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We show that as n — oo the proportion of graphs on vertices 1, 2, ..., n with total
chromatic number y” > 4 + 1 is very small; and the proportion with " >4 +2 is
very very small. Here 4 denotes the maximum vertex degree. We also give an easy
new deterministic upper bound on y” (proved randomly).  © 1993 Academic Press, Inc.

1. INTRODUCTION

Our interest here is in total colourings of graphs, but it is convenient to
discuss edge colourings briefly first.

An edge colouring of a (simple) graph G is an assignment of colours to
the edges so that no two incident edges receive the same colour. The edge
chromatic number (or chromatic index) y'(G) is the least number of colours
in an edge colouring of G. Vizing's theorem [9] states that y'=4 or 4 +1,
where 4 = 4(G) denotes the maximum degree of a vertex in G.

Is it rare for x’ to be forced above the trivial lower bound A7 Let p,
be the proportion of graphs on vertices 1,2,..,n with y' > 4. Erdds
and Wilson [4] showed that p,—0 as #— o0. This result was much
strengthened by Frieze, Jackson, McDiarmid, and Reed [5], who showed
that

n—(l/2+o(l))n<p;'<n7(l‘r’8+o(l))n as n— oo,

A total colouring of a graph G is an assignment of colours to the vertices
and edges of G so that no two adjacent or incident elements receive the
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same colour. The total chromatic number x"(G) is the least number of
colours in such a colouring. The total colouring conjecture of Bezhad [1]
and Vizing [ 10] asserts that always y" =441 or 4+2. For a recent survey
on total colouring see Chetwynd [3].

Is it rare for y” to be forced above the trivial lower bound 4 + 1? Let p,,
be the proportion of graphs on vertices 1, 2, .., n with y" =4+ 2. It was
shown in the survey paper [8] that p, — 0 as n— cc. For our first result
here (see Theorem 2.1 below) we adapt the argument in [5] concerning p,,
to show that

—(1/8+o0(1))n

pnsn as n-— oo,

We do not know if this bound is of the right order. Indeed we have no
non-trivial lower bound for p,,.

Our second result (see Theorem 2.2 below) is that the corresponding
proportion of graphs with y">A4+2 is o(c¢”) for some 0<c< 1. This
upper bound is very small, but we would of course prefer it to be zero!

Our third and last result is rather different. It is a deterministic bound
on x"(G), but it is proved by (very elementary) random methods.

THEOREM 1.1. If G is a graph with n vertices and k is an integer with
k!=n then

1@<y (G)+k+1;
and so as n > oG
1" <4+ O(log n/log log n).

This result is stronger than previously known upper bounds (see [6]) only
if 4 is large, say 4> (logn)®. Since Theorem 1.1 may be proved quickly
and easily, let us do so now.

Proof of Theorem 1.1. We may assume that G is not complete (since
complete graphs satisfy y” < 4+ 2) and that G is connected. Let ¢ = y'(G).
By Brook’s theorem, G has a vertex colouring using ¢ colours, with collec-
tion of stable sets & = {S,, .., S,}. Let # ={M,, .., M,} be the collection
of matchings in an edge colouring of G using g colours. We may assume
also that 2 <k < g —1; other cases are easy.

Given a bijection n from # to &, let the “rejection graph™ G’ be
the subgraph of G containing those edges {x, v} of G such that, if M
is the matching in .# containing the edge {x, y}, then either x or v is in
the stable set z(M). Then clearly

1(G)<q+ 1 (G)<q+1+4(G).
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We shall show that for some bijection n from .# to & we have 4(G') <k,
by considering a random bijection with all ¢! equally likely.

