
Parallel Sparse Approximate Inverse
Preconditioning on Graphic Processing Units

Maryam Mehri Dehnavi, Member, IEEE, David M. Fernández, Member, IEEE,

Jean-Luc Gaudiot, Fellow, IEEE, and Dennis D. Giannacopoulos, Member, IEEE

Abstract—Accelerating numerical algorithms for solving sparse linear systems on parallel architectures has attracted the attention of

many researchers due to their applicability to many engineering and scientific problems. The solution of sparse systems often

dominates the overall execution time of such problems and is mainly solved by iterative methods. Preconditioners are used to

accelerate the convergence rate of these solvers and reduce the total execution time. Sparse approximate inverse (SAI)

preconditioners are a popular class of preconditioners designed to improve the condition number of large sparse matrices. We propose

a GPU accelerated SAI preconditioning technique called GSAI, which parallelizes the computation of this preconditioner on NVIDIA

graphic cards. The preconditioner is then used to enhance the convergence rate of the BiConjugate Gradient Stabilized (BiCGStab)

iterative solver on the GPU. The SAI preconditioner is generated on average 28 and 23 times faster on the NVIDIA GTX480 and

TESLA M2070 graphic cards, respectively, compared to ParaSails (a popular implementation of SAI preconditioners on CPU) single

processor/core results. The proposed GSAI technique computes the SAI preconditioner in approximately the same time as ParaSails

generates the same preconditioner on 16 AMD Opteron 252 processors.

Index Terms—Numerical algorithms, parallel algorithms, graphics processors, parallel programming, conditioning

Ç

1 INTRODUCTION

MATHEMATICAL physics and engineering problems in a
broad range of applications have grown larger and

more complex in the past few decades leading to large scale
simulations. These simulations generally involve the use of
techniques such as the finite element method and the finite
difference time domain method which are used to discretize,
assemble and solve such systems [1], [2]. One of the most time
consuming steps in the aforementioned techniques is solving
the system of equations proceeding the systems assembly
stage. The solution of such systems is achieved by either
direct or iterative methods. For larger and sparser systems,
direct methods often suffer from high computational com-
plexity and are notoriously difficult to implement in parallel
due to their recursive nature [3]. A more viable alternative to
solving large linear systems is using iterative solvers. Krylov
methods are a popular class of these solvers with techniques
such as the generalized minimum RESidual (GMRES) and
BiConjugate Gradient Stabilized (BiCGStab) [1]. Krylov
solvers generally involve less computations and memory
requirements compared to direct methods but suffer from
slow convergence rates especially for ill-conditioned matrices

[4]. Because of their slow convergence these methods are
frequently used with preconditioners.

Preconditioners are designed to accelerate the conver-
gence rate of iterative solvers for a majority of applications.
Applying the preconditioner M, to both sides of the linear
systems equation Ax ¼ b, reduces the number of iterations
and accelerates the execution time of the solver. A popular
class of preconditioners suitable for parallelization and
efficient for a large class of problems are the sparse
approximate inverse (SAI) preconditioners. Although com-
puting SAI preconditioners is generally expensive on a
single processor, constructing them on parallel architecture
is relatively fast. By generating a denser preconditioner, SAI
preconditioning can reduce iterations in iterative solvers
considerably and be applied to a broad range of applica-
tions. Previous work has accelerated the computation of this
preconditioner on multiple processors [5], [6], [7], [8], [9],
[10], [11], [12], [13] as well as multicore [14], [15] and many-
core architecture [16].

Graphic processing units have become an important
resource for scientific computing in recent years [17]. With
easy to learn application programming interfaces such as
compute unified device architecture (CUDA) [18] intro-
duced by NVIDIA, general purpose programming for
modern scientific computations on GPUs gained consider-
able attention. Using a single data multiple thread para-
digm, GPU threads grouped into thread blocks run
compute intensive parts of an application in parallel. The
GPU has an on-board global memory with long access
latency, a fast access shared memory, registers and caches.
Every 32 threads in a thread block execute the same
instruction and are called a warp. In this paper, we present
a new GPU accelerated SAI preconditioning technique
called GSAI, which parallelizes the computation of SAI
preconditioners on NVIDIA GPUs. Major contributions of
the proposed GSAI technique are as follows:

1852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

. M.M. Dehnavi is with the Massachusetts Institute of Technology, G770,
32 Vasser Street, Cambridge, MA 02139. E-mail: mmehri@mit.edu.

. D.M. Fernández and D.D. Giannacopoulos are with the McGill
University, McConnell Engineering Building, 3480 rue University
Montreal, Quebec, Canada H3A 0E9. E-mail: davidmoises@gmail.com,
dennis.giannacopoulos@mcgill.ca.

. J.-L. Gaudiot is with the Department of Electrical Engineering and
Computer Science, University of California, Irvine, Irvine, CA 92697-
2625. E-mail: gaudiot@uci.edu.

