
Characterizing the Performance of Data Management Systems on the
Pentium 4 Hyper-Threaded Architecture

Wessam Hassanein, Layali Rashid, Maryam Mehri, Moustafa Hammad*

Department of Electrical & Computer Engineering
*Department of Computer Science

University of Calgary
{hassanein@enel., lrashid@, mmehride@, hammad@cpsc.}ucalgary.ca

ABSTRACT
As the information acquisition and processing applications
take greater roles in our everyday life, database
management systems are growing in importance. Database
management systems have traditionally exhibited poor
cache performance and large memory footprints, therefore
performing only at a fraction of their ideal execution and
exhibiting low processor utilization. Previous research has
studied the memory system of database management
systems (DBMSs) on research-based SMT processors.
Recently, several differences have been noted between the
real hyper-threaded architecture implemented by the Intel
Pentium 4 and the earlier SMT research architectures.
Therefore, it is becoming important to study and analyze
the performance of DBMS on a real SMT processor. This
paper characterizes the performance of a prototype open-
source DBMS running benchmark queries on an Intel
Pentium 4 Hyper-Threading processor. We use the
performance hardware counters provided by the Pentium 4
to evaluate the micro-architecture and study the memory
system behavior of each query running on the data
management system.

1. INTRODUCTION
Information Management Systems are gaining importance
as various types of data acquisition and information
processing applications play larger roles in our everyday
life. Database management system (DBMS) is a typical
information management system that continuously evolves
to meet the new application demands and hardware
capabilities. Therefore, re-evaluating the DBMS‘s
performance is significant to both the computer architecture
and database communities. Previous studies have shown
that DBMS exhibits high cache miss rates and low CPU
utilization [13]. Simultaneous Multithreading (SMT) [24] is
a form of hardware multithreading where a single physical
multithreaded processor can execute multiple threads
concurrently. The resources of a multithreaded processor
are either shared between the threads or duplicated for each
thread compared to a non multithreaded processor.
Recently, SMT microprocessors have appeared in
commercial machines (e.g., the Intel® Pentium® 4 Hyper-
threading processor is a dual thread general purpose SMT
processor). This has allowed SMT research to move from

simulation-based studies to real hardware studies.
Furthermore, the availability of real SMT processors allows
for validating previous simulation results against new
experimental results on real hardware. At the data
management side, recent studies in hardware-aware data
management focus on specific data operations such as
sorting [10], main memory data structures [26], and data
mining algorithms [11]. These studies provide insightful
comments to improve various data management
components by utilizing new hardware features. However,
to the best of our knowledge, no characterization study
exists of a complete DBMS system using SMT processors.
Such study is inevitable to realistically evaluate a
sophisticated and an integral system as DBMS.

This paper studies the performance of an open source
DBMS, namely PostgreSQL [3], on the Intel Pentium 4
Hyper-threading processor. We analyze and compare the
performance of several queries from the Wisconsin
Benchmark [8] on PostgreSQL. Wisconsin Benchmark is
gaining popularity among parallel database management
systems and widely used in open-source DBMS such as
PREDATOR and MySQL [8][1][2]. The benchmark
queries are tuned to utilize index structures such as
clustered and unclustered indexes. We compare the effects
of hyper-threading on the DBMS performance by switching
the hyper-threading feature of the processor on and off
through the BIOS. The characterization study showed that
for benchmark queries that benefit the least from the index
structures either because of accessing large portions of an
unclustered index or avoiding index structures altogether,
hyper-threading improves the performance. For the rest of
the workload queries that took advantage of index
processing, hyper-threading negatively affected the
performance.
The rest of the paper is organized as follows: Section 2
describes the experimental methodology. In Section 3, we
present the experimental results. Section 4 discusses related
work. Finally, conclusions are provided in Section 5.

2. EXPERIMENTAL METHODOLOGY

2.1 Experimental Platform
All experiments were run on a single 3.4GHz Pentium 4
Hyperthreading processor with a 2MB on chip L2 cache,

and a 1GB 533MHz DDR2 SDRAM memory. The
operating system used is the Scientific Linux version 4.1
(Based on Redhat Linux Enterprise version 4.0) and
running the Linux 2.6.14 kernel. The Pentium 4 uses a 12K
micro-operation (uops) L1 instruction trace cache and a
64KB L1 data cache. The machine has an 800MHz front
side bus.

