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ABSTRACT 
As the information acquisition and processing applications 
take greater roles in our everyday life, database 
management systems are growing in importance. Database 
management systems have traditionally exhibited poor 
cache performance and large memory footprints, therefore 
performing only at a fraction of their ideal execution and 
exhibiting low processor utilization. Previous research has 
studied the memory system of database management 
systems (DBMSs) on research-based SMT processors. 
Recently, several differences have been noted between the 
real hyper-threaded architecture implemented by the Intel 
Pentium 4 and the earlier SMT research architectures. 
Therefore, it is becoming important to study and analyze 
the performance of DBMS on a real SMT processor. This 
paper characterizes the performance of a prototype open-
source DBMS running benchmark queries on an Intel 
Pentium 4 Hyper-Threading processor. We use the 
performance hardware counters provided by the Pentium 4 
to evaluate the micro-architecture and study the memory 
system behavior of each query running on the data 
management system. 

1. INTRODUCTION 
Information Management Systems are gaining importance 
as various types of data acquisition and information 
processing applications play larger roles in our everyday 
life. Database management system (DBMS) is a typical 
information management system that continuously evolves 
to meet the new application demands and hardware 
capabilities. Therefore, re-evaluating the DBMS‘s 
performance is significant to both the computer architecture 
and database communities. Previous studies have shown 
that DBMS exhibits high cache miss rates and low CPU 
utilization [13]. Simultaneous Multithreading (SMT) [24] is 
a form of hardware multithreading where a single physical 
multithreaded processor can execute multiple threads 
concurrently. The resources of a multithreaded processor 
are either shared between the threads or duplicated for each 
thread compared to a non multithreaded processor. 
Recently, SMT microprocessors have appeared in 
commercial machines (e.g., the Intel® Pentium® 4 Hyper-
threading processor is a dual thread general purpose SMT 
processor). This has allowed SMT research to move from 

simulation-based studies to real hardware studies. 
Furthermore, the availability of real SMT processors allows 
for validating previous simulation results against new 
experimental results on real hardware. At the data 
management side, recent studies in hardware-aware data 
management focus on specific data operations such as 
sorting [10], main memory data structures [26], and data 
mining algorithms [11]. These studies provide insightful 
comments to improve various data management 
components by utilizing new hardware features. However, 
to the best of our knowledge, no characterization study 
exists of a complete DBMS system using SMT processors. 
Such study is inevitable to realistically evaluate a 
sophisticated and an integral system as DBMS.   

This paper studies the performance of an open source 
DBMS, namely PostgreSQL [3], on the Intel Pentium 4 
Hyper-threading processor. We analyze and compare the 
performance of several queries from the Wisconsin 
Benchmark [8] on PostgreSQL. Wisconsin Benchmark is 
gaining popularity among parallel database management 
systems and widely used in open-source DBMS such as 
PREDATOR and MySQL [8][1][2]. The benchmark 
queries are tuned to utilize index structures such as 
clustered and unclustered indexes. We compare the effects 
of hyper-threading on the DBMS performance by switching 
the hyper-threading feature of the processor on and off 
through the BIOS. The characterization study showed that 
for benchmark queries that benefit the least from the index 
structures either because of accessing large portions of an 
unclustered index or avoiding index structures altogether, 
hyper-threading improves the performance. For the rest of 
the workload queries that took advantage of index 
processing, hyper-threading negatively affected the 
performance. 
The rest of the paper is organized as follows: Section 2 
describes the experimental methodology. In Section 3, we 
present the experimental results. Section 4 discusses related 
work.  Finally, conclusions are provided in Section 5. 

2. EXPERIMENTAL METHODOLOGY 

2.1 Experimental Platform 
All experiments were run on a single 3.4GHz Pentium 4 
Hyperthreading processor with a 2MB on chip L2 cache, 



and a 1GB 533MHz DDR2 SDRAM memory. The 
operating system used is the Scientific Linux version 4.1 
(Based on Redhat Linux Enterprise version 4.0) and 
running the Linux 2.6.14 kernel. The Pentium 4 uses a 12K 
micro-operation (uops) L1 instruction trace cache and a 
64KB L1 data cache. The machine has an 800MHz front 
side bus.  