Manuscript received 6 June 2011; revised 23 July 2012; accepted 26 Sept.
2012; published online 3 Oct. 2012.
Recommended for acceptance by S. Ranka.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-06-0362.
Digital Object Identifier no. 10.1109/TPDS.2012.286.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

. The preconditioner M is generated in parallel on the
GPU; each GPU warp computes one column of M.

. Large data structures are stored in GPU global
memory and memory space is reused by dividing
the computation of M between many GPU kernels.

. Memory accesses, vector multiplications, inner
products, QR decomposition, and triangular solves
are computed in parallel inside a GPU warp.

. The preconditioner is assembled in a compressed
storage format and then applied to the BiCGStab
iterative solver, which is also accelerated on the GPU.

2 SAI PRECONDITIONING

A sparse approximate inverse preconditioner approximates
the inverse of A using a sparse matrix M to improve the
condition number of the linear system of equations Ax ¼ b.
M is computed using the least-squares methods and by
minimizing the matrix residual norm

kAM � Ik2
F : ð1Þ

The above equation is then separated into n independent
least square problems

min
mk

kAmk � ekk2
2; k ¼ 1; 2; . . . ; n; ð2Þ

where ek is the kth column of the identity matrix and mk

represents column k in matrix M. The degrees of freedom in
solving the above equations are the locations and values of
the nonzeros in M. Based on the degree of freedom used,
sparse approximate inverse preconditioner generation is
classified as adaptive or static (a priori). In adaptive
schemes ([9], [19], [20], etc.) the sparsity of M is initially
set to a simple pattern such as diagonal, this pattern is then
augmented until a threshold on the residual norm or a
maximum on the number of nonzeros in M is reached.
Although adaptive methods have broadened the scope of
problems which can be solved using SAI preconditioning,
by utilizing additional degrees of freedom in minimizing
(2), the preconditioner generation becomes generally very
expensive requiring many reruns to determine the appro-
priate values of various parameters involved, such as
tolerance [21], maximum improvements per step [21],
number of nonzeros per step [21], and so on for each
problem. On the other hand, static preconditioning ([6],
[12], [21], [22], [23]) determines the sparsity of M in a
preprocessing step limiting the degrees of freedom in (1)
to the nonzero values of M.

Previous work has introduced various techniques to
determine a more accurate approximation of M prior to
computing the preconditioner and have shown that static
schemes are more efficient than adaptive techniques in
improving the condition number of the A matrix if the
sparsity of M is better approximated. Since the focus of this
work is not to introduce a better initial guess for the M

preconditioner but to accelerate the computation of M (1),
for general static (a priori) SAI preconditioners, we use the
most popular approximate of M which is based on
sparsifications [24] of A. Mði; jÞ is considered a nonzero if
the condition

Aði; jÞj j > 1� �ð Þmax
j

Aði; jÞj j; 0 � � � 1; ð3Þ

is satisfied, where � is a user defined tolerance parameter
(the main diagonal is always included). Based on (3), for
smaller � parameters more nonzeros entries in A are
dropped resulting in a sparser preconditioner; for � equal
to 1 the sparsity pattern assumed for M would be the same
as the sparsity of A. If a more accurate approximate of
the sparsity of M is known for a specific application it can
be used instead of (3). Knowing the sparsity of M before
solving (1), reduces (2) to

min
m̂k

kÂm̂k � êkk2
2; k ¼ 1; 2; . . . ; n; ð4Þ

m̂k is the reduced vector of unknows mkðJÞ, where J is the
set of indices j such that mkðjÞ 6¼ 0. Considering I as a set of
indices i such that Aði; JÞ is not zero, Â is the submatrix
AðI; JÞ where all zero rows in Að:; JÞ are deleted. The
dimension of Â is equal to n1 � n2 where n1 and n2 are the
number of indices in I and J , respectively. Finally, êk
represents ekðIÞ. To construct and solve (4) for each column
k of M, the steps in Fig. 1 should be computed for each k
(more information on the above implementations and the
steps in Fig. 1 can be found in previous work on SAI
preconditioners specifically [6], [7], [9], [11], [21]).

Factorized sparse approximate inverse preconditioners
are another class of SAI preconditioning techniques devel-
oped in [25], [26], [27], [28], [29], [30], [31]. This class of
preconditioners are less popular than the kind based on
Frobenius norm minimization (1) [4] and can fail due to
breakdowns during an incomplete factorization process.
A comparative study of various SAI preconditioners is
presented in [32]. Sparsification is a method used to
diminish the pattern of A when it is relatively full and
generate a sparser preconditioner and can be implemented
in both adaptive and static SAI preconditioner construction
algorithms. Initially introduced by Kolotilina [24] for
computing SAI preconditioners for dense matrices, sparsi-
fication is also used by Tang [33] to enhance the condition
number of anisotropic problems. Costgrov et al. [34] also
propose augmenting the pattern of A for constructing
sparse approximate inverse preconditioners. SAI precondi-
tioner proposed by All’eon et al. [35] and ParaSails [7]
introduced by Chow [6] use a priori sparsity patterns based
on powers of sparsified matrices for partial differential
equation (PDE) problems. Sparsification is also implemen-
ted in SPAI 3.2 [21] by eliminating small values in A before
computing the preconditioner. The equation used in the
proposed GSAI technique (3) also allows for sparsifying A
using a tolerance parameter � . Applying sparsification to
the preconditioner after it has been produced is also studied

DEHNAVI ET AL.: PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING ON GRAPHIC PROCESSING UNITS 1853

Fig. 1. Steps involved in constructing static sparse approximate inverse
preconditioners.

in [25] and [36]. If an effective sparsification is known for a
specific problem it can be added to the Pre-GSAI stage (see
Fig. 2) in the GSAI method proposed.