2.2 Benchmarks
All experiments were run on the PostgreSQL open-source
database management system (DBMS) version xx and
using Wisconsin Benchmark [8]. PostgreSQL is a widely
used DBMS in both research and industry with over 15
years of development effort. Specifically, we use
PostgreSQL for the following two main reasons: First,
PostgreSQL includes optimized implementations of various
data management functionalities such as query processor,
index manager, buffer manager, and storage manager.
Furthermore, PostgreSQL SQL (Structured Query
Language) implementation strongly conforms to the ANSI-
SQL 92/99 standards, which is the latest SQL standard that
is currently implemented in industrial-strength DBMSs.
Second, being an open-source system facilitates problem
tracking, identification, and resolution at both the
architecture and data management sides.
Various Benchmarks are used to measure the performance
of DBMSs (refer to [8] for further reference). We choose
Wisconsin Benchmark as our workload queries because of
its wide-applicability in evaluating the performance of ad
hoc queries on parallel databases [8]. Second, in addition to
its ease of implementation and publicity, the Wisconsin
Benchmark is adopted for many open-source DBMS such
as PREDATOR [1] and MySQL [2]. One argument against
the Wisconsin Benchmark lies primarily in being not so
popular among industrial-strength DBMSs because of
targeting single-user queries. Although this argument is not
really justified [8], we believe that using industrial-strength
DBMS at this stage of the research will lack flexibility to
trace performance bottlenecks at hardware and software
levels. Furthermore, studying the effect of hyper-threading
on a single user environment is an integral component of
studying multi-user systems, which we plan to study in
future research.
Wisconsin Benchmark. Wisconsin benchmark consists of
data generation and workload queries. The data generation
is based on the algorithm developed by Susan Englert and
Jim Gray [9]. The workload queries use primarily three
database tables (10MTUPLES, 1MTUPLES, and
100KTUPLES) and a set of temporary tables. The number
of records in 10MTUPLES, 1MTUPLES, and
100KTUPLES is ten millions, one million, and a hundred
thousand records, respectively. Table sizes are in the range
from two gigabytes to two megabytes. None of the
benchmark queries can access tables that fit entirely in the
available memory-space. The tables have the same

description (i.e., schema) as descried in [8] as given in
Table 1. A table consists of a set of integer and string fields.
The record size is 208 bytes. Table 2 gives the workload
queries while omitting the INSERT INTO part for space
limitations. All queries are using a mix of clustered and
unclustered indexes to speed up the access of database
tables. Clustered indexes have the records physically stored
in the same order as the keys of the clustered index.
Because of the physical records proximity, using a clustered
index to retrieve records with equal or consecutive values
reduces significantly the query execution time. However, at
most one clustered index can be built on a single table. On
the other hand, an unclustered index will speed up search.
However, the index significantly increases query execution
time as we retrieve large portions of the stored data from
the indexed table. The percentage of retrieved records is
related to the selectivity of the query.

Table 1: The description (schema) of tables used by our queries
Attribute

Name
Range of
Values

Order Comment

unique1 0-(MAXTUPLES-
1)

random unique, random
order

unique2 0-(MAXTUPLES-
1)

sequential unique,
sequential

two 0-1 random (unique1 mod 2)
four 0-3 random (unique1 mod 4)
ten 0-9 random (unique1 mod

10)
twenty 0-19 random (unique1 mod

20)
onePercent 0-99 random (unique1 mod

100)
tenPercent 0-9 random (unique1 mod

10)
twentyPercent 0-4 random (unique1 mod 5)
fiftyPercent 0-1 random (unique1 mod 2)

unique3 0-(MAXTUPLES-
1)

random unique1

evenOnePercent 0,2,4,...,198 random (onePercent * 2)
oddOnePercent 1,3,5,...,199 random (onePercent *

2)+1
stringu1 - random candidate key
stringu2 - random candidate key
string4 - cyclic

2.3 Tools for Performance Measurements
The Pentium 4 is equipped with 18 performance counters
that allow us to monitor 48 events at the architecture level.
These events include cache misses, TLB misses, branch
mispredictions, etc. We use the Intel vtune performance
analyzer version 3.0 for Linux to take our measurements
unless otherwise noted. We use the Event Based Sampling
feature of the vtune performance analyzer to collect our
data. We use the system BIOS to turn hyperthreading on
and off.