2.2 Benchmarks 
All experiments were run on the PostgreSQL open-source 
database management system (DBMS) version xx and 
using Wisconsin Benchmark [8]. PostgreSQL is a widely 
used DBMS in both research and industry with over 15 
years of development effort. Specifically, we use 
PostgreSQL for the following two main reasons: First, 
PostgreSQL includes optimized implementations of various 
data management functionalities such as query processor, 
index manager, buffer manager, and storage manager. 
Furthermore, PostgreSQL SQL (Structured Query 
Language) implementation strongly conforms to the ANSI-
SQL 92/99 standards, which is the latest SQL standard that 
is currently implemented in industrial-strength DBMSs. 
Second, being an open-source system facilitates problem 
tracking, identification, and resolution at both the 
architecture and data management sides. 
Various Benchmarks are used to measure the performance 
of DBMSs (refer to [8] for further reference). We choose 
Wisconsin Benchmark as our workload queries because of 
its wide-applicability in evaluating the performance of ad 
hoc queries on parallel databases [8]. Second, in addition to 
its ease of implementation and publicity, the Wisconsin 
Benchmark is adopted for many open-source DBMS such 
as PREDATOR [1] and MySQL [2]. One argument against 
the Wisconsin Benchmark lies primarily in being not so 
popular among industrial-strength DBMSs because of 
targeting single-user queries. Although this argument is not 
really justified [8], we believe that using industrial-strength 
DBMS at this stage of the research will lack flexibility to 
trace performance bottlenecks at hardware and software 
levels. Furthermore, studying the effect of hyper-threading 
on a single user environment is an integral component of 
studying multi-user systems, which we plan to study in 
future research. 
Wisconsin Benchmark. Wisconsin benchmark consists of 
data generation and workload queries. The data generation 
is based on the algorithm developed by Susan Englert and 
Jim Gray [9]. The workload queries use primarily three 
database tables (10MTUPLES, 1MTUPLES, and 
100KTUPLES) and a set of temporary tables. The number 
of records in 10MTUPLES, 1MTUPLES, and 
100KTUPLES is ten millions, one million, and a hundred 
thousand records, respectively. Table sizes are in the range 
from two gigabytes to two megabytes. None of the 
benchmark queries can access tables that fit entirely in the 
available memory-space. The tables have the same 

description (i.e., schema) as descried in [8] as given in 
Table 1. A table consists of a set of integer and string fields. 
The record size is 208 bytes. Table 2 gives the workload 
queries while omitting the INSERT INTO part for space 
limitations. All queries are using a mix of clustered and 
unclustered indexes to speed up the access of database 
tables. Clustered indexes have the records physically stored 
in the same order as the keys of the clustered index.  
Because of the physical records proximity, using a clustered 
index to retrieve records with equal or consecutive values 
reduces significantly the query execution time. However, at 
most one clustered index can be built on a single table. On 
the other hand, an unclustered index will speed up search. 
However, the index significantly increases query execution 
time as we retrieve large portions of the stored data from 
the indexed table. The percentage of retrieved records is 
related to the selectivity of the query. 
 

Table 1: The description (schema) of tables used by our queries 
Attribute  

Name 
Range of  
Values 

Order Comment 

unique1 0-(MAXTUPLES-
1) 

random unique, random 
order 

unique2 0-(MAXTUPLES-
1) 

sequential unique, 
sequential 

two 0-1 random (unique1 mod 2) 
four 0-3 random (unique1 mod 4) 
ten 0-9 random (unique1 mod 

10) 
twenty 0-19 random (unique1 mod 

20) 
onePercent 0-99 random (unique1 mod 

100) 
tenPercent 0-9 random (unique1 mod 

10) 
twentyPercent 0-4 random (unique1 mod 5) 
fiftyPercent 0-1 random (unique1 mod 2) 

unique3 0-(MAXTUPLES-
1) 

random unique1 

evenOnePercent 0,2,4,...,198 random (onePercent * 2) 
oddOnePercent 1,3,5,...,199 random (onePercent * 