Most of the work on SAI preconditioners presents
techniques to parallelize the computation of the precondi-
tioner on multiprocessor architectures [5], [6], [7], [8], [9],
[10], [11], [12], [13], by distributing the computation of the
columns in M between multiple processors. Techniques
such as grouping communications [11], dictionary-based
methods [8] and latency-tolerant hybrid SAI precondition-
ing [10] are proposed in these work, to further enhance the
execution time of SAI preconditioners on multiprocessors.
ParaSails [7] and SPAI 3.2 [21] are two of the most popular
open source implementations of the sparse approximate
inverse preconditioner on single- and multiprocessor plat-
forms and are used for comparison in a majority of previous
work [4], [6], [8], [10]. While ParaSails uses a priori
approximation of M to generate the preconditioner, both
adaptive and static SAI preconditioners are implemented in
SPAI 3.2. Similar to SPAI 3.2 the preconditioned problem in
GSAI is solved using the BiCGStab iterative solver (ParaSails

implements the GMRES and CG iterative solvers). Chow [6]
compares the performance of ParaSails to SPAI 3.2 and
shows ParaSails generates the SAI preconditioner consider-
ably faster than SPAI 3.2. We compare the GSAI precondi-
tioner generation time on GPUs to ParaSails on single- and
multiprocessor platforms.

Although parallelizing sparse approximate inverse pre-
conditioners on more than one processor has been exten-
sively studied in previous work which succeeded to enhance
the execution speed of such preconditioners considerably,
few works have studied the possibility of accelerating
these preconditioners on multi/many core architectures.
Gravvanis et al. [14], [15] attempt to accelerate a SAI
preconditioned BiCGStab iterative solver on Intel multicore
architecture by allocating the computation of each iteration
of the iterative solver to a different thread; implementation
details on how to accelerate the preconditioner computation
on a multicore are not presented in this work. Xu et al. [16]
accelerate factorized SAI on NVIDIA GPUs. The paper
mainly describes how to accelerate the sparse matrix vector
multiplication kernel (SpMV) in the iterative solver but
details for computing the SAI preconditioner have not been

presented (other accelerations of the SpMV kernel are
presented in [37], and [38] and CUSPARSE [41]).

3 PARALLEL SAI ON NVIDIA GPUS

The SAI preconditioner is computed in parallel on GPUs by
allocating the computation of each column of M to one
warp. Accelerating the SAI preconditioner involves local
(per warp) parallelization of various computing kernels
such as QR decomposition, dot products, sorting vector
values, finding the maximum value in a vector, and so on.
One of the major challenges in computing SAI precondi-
tioners on GPUs is the limited size of global and shared
memory and the generation of large data structures.
Proposing techniques to reuse memory space and minimize
the allocated memory to data structures in the kernel are
key factors in producing SAI preconditioners for large
problems on GPUs. In the following implementation details
to overcome the above constraints and implement in
parallel the computing kernels involved in solving Ax ¼ b
using SAI preconditioners are presented.

Computing the SAI preconditioner in parallel on GPUs
involves the implementation of steps introduced in Fig. 1,
which we implemented in a stage called Compute-GSAI
(see Fig. 2). In this stage, every 32 threads (one warp) on the
GPU computes one column of M (mk) by executing the
steps in Fig. 1. Each warp first finds the dimensions of its
corresponding Â matrix (4) and assembles it. The local Â
matrices, which are very small compared to A, are then
decomposed (local decompositions per warp for each Â)
using the Gram Schmidt method [1] and mk is computed.
SAI preconditioning on GPUs requires two additional steps
(Pre-GSAI and Post-GSAI) which handle GPU memory
allocation, define required data structures, gather results
and determine the required number of kernel (hereafter
kernel refers to a CUDA kernel) calls based on the problem
size and available GPU memory. Thus, solving the Ax ¼ b
linear systems equations on the GPU using SAI precondi-
tioners consists of four major steps (see Fig. 2):

1. Pre-GSAI: involves reading A in a compressed sparse
format [39] and transferring it to GPU, allocating
GPU memory space to the preconditioner M and
other data structures and determining the number of
kernel calls based on the available global memory.

1854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 2. The four stages in implementing SAI preconditioners using GSAI on NVIDIA GPUs.

2. Compute-GSAI: computes the SAI preconditioner on
the GPU and scatters the produced columns back to
M on GPU global memory.

