Write your solutions in the exam booklets provided. Put your name on every booklet.

Ask me if you don’t understand a question.

You can use the West book. You can’t use any other books or notes.

Unless stated otherwise, you can use as fact any theorem which I presented during the lectures. You can also use any theorems from the West book.

These problems all have reasonably short solutions. A very long solution will not get full marks, even if it is correct. The grader will subjectively decide what constitutes “very long”.
All graphs are simple.

1. (5 pts) \(G \) is a planar triangulation (i.e. a planar embedding of a graph where every face has size 3). Prove that the number of faces is even.

2. (10 pts) A graph is said to be \textit{uniquely} \(k \)-edge-colourable if it is \(k \)-edge-colourable and all \(k \)-edge-colourings are equivalent under a permutation of the colours. In other words, every \(k \)-edge-colouring partitions the edges into the same \(k \) matchings.

Prove that, for \(k \geq 2 \), if a \(k \)-regular graph is uniquely \(k \)-edge-colourable then it has a Hamiltonian cycle.

This is a generalization of 7.2.14 on page 296.

3. (10 pts) \(G \) is a bipartite graph with bipartition \((X,Y)\) where \(|X| = |Y| = n \). For every \(S \subseteq X \) except for \(S = X \) and \(S = \emptyset \), we have \(|N(S)| > |S| \). Prove that every edge of \(G \) lies in a perfect matching.

Remark: this is roughly the same problem as 3.1.21 on page 119.

4. (20 pts)

 (a) (5 pts) Prove that for \(k \geq 3 \), every \(k \)-regular graph with exactly \(2k + 1 \) vertices is 3-connected.

 (b) (15 pts) Prove that for \(k \geq 2 \) every \(k \)-regular graph with exactly \(2k + 1 \) vertices has a Hamiltonian cycle. For part (b), you can use the following lemma (which you don’t need to prove):

 \textbf{Lemma:} Every 2-connected graph with \(n \geq 3 \) vertices and minimum degree \(\delta \) has a cycle of length at least \(\min\{n, 2\delta\} \).

 This is essentially the same as 7.2.40 on page 298.

5. (15 pts) Prove that if \(G \) is triangle-free (i.e. contains no cycles of length 3) then \(\chi(G) \leq 2\sqrt{n} \), where \(n \) is the number of vertices in \(G \).

 This is 5.2.15 on page 216. West provides the following hint: Use large neighbourhoods as colour classes while there remain vertices of high degree; then apply Brooks’ Theorem.

6. (25 pts) \(H \) is a tournament, and \(x \in H \) is a vertex with maximum outdegree.

 (a) (5 pts) Prove that every vertex \(u \in H \) can be reached from \(x \) using a directed path with at most 2 edges.

 (b) (20 pts) Prove that \(H \) has a spanning tree \(T \) rooted at \(x \) such that

 (i) The edges of \(T \) are directed away from the root;

 (ii) The height of \(T \) is at most 2;

 (iii) Every vertex other than \(x \) has outdegree at most 2 in \(T \).

 Hint: Use either network flows or Hall’s Theorem.

 This is Exercise 4.3.16 from page 190.

 See Definition 1.4.27 from page 62.