2)+1 
stringu1 - random candidate key 
stringu2 - random candidate key 
string4 - cyclic  

2.3 Tools for Performance Measurements 
The Pentium 4 is equipped with 18 performance counters 
that allow us to monitor 48 events at the architecture level. 
These events include cache misses, TLB misses, branch 
mispredictions, etc. We use the Intel vtune performance 
analyzer version 3.0 for Linux to take our measurements 
unless otherwise noted. We use the Event Based Sampling 
feature of the vtune performance analyzer to collect our 
data. We use the system BIOS to turn hyperthreading on 
and off. 

3. RESULTS 
This section examines the effect of hyperthreading on the 
performance of database benchmark queries (Table 2) 



running on the PostgreSQL database. The Linux operating 
system considers a hyperthreaded machine with 
hyperthreading turned on as a two processor machine. 
Therefore, a single hyperthreaded (dual threads) SMT 
physical processor is considered by the Linux operating 
system as two logical processors. “Processor 0” in our 
results refers to the first thread (logical processor) on the 
hyperthreaded Pentium 4 while “Processor 1” refers to the 
second thread. In a hyperthreaded-off machine the physical 
processor is seen as only a single logical processor 
“Processor 0”. 
 

Table 2: Wisconsin Benchmark Queries used in our analysis 
Query Name Query 
Q1(clus. index 1% 
selection) 

SELECT * FROM 10MTUPLES WHERE unique2   
BETWEEN 0 AND 99999; 

Q2(clus. index 
10% selection) 

SELECT * FROM 10MTUPLES WHERE unique2   
BETWEEN 792 AND 1000791; 

Q3(unclus. index 
1% selection) 

SELECT * FROM 10MTUPLES WHERE unique1   
BETWEEN 0 AND 99999; 

Q4(unclus. index 
1% selection) 

SELECT * FROM 10MTUPLES WHERE unique1   
BETWEEN 792 AND 100791; 

Q5(clus. index) 

SELECT * FROM 10MTUPLES, 1MTUPLES 
WHERE(10MTUPLES.unique2 = 
1MTUPLES.unique2) AND (1MTUPLES.unique2 
< 100000); 

Q6(clus. index) 

SELECT * FROM 10MTUPLES, 1MTUPLES, 
1OOKTUPLES WHERE  (1OOKTUPLES.unique2 
= 1MTUPLES.unique2) AND 
(1MTUPLES.unique2  =10MTUPLES.unique2) 
AND (10MTUPLES.unique2 < 1000000) 

Q7(unclus. index) 

SELECT * FROM 10MTUPLES, 1MTUPLES 
WHERE (10MTUPLES.unique1 = 
1MTUPLES.unique1 ) AND 
(10MTUPLES.unique2 < 1000000); 

Q8(unclus. index) 

SELECT * FROM 10MTUPLES, 1MTUPLES, 
1OOKTUPLES WHERE (1OOKTUPLES.unique1 
= 1MTUPLES.unique1) 
AND(1MTUPLES.unique1 =  
10MTUPLES.unique1) AND 
(10MTUPLES.unique1 < 1000000) 

Q9(clus. index) SELECT MIN(10MTUPLES.unique2) FROM 
10MTUPLES; 

Q10(clus. index) 
SELECT MIN (10MTUPLES.unique2) FROM 
10MTUPLES  GROUP BY 
10MTUPLES.onePercent; 

Q11(clus. index) UPDATE 10MTUPLES SET unique2=10000001 
WHERE unique2=1491; 

Q12(unclus. index) UPDATE 10MTUPLES SET unique1=10000001 
WHERE unique1=1491; 

 
The PostgreSQL database generates a new postgres process 
for each query run. This postgres process contains several 
modules including the postgres module as well as other 
operating system modules such as vmlinux, etc. To measure 
the effects of the benchmark query apart from other factors 
in the operating system, the results presented in this paper 
are of the postgres module within the postgres process.  
• Speedup. Figure 1 shows the actual run time of each of 
our benchmark queries running on the PostgreSQL 
database. The run time is measured using the PostgreSQL 
database timing option for each query. We compare the run 
time when hyperthreading is turned on verses turned off. 