Consider a vertex v in G, with set W of at least k + 1 neighbours in G.
Let € denote the collection of sets W’ < W with |W’| =k such that no two
vertices in W' have the same colour in our vertex colouring. Also, for each
set W' e%, let A(W’) be the event that for each vertex w e W’ the matching
Me # containing the edge {v,w} is mapped to the stable set Se &
containing w: observe that

) k-1 ) —1 —k)

P(A(W))=( 11 (q_,)> _lak)r
i=0 q:

Let d’(v) denote the degree of v in G'. If d'(v)=k+ 1 then the event
A(W') must occur for at least one W’ €. Also of course || < (%) so

lWl) (g—k)!
k

P{d'(u)>k+1}<< 7

Further if || = ('%") then all the vertices in W have distinct colours (since
k =2} and there is a positive probability that more than one of the events
A(W") will occur (since g 2k + 1); and hence the last inequality is strict.
Thus we see that

P{d'(v) >k + 1},<(|Z’l) (q;k)!
s(")‘iﬂ:}_

since |W| < 4 and ¢ > 4. But now we have
PAG)zk+1)<n/k! <1

since k! 2 n. So for some bijection 7, 4(G'} <k, as required. ||

The three results introduced above (namely Theorems 2.1, 2.2, and 1.1)
were first announced in the survey paper [8] with sketch proofs.

2. RANDOM GRAPHS

The random graph G, , has vertices 1, 2, .., n and the (3) possible edges
appear independently with probability p. We shall restrict our attention
here to constant p. The case p =1 corresponds to proportions as discussed
in the first section. The following two theorems are our main results.
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THEOREM 2.1. Let p and c¢ be constants with 0<p<1 and 0 <c<1i,
c<p/2. Then

P{X”(Gn,p)>d + 1} = o(n‘c"/z)‘

THEOREM 2.2. Let p be a constant, 0 < p < 1. Then there is a constant c,
O0<c< 1, such that

P(x"(G, ,)>4+2)=o(c"™).

We prove Theorem 2.1 in the next section and finally prove Theorem 2.2.
For both proofs we shall use the following lemma. Recall that the szability
number o(G) of a graph G is the largest size of a stable set of vertices; and
the achromatic number Y(G) of G is the largest number of colours in a
{proper) vertex colouring such that for each pair of colours some vertex of
the first colour and some vertex of the second colour are adjacent. The
usual behaviour of ¥(G, ,) [7] and of a(G, ,) (see, for example, [2]) is
well known. We are interested here in extreme random behaviour.

LemMma 2.3. Let 0<p< 1 and ¢>0. Then there exists ¢, 0 < ¢ <1, such
that

P{a(G, ,)=en} =olc"),
and
P{Y(G, ) =en} =o(c™).
Proof. Let g=1—p, and let k=k(n)=[en}. Then

P{x(G, ,) >k} <<z> i

e? N,
=exp { —5(log 5) n°+ O(n)}.

To handle ¥(G, ,), consider a partition of the vertex set {1, .., n} into k
sets, of sizes ny, .., n,. Let 4 be the event that for each pair of sets in the
partition, some vertex in the first set and some vertex in the second set are
adjacent. Then

P(A)=]] (1 —gq")<exp {~ ) q"'"’}

i<j i<j

conl-()}
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Hence

P{l/’(Gn,p) Zen}<n"exp { _ (g) qn?rkl}

=o(c™) if ¢>exp(—1e%g"").

3. PROOF OF THEOREM 2.1

We prove Theorem 2.1 by analysing an algorithm that attempts to total
colour in 4+ 1 colours and rarely fails. More specifically we describe a
class of “good” graphs such that the algorithm always works on such
graphs, and the probability that the random graph G, , is not good is very
small. We assume that the reader is familiar with [5].

Let us first describe the good graphs. We want the edges to be dis-
tributed reasonably evenly throughout the graph, we want the number of
vertices of any given degree not to be too large, and we want to be able
to vertex colour suitably.

For 0<p<1 and O <g<min(p, 1 —p) call a graph G, with n vertices
(p, &)-uniform if

(1) A< V(G), |A| Zen= T—l
p('3)

(i) A, BSV(G), AnB=¢, Al |Bl=en

LTS

‘ |E(4,B)| \
pIAl1B]

Here E(A) denotes the set of edges of G, with both end vertices in 4, and
E(A, B) denotes the set of edges with one end in A4 and the other in B.