3. RESULTS
This section examines the effect of hyperthreading on the
performance of database benchmark queries (Table 2)

running on the PostgreSQL database. The Linux operating
system considers a hyperthreaded machine with
hyperthreading turned on as a two processor machine.
Therefore, a single hyperthreaded (dual threads) SMT
physical processor is considered by the Linux operating
system as two logical processors. “Processor 0” in our
results refers to the first thread (logical processor) on the
hyperthreaded Pentium 4 while “Processor 1” refers to the
second thread. In a hyperthreaded-off machine the physical
processor is seen as only a single logical processor
“Processor 0”.

Table 2: Wisconsin Benchmark Queries used in our analysis
Query Name Query
Q1(clus. index 1%
selection)

SELECT * FROM 10MTUPLES WHERE unique2
BETWEEN 0 AND 99999;

Q2(clus. index
10% selection)

SELECT * FROM 10MTUPLES WHERE unique2
BETWEEN 792 AND 1000791;

Q3(unclus. index
1% selection)

SELECT * FROM 10MTUPLES WHERE unique1
BETWEEN 0 AND 99999;

Q4(unclus. index
1% selection)

SELECT * FROM 10MTUPLES WHERE unique1
BETWEEN 792 AND 100791;

Q5(clus. index)

SELECT * FROM 10MTUPLES, 1MTUPLES
WHERE(10MTUPLES.unique2 =
1MTUPLES.unique2) AND (1MTUPLES.unique2
< 100000);

Q6(clus. index)

SELECT * FROM 10MTUPLES, 1MTUPLES,
1OOKTUPLES WHERE (1OOKTUPLES.unique2
= 1MTUPLES.unique2) AND
(1MTUPLES.unique2 =10MTUPLES.unique2)
AND (10MTUPLES.unique2 < 1000000)

Q7(unclus. index)

SELECT * FROM 10MTUPLES, 1MTUPLES
WHERE (10MTUPLES.unique1 =
1MTUPLES.unique1) AND
(10MTUPLES.unique2 < 1000000);

Q8(unclus. index)

SELECT * FROM 10MTUPLES, 1MTUPLES,
1OOKTUPLES WHERE (1OOKTUPLES.unique1
= 1MTUPLES.unique1)
AND(1MTUPLES.unique1 =
10MTUPLES.unique1) AND
(10MTUPLES.unique1 < 1000000)

Q9(clus. index) SELECT MIN(10MTUPLES.unique2) FROM
10MTUPLES;

Q10(clus. index)
SELECT MIN (10MTUPLES.unique2) FROM
10MTUPLES GROUP BY
10MTUPLES.onePercent;

Q11(clus. index) UPDATE 10MTUPLES SET unique2=10000001
WHERE unique2=1491;

Q12(unclus. index) UPDATE 10MTUPLES SET unique1=10000001
WHERE unique1=1491;

The PostgreSQL database generates a new postgres process
for each query run. This postgres process contains several
modules including the postgres module as well as other
operating system modules such as vmlinux, etc. To measure
the effects of the benchmark query apart from other factors
in the operating system, the results presented in this paper
are of the postgres module within the postgres process.
• Speedup. Figure 1 shows the actual run time of each of
our benchmark queries running on the PostgreSQL
database. The run time is measured using the PostgreSQL
database timing option for each query. We compare the run
time when hyperthreading is turned on verses turned off.

Our results show performance variations between
benchmarks ranging from a speedup of 12% to a slowdown
of 13% with the majority of benchmarks showing
slowdowns when hyperthreading is turned on. Our results
also show that Q3, Q4 and Q5 which are our longest
running queries exhibit speedups due to hyperthreading.

Speedup due to Hyper-threading

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10 Q11 Q12

Figure 1: Speedup due to hyprethreading

• Instructions Retired
The Intel Pentium 4 decodes each instruction into several
micro-operations (uops). The ratio of uops to instructions
ranges from 1.28 to 1.96 uop/instruction in our query
bencharmks. Figure 2 compares the instructions retired for
hyperthreading turned on versus off. Our results show
equivalent number of instructions with hyperthreading on
compared to off. Figure 2 also shows that the majority of
instructions are executed on the 1st thread. With Q2 and Q5
being the only benchmarks with a significant number of
instructions executing on the 2nd thread.