3. Post-GSAI: revises the assigned global memory space
to M by releasing extra memory space allocated to
M and assembles M on the GPU in compressed
column storage (CSC) [39] format.

4. Solver: converts both M and A from CSC to CSR
(compressed row storage [39]) on the GPU to
accelerate the iterative solver execution time and
solves Ax ¼ b using the computed SAI precondi-
tioner and the BiCGStab iterative solver.

The rest of this section is organized as follows. Section 3.1
introduces implementation details of the above steps and
the kernel/function calls involved in each stage. Managing
global and shared memory, determining the amount of
memory required for each data structure and deciding
the necessary number of kernel calls are proposed in
Section 3.2.

3.1 GSAI Steps

The proposed GSAI preconditioning method computes the
SAI preconditioner on NVIDIA GPUs in three major steps,
namely, Pre-GSAI, Compute-GSAI, and Post-GSAI, the
generated preconditioner is then passed to the Solver stage
(see Fig. 2) to precondition and solve the linear system.

3.1.1 Pre-GSAI Stage

Copy A to GPU. Sparse matrices are stored in memory using
various compressed sparse storage formats such as CSR,
CSC, and so on [39]. To compute the SAI preconditioner, the
A matrix is initially stored in CSC format using three
vectors called Avalue, Aindex, and Apointer. The M matrix is
also produced and stored in columns. A copy of the A
matrix is transferred to GPU global memory.
Compute n1 and n2 and allocate memory to M. The precondi-

tionerM is stored in global memory, thus memory should be
allocated toM prior to the Compute-GSAI stage. Although the
dimensions of M are the same as A it has to be stored in
compressed format to fit on the GPU global memory. To
reduce the amount of computation required to locate data
structures used by each warp and regularize global memory
accesses, equal memory space is allocated to each column of
M using the compute dimensions kernel (see Fig. 2). The
proposed memory allocation technique, introduces the need
for the Post-GSAI step described in the next section, whose
execution time is, however, negligible compared to Compute-
GSAI as shown in the results section (see Section 4) and to the
provided benefits. The kernel first finds the dimensions of
local Â matrices (n1, n2) and stores them on global memory
and the maximum n1 and n2 values between all columns
(called n1;max and n2;max) are then found. Since the number of
nonzeros in the largest column ofM is equal to n2;max, global
memory allocated to M would be equal to the number of
columns in M multiplied by the number of bytes required to
store n2;max floating point values ðMvalue). The row indices
corresponding to the values of the preconditioner (Mindex)
and the number of nonzeros produced for each column ofM
(Mpointer) are stored in global memory. Besides allocating
memory to the preconditioner M, the allocate memory step of
the Pre-GSAI stage (see Fig. 2) assigns memory space to other
data structures used during the computation of the SAI

preconditioner (Compute-GSAI) and determines the number
of kernel calls required to compute the SAI preconditioner.
Details of these implementations are presented in Section 3.2
and Table 1.

3.1.2 Compute-GSAI Stage

To compute the SAI preconditioner on the GPU, the steps
indicated in the Compute-GSAI stage in Fig. 2 have to be
implemented in parallel on the GPU in a kernel called
compute preconditioner. Each column of the preconditioner M
is computed via one warp (32 threads in a block) and every
block is assigned 256 threads (eight warps) to compute eight
columns in parallel. The number of columns computed in
one SM simultaneously will depend on the allocated shared
memory per block and available resources per SM.

Find J . In this stage, the set J (the first step in Fig. 1) is
constructed and loaded into a vector called Jindex. Each
warp in the kernel first loads the column in A correspond-
ing to its index (the index is assigned to each warp based on
the total number of warps launched on the GPU) and finds
the largest element in the loaded column. The condition in
(3) is then evaluated for each element of the loaded value
vector simultaneously and the column index of elements
satisfying the condition is stored in Jindex.

Find I and construct the local Â. To determine I (see Fig. 1),
the row indices of the first column referenced in Jindex are
first loaded into a vector called Iindex. The row index vector
of successive columns referenced by Jindex are then loaded
in order into shared memory and compared in parallel with
values in Iindex, new indices are tagged and later added to
Iindex to construct the set I. Local Â matrices are constructed
on global memory by loading columns indexed in Jindex and
matching them to Iindex in parallel (see Fig. 3).

Local QR decomposition and triangular solves. Local QR
decompositions are computed using the Gram Schmidt
method [1], which was easier to parallelize inside a warp
compared to other QR decomposition techniques. Each
warp decomposes one Â matrix, thus many QR decom-
positions are computed simultaneously via warps executing
in parallel. Parallelism is also exploited in a warp by
computing the local QR decompositions in parallel using
the 32 threads inside a warp, for example, most of the
operations in the QR decomposition technique such as
memory loads and multiplications are computed in parallel.
The orthogonal vectors produced in the QR decomposition

DEHNAVI ET AL.: PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING ON GRAPHIC PROCESSING UNITS 1855

TABLE 1
The Number of Elements in Each of the Data Structures

Involved in GSAI and Their Size Based on Their Data Type

Columns and nonzeros represent the number of columns and
nonzeros in A.

algorithm are stored in global memory (Q in Table 1) and
used in proceeding steps. At the end of the Compute-GSAI
stage, mk values are computed via m̂k ¼ R�1QT êk (R is the
upper triangular matrix from the decomposition [1]) and
scattered to global memory space allocated to M.