LemMa 3.1 [5]. Let O<p<1 and e¢>0. Then
P{G,, , is not (p, ¢)-uniform} = o(c""),

.
where ¢ =e ¢ P/7,

Given also 0 <c <1 call a graph (p, ¢, &)-uniform if it is (p, ¢)-uniform
and the number of vertices of any given degree is at most cn. Let us call
G, e-well colourable if it has a vertex colouring with at most en colours in
which each colour set is of size at most en. Finally, call G, (p, ¢, ¢)-good if
it is (p, c, e)-uniform and &-well colourable. By Lemma 2.3 above and
Lemma 2 of [5] we have
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LEMMA 3.2, Given 0<p<1,0<c<], and ¢>0,
P{G, ,isnot (p, c, ¢)-good} = o(n= 1~ eni2)

We next describe an algorithm that will always total colour a good
graph in 4+ 1 colours, if ¢>0 is sufficiently small and » is sufficiently
large. The algorithm is an adaptation of the algorithm in [5] for 4-edge-
colouring.

Given a graph G let H denote both the set of vertices of maximum
degree in G and the subgraph induced by these vertices. The aim is to find
pairwise disjoint vertex-edge colour sets T}, .., T such that each vertex
appears once, and if we form the graph G’ by deleting from G all the
edges that appear in the colour sets 7'* then we have the following three
properties:

A(G)=4(G)—-1+1,
the set of vertices of maximum degree in G’ is also H,
H induces a stable set in G'.
If the algorithm succeeds to this point then we may complete a total

colouring in 4 + 1 colours by edge colouring G’ in 4(G’) colours.
It is convenient to let T denote the set of vertices v in G with

pn—2en<dg(v)<4-2.

The Algorithm

Let us now describe the algorithm in some detail. It accepts as input
a graph G with n vertices together with parameters p, ¢; and has four
steps.

Step 1 {colour the edges in H}.
Partition the edges of H into A=|H| matchings 7,,..,7, in an
“inequitable” way [57]; that is, |7, < 0n for i = (p + &)k, where

f=¢/min{p+e 1 —p—e}.

Step 2 {colour the vertices of G'}.
Partition the vertices of G into k <en stable sets T, , .., I;,, where
[=h+k, each of size at most &n.

Step 3 {extend each T; to T} such that T* covers all but a few vertices
of low degree}.

Let Go=G: for i=1 to & let L; be the set of vertices covered by the
matching T;; and for i=h+1, ...,/ let L; be the stable set T,.

For i=1 to / do the following.

582b.57:1.9
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Form G| from G,_, by deleting the edges in H and the set L; U S,
of vertices, where S; is the set of vertices in V\L; of degree less
than pn— (i—1)—2en in G, . If |V\(L,u S;)| is odd then delete
an extra vertex v, e T distinct from any previously chosen v,. Find
a perfect matching M, of G/. Let T¥*=T,uM,and G,=G,_ \M,.

Step 4 {tidy up}.

Edge colour G, with 4(G,) colours.

Together with the / colour sets T* this gives a total colouring of G in
4(G)+ 1 colours.

Now let us analyse the above algorithm.

LeEMMA 3.3 [S]. Let O<p<! and ¢>0. Let G be a (p,e)-uniform
graph with n vertices. Then, for n sufficiently large, at most en vertices have
degree at most [ (p—2¢e)n’|; and A(G)=(p—2e)n+ 1.

LEMMA 34. Let O<p<1 and 0<c<min{p/2,1} be given. If £>0 is
sufficiently small, n is sufficiently large, and G is a (p, ¢, £)-good graph with
n vertices then the algorithm succeeds in total colouring G with 4+ 1
colours.

Proof. From our earlier discussion it suffices to prove that

(a) there is always a possible choice for the extra vertex v;;
(b) each graph G; has a perfect matching; and

(c) 4(G,)=4(G)—1+1, and H is the set of vertices of maximum
degree in G,.