Instructions Retired

0

5E+10

1E+11

1.5E+11

2E+11

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 2: Instructions retired with hyperthreading on vs. off. (N=
HT off, H = HT on.). Q11 and Q12 have a small number of
instructions retired.
Cache Behavior. In SMT architectures the cache hierarchy
is shared between all the thread contexts. This is also the
case in the Intel Pentium 4 hyperthreaded architecture
where both threads share the L1 instruction trace cache, the
L1 data cache, and the unified L2 cache. This sharing can
be either beneficial, if for example one thread prefetches
data for the other, or detrimental if one thread conflicts with
the other causing a large number of cache misses. In [16],

SMT introduces severe cache conflicts for On-line
transcation processing (OLTP) database queries using
conventional virtual memory management. Both beneficial
and detrimental patterns have been reported on the Intel
Pentium 4 hyperthreaded processor L1 and L2 caches for
Java Applications [12]. Benefical patterns for L2 cache and
detrimental patterns for L1 cache in network servers [22]
have been reported on the Intel Xeon hyperthreaded
processor. Figure 3 shows the L1 data cache miss rate for
load instructions. We compare the miss rates with
hyperthreading turned on versus off showing the percentage
of misses experienced by each processor thread. It can be
seen that Q11 (which is a short running query) benefits
from sharing the L1 data cache, while very small benefits
are experienced by Q6, Q7, Q9 and Q10. All other
benchmark queries experience a detrimental effect some up
to a 4% increase in cache misses. Our results also show that
the majority of benchmarks that experience negative effects
due to hyperthreading are experiencing some of these cache
misses on the 2nd thread (processor 1).
Figure 3 shows the L2 cache miss rates. Our results show
that Q3, Q4 and Q5 experience a significantly smaller
number of L2 cache misses. These three benchmarks
experience the largest drops in L2 cache misses compared
to their L2 misses with hyprethreading off. This partially
explains the resulting speedup in these benchmarks. The
majority of our queries benefit at the L2 cache level from
hyperthreading. This can be explained by our large L2
cache (2MB) that could reduce potential conflicts between
threads. Figure 4 shows the L1 instruction trace cache miss
rates. The Intel Pentium 4 processor has a 12Kuops
instruction trace cache. Both Q3 and Q4 show reduced
instruction trace cache miss rates due to hyprethreading.
While Q5 experiences a slight increase in instruction cache
misses with a large portion of this increase experience by
the 2nd thread. Both Q11 and Q12 also benefit from
hyperthreading at the instruction cache level. However, all
other benchmarks show larger instruction cache miss rates
due to hyperthreading.

L1 Data Cache Load Miss Rate

0%

2%

4%

6%

8%

10%

12%

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 2: L1 data cache miss rate (N= HT off, H = HT)

L2 Cache Read Miss Rate

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%
5.0%

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 3: L2 cache miss rate (N= HT off, H = HT)
L1 Instruction Trace Cache Miss Rate

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 4: L1 instruction trace cache miss rate (N= HT off, H =
HT)
• TLB Misses
The DTLB is used to translate the data logical addresses
into physical addresses. The DTLB is shared in the Intel
Pentium 4. Our results in Figure 5 show both beneficial and
detrimental patterns in the DTLB misses with some
benchmark queries benefiting from hyperthreading while
others showing larger numbers of misses. Q4 benefits from
hyperthreading DTLB sharing while Q3 and Q5 show
larger DTLB misses with large percentages from the 2nd
thread indicating that both threads are conflicting at the
DTLB level.

DTLB Miss Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 5: DTLB miss rates (N= HT off, H = HT)

• Mispredicted Branches
The branch misprediction rates in our query benchmarks
shown in Figure 6 are up to 7.5%. A mispredicted branch
has a 20 cycle penalty. Q3, Q4, Q5 and Q7 all benefit from
the sharing at the branch history table level and result in
significantly lower misprediction rates compared to
hyperthreading off. All other benchmarks either experience
slight degredation or improvement in branch performance
due to hyperthreading.

Branch Misprediction Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Processor 0 Processor 1

Figure 6: Branch misprediction rate (N= HT off, H = HT)
• Performance Impact
To further understand the importance of the different
processor parts on the performance of our benchmarks, we
plot the non-overlapped CPI stall component in Figure 7.
This stall component represents the non-overlapped stall
cycles per instruction and does not take into account cycle
overlapping during execution which can affect the
measured performance. Using LMbench tool [19] we
measured our memory hierarchy latencies to be 1.18ns,
8.26ns, 137.9ns for L1 cache, L2 cache and memory
latencies respectively. Our results show that the major stall
cycle components are those of the DTLB and L2 cache
misses.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