3.1.3 Post-GSAI Stage

Modify and assemble M. The values and row indices of the
preconditioner generated in the compute preconditioner
kernel are stored in the Mvalue and Mindex vectors in the
format shown in Fig. 4. Since the allocated size to each
column of M on global memory is equal to n2;max (which is
not necessarily equal to the number of nonzeros per
column), to assemble M each warp has to store the number
of nonzeros of the column it is generating into a vector
called Mpointer. In the Post-GSAI stage the Mvalue, Mindex, and
Mpointer data structures are modified to match the CSC
storage format. The first kernel in the Post-GSAI stage called
modify changes Mpointer to match the CSC format (M�

pointer in
Fig. 4). Another kernel called assemble then modifies the
Mindex and Mvalue vectors on the GPU to match the column
storage format (M�

index and M�
value in Fig. 4). The updated

vectors are generated on GPU memory and do not need to
be transferred to the CPU.

3.1.4 The Solver

Preconditioned BiCGStab solver. When generating a right
preconditioner M (via minimizing (2)) matrices are stored
and generated in column storage format to reduce memory
access latencies [1]. On the other hand, to achieve the best
performance and increase coalesced memory accesses on the
GPU, the matrices in the sparse matrix vector multiplication
kernel should be stored in row storage format [41]. Thus prior
to solvingAx ¼ b the matrices are converted to CSR format (to
generate a left preconditioner the CSC to CSR stage in Fig. 2
should be removed since all matrices are generated and
stored in CSR format). After the conversion step the BiCGStab
kernel is called to solve Ax ¼ b using the produced M.

The preconditioned BiCGStab iterative solver on GPU is
dominated by the multiple sparse matrix multiplies [1]. The
CPU is only used for scalar updates in the algorithm and
major computing kernels are implemented on the GPU.
Since sparse matrix vector multiplication is the most time
consuming operation in iterative solvers [40] it has to be
accelerated efficiently on the GPU. We used the SMVM
implementation from [38], [41] which is one of the fastest
implementations of this kernel on GPUs. Other operations
in the BiCGStab iterative solver have also been accelerated
on the GPU using CUBLAS [42] functions.

3.2 Memory Allocation

In this section, we introduce techniques to overcome GPU
memory space limitations and enable the correct imple-
mentation of the GSAI stages proposed in Section 3.1 for
large problems. Since the exact size of data structures (such
as Â and Q) used in the compute preconditioner kernel are
only determined during the kernel execution, techniques to
allocate memory statically to these data structures in the
Pre-GSAI stage (prior to calling the kernel) are also
proposed. Based on the allocated memory space to each
data structure, the number of compute preconditioner kernel
calls required to generate the preconditioner are also
determined. The implementations proposed in this section
are all a part of the allocate memory section of the Pre-GSAI
stage shown in Fig. 2.

Local data structures such as Â and Q are generally large
and cannot be stored on GPU shared memory; thus by
approximating their size, global memory space is allocated
to them in the Pre-GSAI stage prior to calling the compute
preconditioner kernel. The maximum number of rows and
columns in these matrices is computed in the compute
dimensions kernel (n1;max and n2;max) and global memory
space equal to the size of an array with n1;max � n2;max

elements is allocated to them per column (warp). The Iindex
vector used in the Compute-GSAI kernel also varies in size
for each warp and can easily exceed the maximum size of
shared memory. This vector is also stored in global memory
by allocating memory to arrays of n1;max elements per
column. To compute the preconditioner different columns
of A are required thus the A matrix should be on global
memory at all times. From Table 1, the amount of global
memory required to store various vectors and data
structures prior to calling the Compute-GSAI kernel are
computed. For large A matrices and � parameters that lead
to a denser preconditioner, the total size of the data
structures in Table 1 will exceed the GPU global memory.
Since the memory required to store Â and Q for all columns
is considerably larger than the size of A and M, by calling
multiple kernels sequentially and overwriting the memory
space allocated to these matrices, computing the SAI
preconditioner is made possible on the GPU. After storing
A and M on the device depending on the available memory
and size of other data structures that need to be on global
memory, the computation of the preconditioner is divided
between multiple kernels each producing a few columns of
M. Thus, memory allocated to other data structures such as
Â and Q can be reused.

The small size of the GPU shared memory does not limit
the size of the problem being solved, because large data
structures in the kernel are stored on GPU global memory.
To accelerate computations shared memory is used to store

1856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 3. Constructing local Â matrices.

