
	4.1 More probability bounds
	4.2 FIX2 terminates

	5 Lopsided local lemma
	Acknowledgments
	References