N H N H N H N H N H N H N H N H N H N H N H N H

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

L1-D L2 ITLB DTLB Branches Pipeline clear L1-I
Figure 7: Non-overlapped CPI stall component (N= HT off, H =
HT)

4. RELATED WORK
This section presents an overview of several related work
on workload characterization of various applications. The
behavior of Oracle DBMS using OLTP and DSS has been
studied by Lo et al. [16] on a simulated SMT processor.
They concluded that severe cache conflicts occurs using
conventional virtual memory management and proposed a
new page placement policy. A new technique for evaluating
database workloads “microbenchmark” is proposed in [15].
 Tuch et al. [23] measured the performance of SPEC2000
on Intel Pentium 4 processors. Their results showed both
multi-programmed and parallel speedups. A related work
has also been done in [6].
Chen et al. [7] evaluated the performance of multi-media
applications on SMT processors and compared SMT versus
SMP systems. Their analysis includes memory-bounded
kernels and computational bounded functions. In [22] the
impact of SMT on the Intel Xeon processor of network
servers shows several resource bottlenecks.
Raasch and Reinhardt studied the impact of resource
partitioning on SMT processors by focusing on the
execution portion of the pipeline [21] . The performance of
Pentium pro systems has been characterized in [13] and [1].
Wei Haung et al. [12] characterized the performance of
Java applications on Intel Pentium 4 hyper-threading
processors. Blackburn studied the performance of garbage
collection on multithreading by using some of the Pentium
4 performance counters [5]. To the best of our knowledge
no previous work has characterized the PostgreSQL
DBMSs on a real hyperthreaded Pentium 4 processor.

5. CONCLUSION
In this paper we characterized the performance of an open-
source database management system on an Intel Pentium 4
Hyper-Threading processor. The presented performance
characterization is based on real measurements of a widely-
adopted database benchmark of parallel databases. The
database benchmark queries are tuned to utilize both
clustered and unclustered indexes. The detailed
performance study focused primarily on the effect of hyper-
threading on the total execution time of the benchmark
queries. The characterization study showed that for
complex benchmark queries that benefit the least from the
index structures either because of accessing large portions
of an unclustered index or avoiding index structures
altogether, hyper-threading improves the performance. For
the rest of the workload queries that took advantage of
index processing, hyper-threading negatively affected the
performance. To the best of our knowledge no other
characterization study has analyzed DBMS on SMT
processors and only a limited amount of work has studied
various data management operations generally on SMT
architectures.

6. REFERENCES

[1] http://www.distlab.dk/predator/
[2] http://www.mysql.com/
[3] http://www.potgresql.org
[4] D. Bhandarkar and J. Ding. “Performance characterization of

the Pentium Pro processor”. In Proc. of the 3rd IEEE Symp.
on High-Performance Computer Architecture (HPCA) ’97,
Feb. 1997.

[5] S. Blackburn, P. Cheng, and K. McKinley. “Myths and
realities: The performance impact of garbage collection”. In
Proc. of the SIGMETRICS ’04, June 2004.

[6] James R. Bulpin and Ian A. Pratt. “Multiprogramming
performance of the Pentium 4 with Hyper-Threading”. In
Proc. of the 3rd Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD), Munich,
Germany, June 2004.

[7] Y. K. Chen, E. Debes, R. Lienhart, M. Holliman, and M.
Yeung. “Evaluating and improving performance of
multimedia applications on simultaneous multi-threading”. In
9th Intl. Conf. on Parallel and Distributed Systems, Dec.
2002.

[8] D.J.DeWitt. “The Wisconsin Benchmark: Past, Present, and
Future”. In the Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan Kaufmann 1993,
ISBN 1-55860-292-5.

[9] Englert, S. and J. Gray, "Generating Dense-Unique Random
Numbers for Synthetic Database Loading," Tandem
Computers, January, 1989.

[10] P. Garcia and H. Korth. “Multithreaded Architectures and
The Sort Benchmark". In Proceedings of the first
international workshop on data management on new
hardware, June 2005.

[11] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, Y.Chen,
A. Nguyen, and P. Dubey, "Cache-Conscious Frequent
Pattern Mining on a Modern Processor", In Proceedings of
the International Conference on Very Large Data Bases
(VLDB), 2005.

[12] Wei Huang; Jiang Lin; Zhao Zhang; Chang, J.M.
“Performance Characterization of Java Applications on SMT
Processors”, International Symposium on Performance
Analysis of Systems and Software (ISPASS), March, 2005

[13] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker.
“Performance charaterization of a Quad Pentium Pro SMP
using OLTP workloads”. In Proc. of the 25th International
Symposium on Computer Architecture (ISCA).