Fig. 4. Mpointer is modified using the Modify kernel to match the CSC [2]
storage format and then the Assemble kernel assembles the matrix
values and stores them in CSC format (M�

index and M�
value).

local data structures in the compute preconditioner kernel
whenever possible. Before calling the compute preconditioner
kernel, the amount of shared memory required for each
block to store these data structures is checked and if it
reduces the number of active blocks per SM to two all data
is read from global memory directly. For larger tolerances
which lead to larger data structures most of the data is read
directly from global memory. Thus, the number of active
blocks per SM is no longer limited to the size of data
structures and shared memory and memory access latencies
are reduced via configuring the L1 cache to 48 KB. To
generate SAI preconditioners for very large problems which
do not fit on the GPU global memory or to generate very
dense preconditioners, the computation of the precondi-
tioner should be distributed between many GPUs.

4 RESULTS

The performance of the proposed GSAI technique is
evaluated using seven matrices [43] from various applica-
tion areas with different sparsity patterns (see Table 2).
These problems are generally difficult to solve and
precondition due to their complex geometry and ill-
conditioning. GPU results were achieved using NVIDIA
GTX480, TESLA M2070, and CUDA-SDK 3.2., CPU pro-
grams are executed on a system core Linux cluster from
Sharcnet [44] using 1-32 AMD Opteron 252 (2.6 GHZ, single
core) processors with a Quadrics Elan4 interconnect. The
preconditioned BiCGStab iterations are terminated upon
reaching 10,000 iterations or reaching a relative residual of
less than 1e-7 in under 10,000 iterations using a random
right-hand side (RHS) for all problems (the same RHS is
used for each matrix in all platforms). Both the precondi-
tioner generation kernel and the iterative solver run in
double precision. In the following, the performance of the
proposed GSAI preconditioner on GTX480 and TESLA
M2070 is first presented (see Section 4.1), the preconditioner
computation time on the GPU is then compared to ParaSails
(see Section 4.2) on a single processor/core (a processor/
core is an AMD Opteron 252 consisting of one core).

ParaSails computes the preconditioner in parallel on
multiprocessor platforms by partitioning M and allocating
the computation of its columns to different processors. They
propose novel techniques to partition columns/rows among
processors, hide interprocessor communication latencies,
balance load among processors, manage one-sided commu-
nications, construct Â matrices and perform operations such
as QR decomposition. Implementation details of how the
computation of SAI preconditioners is parallelized in Para-
Sails can be found in the documentations and publications

referenced in [7]. The time to compute the SAI preconditioner
using GSAI on GPUs is compared to ParaSails on a cluster of
multiple AMD Opteron 252 processors in Section 4.2.

4.1 The GSAI Preconditioning Method

In this section, the effect of increasing the tolerance � in (3)
using GSAI and NVIDIA GTX480 on the preconditioner
construction time, iterative solver execution time and the
number of iterations are first studied. The total execution
time and the number of iterations of the preconditioned
iterative solver are then presented for both GTX480 and
TESLA M2070. As shown in Table 3 for larger tolerances (�),
the number of iterations considerably decreases for most of
the tested problems using GSAI. Because the preconditioner
M is an approximation of A�1 decreasing its sparsity using
� does not necessarily guarantee a better preconditioner, for
example, the number of iterations in g3_circuit increases
when � is increased to 0.6 (see Table 3). But, on average, the
number of iterations decrease as � increases and the sparsity
of M gets closer to A [4]. For most of the tested problems,
the total execution time on GPU also decreases as �
increases (see Table 4). Because more elements of A satisfy
the condition in (3) the maximum number of rows and
columns (n1;max and n2;max) of the local Â matrices on the
GPU increase with tolerance (see Fig. 5a). As a result the
time required by the compute dimensions kernel to determine
n1;max and n2;max as well as the time required to construct
and decompose Â in the compute preconditioner kernel also
increase with � (Fig. 5b and Table 5). Fig. 5b shows the
fraction of total preconditioner execution time spent in all
kernels involved in the construction of the SAI precondi-
tioner on GTX480. Based on Table 5 for all tested matrices
the preconditioner execution time increases with � . Thus,
except for copying A to the GPU, the execution time of all
kernels increases with � due to an increase in the number of
non-zeros in preconditioner M (Fig. 5b and Table 5).

Fig. 6a and Table 4 explain why an increase in the SAI
computing time for larger tolerances still on average
improves the total execution time on GPU. As shown in
Fig. 6a, the total execution time is dominated by the
BiCGStab solver. Thus, based on total execution times
reported in Table 4, by increasing � and generally generating
a more accurate preconditioner, the execution time of the
iterative solver is decreased (due to an average reduced
number of iterations) with a negligible increase in SAI
computation time. Since the time spent in generating the

DEHNAVI ET AL.: PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING ON GRAPHIC PROCESSING UNITS 1857

TABLE 2
Properties of Tested Sparse Matrices

TABLE 3
The Effect of Increasing Tolerance (�) on Iterations

(GSAI on GTX480)

preconditioner is considerably less than the time required to
solve the problem, the total execution time on average
decreases for larger tolerance parameters. The problem
solution time on the GPU decreases when the iterations
are reduced on the GPU. This is because the SpMV kernel in
the iterative solver uses available GPU resources more

efficiently as the number of nonzeros in M increase.