Our results show performance variations between 
benchmarks ranging from a speedup of 12% to a slowdown 
of 13% with the majority of benchmarks showing 
slowdowns when hyperthreading is turned on. Our results 
also show that Q3, Q4 and Q5 which are our longest 
running queries exhibit speedups due to hyperthreading.  

Speedup due to Hyper-threading
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Figure  1: Speedup due to hyprethreading 

• Instructions Retired 
The Intel Pentium 4 decodes each instruction into several 
micro-operations (uops). The ratio of uops to instructions 
ranges from 1.28 to 1.96 uop/instruction in our query 
bencharmks. Figure 2 compares the instructions retired for 
hyperthreading turned on versus off. Our results show 
equivalent number of instructions with hyperthreading on 
compared to off. Figure 2 also shows that the majority of 
instructions are executed on the 1st thread. With Q2 and Q5 
being the only benchmarks with a significant number of 
instructions executing on the 2nd thread. 

Instructions Retired
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Figure 2: Instructions retired with hyperthreading on vs. off. (N= 
HT off, H = HT on.). Q11 and Q12 have a small number of 
instructions retired. 
Cache Behavior. In SMT architectures the cache hierarchy 
is shared between all the thread contexts. This is also the 
case in the Intel Pentium 4 hyperthreaded architecture 
where both threads share the L1 instruction trace cache, the 
L1 data cache, and the unified L2 cache. This sharing can 
be either beneficial, if for example one thread prefetches 
data for the other, or detrimental if one thread conflicts with 
the other causing a large number of cache misses. In [16], 



SMT introduces severe cache conflicts for On-line 
transcation processing (OLTP) database queries using 
conventional virtual memory management. Both beneficial 
and detrimental patterns have been reported on the Intel 
Pentium 4 hyperthreaded processor L1 and L2 caches for 
Java Applications [12]. Benefical patterns for L2 cache and 
detrimental patterns for L1 cache in network servers [22] 
have been reported on the Intel Xeon hyperthreaded 
processor. Figure 3 shows the L1 data cache miss rate for 
load instructions. We compare the miss rates with 
hyperthreading turned on versus off showing the percentage 
of misses experienced by each processor thread. It can be 
seen that Q11 (which is a short running query) benefits 
from sharing the L1 data cache, while very small benefits 
are experienced by Q6, Q7, Q9 and Q10. All other 
benchmark queries experience a detrimental effect some up 
to a 4% increase in cache misses. Our results also show that 
the majority of benchmarks that experience negative effects 
due to hyperthreading are experiencing some of these cache 
misses on the 2nd thread (processor 1). 
Figure 3 shows the L2 cache miss rates. Our results show 
that Q3, Q4 and Q5 experience a significantly smaller 
number of L2 cache misses. These three benchmarks 
experience the largest drops in L2 cache misses compared 
to their L2 misses with hyprethreading off. This partially 
explains the resulting speedup in these benchmarks. The 
majority of our queries benefit at the L2 cache level from 
hyperthreading. This can be explained by our large L2 
cache (2MB) that could reduce potential conflicts between 
threads. Figure 4 shows the L1 instruction trace cache miss 
rates. The Intel Pentium 4 processor has a 12Kuops 
instruction trace cache. Both Q3 and Q4 show reduced 
instruction trace cache miss rates due to hyprethreading. 
While Q5 experiences a slight increase in instruction cache 
misses with a large portion of this increase experience by 
the 2nd thread. Both Q11 and Q12 also benefit from 
hyperthreading at the instruction cache level. However, all 
other benchmarks show larger instruction cache miss rates 
due to hyperthreading.  
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Figure 2: L1 data cache miss rate (N= HT off, H = HT) 
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Figure 3: L2 cache miss rate (N= HT off, H = HT) 
L1 Instruction Trace Cache Miss Rate
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Figure 4: L1 instruction trace cache miss rate (N= HT off, H = 
HT) 
• TLB Misses 
The DTLB is used to translate the data logical addresses 
into physical addresses. The DTLB is shared in the Intel 
Pentium 4. Our results in Figure 5 show both beneficial and 
detrimental patterns in the DTLB misses with some 
benchmark queries benefiting from hyperthreading while 
others showing larger numbers of misses. Q4 benefits from 
hyperthreading DTLB sharing while Q3 and Q5 show 
larger DTLB misses with large percentages from the 2nd 
thread indicating that both threads are conflicting at the 
DTLB level. 
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Figure 5: DTLB miss rates  (N= HT off, H = HT) 