[14] K. Keeton, A. Veitch, D. Obal, and J. Wilkes. "I/O
Characterization of Commercial Workloads," presented at
Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW)-00, before High-
Performance Computer Architecture (HPCA)-6, January
2000

[15] K. Keeton and D. Patterson. "Towards a Simplified Database
Workload for Computer Architecture Evaluations," presented
at the Workshop on Workload Characterization, Austin,
Texas, October 1999. In Workload Characterization for
Computer System Design, edited by L. K. John and A. M.
Maynard, Kluwer Academic Publishers, 2000, ISBN 0-7923-
7777-x.

[16] Jack Lo, Luiz Barroso, Susan Eggers, Kourosh Gharachorloo,
Henry Levy, and Sujay Parekh. “An analysis of database
workload performance on simultaneous multithreaded

processors”. In Proc. of the 25th International Symposium on
Computer Architecture (ISCA), Barcelona, Spain, June 1998.

[17] Yue Luo and Lizy K. John. “Workload characterization of
multithreaded Java servers”. In Proceedings of 2001 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), Tucson, Arizona,
November 2001.

[18] D.Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A.Miller,
and M. Upton. “Hyper-threading technology architecture and
microarchitecture”. Intel Technology Journal,

[19] L. McVoy and C. Staelin. lmbench. “Portable tools for
performance analysis”. In USENIX 1996 Annual Technical
Conference.

[20] PostgresSQL Documentation available at
http://www.postgresql.org/docs/8.1/interactive/history.html

[21] Steven E. Raasch , Steven K. Reinhardt, The Impact of
Resource Partitioning on SMT Processors, Proceedings of the
12th International Conference on Parallel Architectures and
Compilation Techniques, p.15, September 27-October 01,
2003

[22] Y. Ruan, V. S. Pai, E. Nahum, John M. Tracey. ”Evaluating
the Impact of Simultaneous Multithreading on Network
Servers Using Real Hardware”. In theProc. of the
SIGMETRICS '05, June, 2005.

[23] N. Tuck and D. Tullsen. “Initial observations of a
simultaneous multithreading processor”. In 12th Intl. Conf.
on Parallel Architectures and Compilation Techniques
(PACT’)03, Sept. 2003.

[24] D. Tullsen, S. Eggers, and H. Levy. “Simultaneous
multithreading: Maximizing on-chip parallelism”. In Proc. of
the 22th International Symposium on Computer Architecture
(ISCA), 1995.

[25] Intel Corp. VTune performance analyzer. Available at
http://www.intel.com/software/products/vtune/.

[26] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. “Improving
database performance on simultaneous multithreading
processors”. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), 2005.

http://www.distlab.dk/predator/
http://www.mysql.com/
http://firebird.sourceforge.net/download/test/wisconsin_benchmark_chapter4.pdf
http://firebird.sourceforge.net/download/test/wisconsin_benchmark_chapter4.pdf
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/4%20best%20paper%20-%20multithreaded%20architectures%20and%20the%20sort%20benchmark.pdf
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/4%20best%20paper%20-%20multithreaded%20architectures%20and%20the%20sort%20benchmark.pdf
http://www.postgresql.org/docs/8.1/interactive/history.html
http://portal.acm.org/citation.cfm?id=943858&dl=GUIDE&coll=GUIDE&CFID=61283681&CFTOKEN=66847883
http://portal.acm.org/citation.cfm?id=943858&dl=GUIDE&coll=GUIDE&CFID=61283681&CFTOKEN=66847883
http://portal.acm.org/citation.cfm?id=943858&dl=GUIDE&coll=GUIDE&CFID=61283681&CFTOKEN=66847883
http://portal.acm.org/citation.cfm?id=943858&dl=GUIDE&coll=GUIDE&CFID=61283681&CFTOKEN=66847883
http://portal.acm.org/citation.cfm?id=943858&dl=GUIDE&coll=GUIDE&CFID=61283681&CFTOKEN=66847883
http://www.intel.com/software/products/vtune/

	2. EXPERIMENTAL METHODOLOGY
	2.1 Experimental Platform
	2.2 Benchmarks
	2.3 Tools for Performance Measurements

	3. RESULTS
	4. RELATED WORK
	5. CONCLUSION
	6. REFERENCES