While the preconditioner becomes denser with larger

� parameters, the number of rows in M is fixed; as a result

the number of computing blocks/warps launched on the

GPU remain unchanged (because of using SpMV imple-

mentations proposed in [38] and [41]). On the other hand,

1858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

TABLE 4
The Effect of Increasing Tolerance (�) on the Total

Execution Time (Preconditioner Construction and Solve)
(GSAI on GTX480)

TABLE 5
The Effect of Increasing � in the GSAI Algorithm (on GTX480)

on the Preconditioner Construction Time

Fig. 6. The average fraction of total time (over all matrices) in generating the SAI preconditioner (the Pre-GSAI, Compute-GSAI, and Post-GSAI
stages in Fig. 2) and solving the problem for an increasing � on the GPU using GSAI (left figure, a); the right figure (b) shows the speedup achieved
from generating the preconditioner on GTX480 and TESLA M2070 compared to generating the same preconditioner using ParaSails [7] on 1-
32 processors/cores (the generated preconditioner has the same sparsity as A, � ¼ 1 in GSAI).

Fig. 5. The left figure (a) shows the effect of increasing � on the maximum dimension of local Â matrices (n1;max, and n2;max); in the right figure (b) the
average fraction of total time (over all matrices) spent in the functions/kernels involved in the first three stages of the GSAI preconditioning algorithm
(on GTX480) are shown for an increasing � (compute preconditioner consists of all steps in the Compute-GSAI stage).

the number of nonzeros per row increases, exploiting
more parallelism per warp and better utilizing the GPU
resources. In conclusion, GPU acceleration of SAI precondi-
tioners allows for the generation of more accurate and
denser preconditioners and increases the applicability of
static SAI preconditioning.

Table 6 shows the execution time of the steps involved in
constructing the SAI preconditioner on GTX480 for � equal
to 0.9 (which generated the best preconditioner among the
tested tolerances) as well as the BiCGStab iterative solver.
The time spent in constructing the preconditioner is less
than 3 seconds for all matrices (see Table 6) while the
iterative solver can take up to 171 seconds for matrices such
as thermal2 on the GPU.

Preconditioners with more than 6 million nonzeros (see
Table 7) are generated in less than 3 seconds (see Table 6)
using the proposed GSAI technique. As shown in Table 7,
without the preconditioner most of the problems would not
converge in 10,000 iterations while the preconditioned
BiCGStab solver would converge to the 1e-7 residual error
in less than 100 iterations for some matrices (venkat01 and
majorbasis). Table 7 also shows that although the number of
iterations for the preconditioned solver on TESLA M2070
decreases compared to GTX480, the total execution time is
still lager for the tested matrices. Architectural differences
among the two GPUs (GTX480 versus TESLA M2070:
480 versus 448 cores, 1.4 GB versus 1.15-GB processor

clock, 177 GB/s versus 150 GB/s bandwidth and floating
point precision differences) are accountable for the iteration
count and timing differences in the results.

4.2 GSAI versus ParaSails

In this section, the preconditioner construction time is
compared with ParaSails [7] which also uses a priori
techniques to determine the sparsity of M and computes
SAI in parallel on multiprocessors. Techniques proposed in
ParaSails to better determine the sparsity of M prior to its
computations for PDE problems can be implemented in the
Pre-GSAI stage of GSAI without changing the compute

preconditioner kernel itself (determining the sparsity of M in
a priori SAI preconditioning techniques is negligible
compared to the preconditioner computation itself). To
compare GSAI with ParaSails, parameters were set so that
both ParaSails and GSAI would produce similar precondi-
tioners with the same sparsity as A (� ¼ 1 in GSAI,
parameter settings for ParaSails are described in [7]),

preconditioners are produced using unfactorized precondi-
tioning in ParaSails. Table 8 shows generating the SAI
preconditioner using ParaSails on one processor/core can
take up to 100 seconds while the proposed acceleration of
SAI preconditioners on GPUs generated the same precondi-
tioner in less than 3 seconds. With GSAI on GTX480,

speedups of up to 47 times are achieved compared to
ParaSails, decreasing the average generation time of SAI
preconditioners 28 times. In Fig. 6b, the average execution
time of ParaSails for all matrices on multiprocessors is
compared to average preconditioner generation time of
GSAI on NVIDIA GTX480 and TESLA M2070. Fig. 6b shows
constructing the preconditioner on a single GPU using

GSAI is equivalent to constructing the same preconditioner
on 16 processors/cores using ParaSails. GSAI computes
many columns of M in parallel, the time spent to construct
local Â matrices do not accumulate for columns generated
simultaneously. This is not the case in ParaSails when run
on a single processor, so both the parallel execution of
columns on the GPU and the techniques proposed to

compute each column of M are the main reasons for the
reported speedups.