Observe first that §,25,25;2 ---, that S, is the set of vertices of
degree less than pn — 2en in G, and that |S, | <en for » sufficiently large, by
Lemma 3.3.

To prove (a), note that since in G there are at most cu vertices of any
given degree we have from Lemma 3.3 that

[T Zzn—2cn—enz(c+2e)nzl+en

for ¢ sufficiently small and » sufficiently large. Thus there is always a vertex
in T — L, distinct from any previously chosen v,. (If 1 <i</ then T"and L,
are disjoint.)

The proof of (3a) in [5] applies almost unchanged to yield (b) here, so
it remains only to prove (c). But, for each vertex v with do(v)=Ad or 4—1
we have dg(v)=dg(v)—({—1). For each vertex ve T we have dg;(v)=
de(v)—(I—1) or dg(v)—(/—2), and so dg(v) <4 —/ Finally, consider
ve S,, and note that v can never have been chosen as the extra deleted
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vertex. Thus by our choice of the S; we have dg(v)<pn—2en—14+2<
A4—1+1, by Lemma 3.3. |

4. PROOF OF THEOREM 2.2

In this section we sketch the proof of Theorem 2.2. We shall sometimes
assert rather briskly that certain matchings exist: the reader who has got
this far can easily supply the missing steps. If 0 <¢ < 1 and some statement
about G, , holds with probability 1 — o(c™) we shall say that it holds with
very high probability.

Let H={veV:d;(v)=4—en}. We shall show that with very high
probability, for some k <en there is a vertex colouring T, .., T, and
pairwise disjoint matchings M,, .., M, such for each i, M, covers none of
T, and all of H—T,;. Form G’ from G by deleting all the edges in these
matchings M,. Then we shall have 4(G")=4(G)—k + 1, and so

P(G)<k+7(G)<4(G)+ 2.

Let k=|en] and let S={velV: ds(v)<(p—2¢)n}. By Lemmas 3.1
and 3.3, with very high probability 4> (p—¢)n and so HnS=¢, and
|S| < en.

Case (a)
There is a vertex voe ¥ — H—S. By Lemma 2.3, with very high proba-
bility there is a vertex colouring T, ..., T of G with each |T;| <k and such

that voe T, and |V —S—T,| is even. If [VV—S—T,] is odd let R,= {v,},
and if not let R,=¢. Then with very high probability there is a family
M., .., M, of pairwise disjoint matchings in G such that M, is a perfect
matching on ¥V — S — T,— R, for each i (much as with statement (b) in the
proof of Lemma 3.4).

Case (b)

Suppose that Case (a) does not hold, so that H= V' — S. Now with very
high probability, |H| = (1 —¢) » and 4(G) < (p + 3¢) » since the number of
edges is at least §|H|(4-—¢en). We shall show that, with very high
probability, there is a vertex colouring 7,,.., T, with |T;]<en and
|[H—T,| even for each i; and then as above there will be a family
M,, .., M, of pairwise disjoint matchings in G such that M, is a perfect
matching on H — T, for each i. Let us concentrate on the vertex colouring.

Subcase. |H| even. In the subgraph G[ H] of the complementary graph
G induced on H, all vertex degrees are at least

UHI - 1)—AG)=2(1—p—4de)n—12en
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with very high probability, if say e<(l—p)/5. Then with very high
probability G[ H] has a perfect matching, and by Lemma 2.3 this extends
to a vertex colouring T, .., T, of G with |T,|<en and |H —T;| even for
each i

Subcase. |H| odd. With very high probability, for each ve V\ H,
de(v)>(n—1)—(4d—em)2(1—p—2e)n—1

and so (for ¢ as above) in G there is a matching of S into H (the “empty
matching” if S is empty). By Lemma 2.3, with very high probability, this
extends to a vertex colouring T}, ..., Ty of G with k' <k/2,and T/ n H# ¢
and |T}| < k for each i. By splitting each set 7] with |H n T'/| even we may
then find a vertex colouring T/, ..., T} with k" <k, and |H — T'/| even and
|T/| <k for each i.
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