• Mispredicted Branches 
The branch misprediction rates in our query benchmarks 
shown in Figure 6 are up to 7.5%. A mispredicted branch 
has a 20 cycle penalty. Q3, Q4, Q5 and Q7 all benefit from 
the sharing at the branch history table level and result in 
significantly lower misprediction rates compared to 
hyperthreading off. All other benchmarks either experience 
slight degredation or improvement in branch performance 
due to hyperthreading. 
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Figure 6: Branch misprediction rate (N= HT off, H = HT) 
• Performance Impact  
To further understand the importance of the different 
processor parts on the performance of our benchmarks, we 
plot the non-overlapped CPI stall component in Figure 7. 
This stall component represents the non-overlapped stall 
cycles per instruction and does not take into account cycle 
overlapping during execution which can affect the 
measured performance. Using LMbench tool [19] we 
measured our memory hierarchy latencies to be 1.18ns, 
8.26ns, 137.9ns for L1 cache, L2 cache and memory 
latencies respectively. Our results show that the major stall 
cycle components are those of the DTLB and L2 cache 
misses.  
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Figure 7: Non-overlapped CPI stall component  (N= HT off, H = 
HT) 

4. RELATED WORK 
This section presents an overview of several related work 
on workload characterization of various applications. The 
behavior of Oracle DBMS using OLTP and DSS has been 
studied by Lo et al. [16] on a simulated SMT processor. 
They concluded that severe cache conflicts occurs using 
conventional virtual memory management and proposed a 
new page placement policy. A new technique for evaluating 
database workloads “microbenchmark” is proposed in [15]. 
 Tuch et al. [23] measured the performance of SPEC2000 
on Intel Pentium 4 processors. Their results showed both 
multi-programmed and parallel speedups. A related work 
has also been done in [6]. 
Chen et al. [7] evaluated the performance of multi-media 
applications on SMT processors and compared SMT versus 
SMP systems. Their analysis includes memory-bounded 
kernels and computational bounded functions. In [22] the 
impact of SMT on the Intel Xeon processor of network 
servers shows several resource bottlenecks.  
Raasch and Reinhardt studied the impact of resource 
partitioning on SMT processors by focusing on the 
execution portion of the pipeline [21] . The performance of 
Pentium pro systems has been characterized in [13] and [1]. 
Wei Haung  et al. [12] characterized the performance of 
Java applications on Intel Pentium 4 hyper-threading 
processors. Blackburn studied the performance of garbage 
collection on multithreading by using some of the Pentium 
4 performance counters [5]. To the best of our knowledge 
no previous work has characterized the PostgreSQL 
DBMSs on a real hyperthreaded Pentium 4 processor. 

5. CONCLUSION 
In this paper we characterized the performance of an open-
source database management system on an Intel Pentium 4 
Hyper-Threading processor. The presented performance 
characterization is based on real measurements of a widely-
adopted database benchmark of parallel databases. The 
database benchmark queries are tuned to utilize both 
clustered and unclustered indexes. The detailed 
performance study focused primarily on the effect of hyper-
threading on the total execution time of the benchmark 
queries. The characterization study showed that for 
complex benchmark queries that benefit the least from the 
index structures either because of accessing large portions 
of an unclustered index or avoiding index structures 
altogether, hyper-threading improves the performance. For 
the rest of the workload queries that took advantage of 
index processing, hyper-threading negatively affected the 
performance. To the best of our knowledge no other 
characterization study has analyzed DBMS on SMT 
processors and only a limited amount of work has studied 
various data management operations generally on SMT 
architectures. 
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