DEHNAVI ET AL.: PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING ON GRAPHIC PROCESSING UNITS 1859

TABLE 6
The Time Spent in Computing the Stages in Fig. 2

for � ¼ 0:9 on GTX480

TABLE 7
Preconditioned and Unpreconditioned BiCGStab Iterative Solver on GTX480 and TESLA M2070

The table shows the number of iterations (column one) required to solve the unpreconditioned BiCGStab solver for the tested matrices, the number
of nonzeros in the preconditioner produced for � ¼ 0:9 and the iterations achieved from the preconditioned BiCGStab solver using this preconditioner
on both the GTX480 and TESLA M2070 graphic cards.

5 CONCLUSION AND FUTURE WORK

The proposed GPU accelerated SAI preconditioning meth-
od (GSAI) introduces optimized implementations to paral-
lelize the computation of SAI preconditioners on NVIDIA
GPUs. The effects of decreasing the sparsity of the
preconditioner using a tolerance parameter � are also tested
on the GPU using GSAI. The results showed that the
number of iterations and total execution time would on
average decrease using GSAI for larger tolerances; the
preconditioner generation time would remain negligible
compared to the problem solution time. The total execution
time on the GPU (the time spent on generating the
preconditioner and solving the problem) would constantly
decrease as � increases making the generation of denser
preconditioner more efficient. The generation of the SAI
preconditioner was accelerated on average 28 and 23 times
faster on GTX480 and TESLA M2070, respectively, using
GSAI compared to the time required to create the same
preconditioner using ParaSails on a single processor (single-
core AMD Opteron 252). The preconditioner generation
time on GTX480 and TESLA M2070 (using GSAI) is almost
equivalent to creating the SAI preconditioner on 16 proces-
sors in parallel using ParaSails. We plan to accelerate the
execution time of other variants of SAI preconditioning
techniques such as adaptive methods and also introduce
techniques to find better approximations of the precondi-
tioner using GPUs in future work.

ACKNOWLEDGMENTS

This work was partly supported by the Natural Sciences
Engineering Research Council of Canada and the National
Science Foundation under grant no. CCF-1065448. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the Foundations.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, pp. 10-349,
SIAM, 2003.

[2] J.M. Jin, The Finite Element Method in Electromagnetics, pp. 19-44,
Wiley-IEEE Press, 2002.

[3] R. Barrett et al., Templates for the Solution of Linear Systems. SIAM,
1994.

[4] J. Zhongxiao and Z. Baochen, “A Power Sparse Approximate
Inverse Preconditioning Procedure for Large Sparse Linear
Systems,” Numerical Linear Algebra with Applications, vol. 16,
no. 4, pp. 259-299, 2009.

[5] E. Chow, “Parallel Implementation and Practical Use of Sparse
Approximate Inverse Preconditioners with a Priori Sparsity
Patterns,” Int’l J. High Performance Computing Applications,
vol. 15, no. 1, pp. 56-74, 2001.

[6] E. Chow, “A Priori Sparsity Patterns for Parallel Sparse
Approximate Inverse Preconditioners,” SIAM J. Scientific Comput-
ing, vol. 21, no. 5, pp. 1804-1822, 1999.

[7] https://computation.llnl.gov/casc/parasails/parasails.html,
2013.

[8] T. Huckle et al., “An Efficient Parallel Implementation of the
MSPAI Preconditioner,” Parallel Computing, vol. 36, nos. 5/6,
pp. 273-284, 2010.

[9] M.J. Grote and T. Huckle, “Parallel Preconditioning with Sparse
Approximate Inverses,” SIAM J. Scientific Computing, vol. 18, no. 3,
pp. 838-853, 1997.

[10] P. Raghavan and K. Teranishi, “Parallel Hybrid Preconditioning:
Incomplete Factorization with Selective Sparse Approximate
Inversion,” SIAM J. Scientific Computing, vol. 32, no. 3, pp. 1323-
1345, 2010.

[11] P. Gonzaléz, T.F. Pena, and J.C. Cabaleiro, “Parallel Sparse
Approximate Preconditioners Applied to the Solution of BEM
Systems,” Eng. Analysis with Boundary Elements, vol. 28, no. 9,
pp. 1061-1068, 2004.

[12] M. Benson et al., “Parallel Algorithms for the Solution of Certain
Large Sparse Linear Systems,” Int’l J. Computer Math., vol. 16,
nos. 3/4, pp. 245-260, 1984.

[13] S.T. Barnard, L.M. Bernardo, and H.D. Simon, “An MPI Imple-
mentation of the SPAI Preconditioner on the T3E,” Int’l J. High
Performance Computing Applications, vol. 13, no. 2, pp. 107-123, 2010.

[14] G.A. Gravavis et al., “Finite Element Approximate Inverse
Preconditioning Using POSIX Threads on Multicore Systems,”
Proc. Int’l Multiconf. Computer Science and Information Technology,
pp. 297-302, 2010.

[15] G.A. Gravavis, “High Performance Inverse Preconditioning,”
Archives of Computational Methods in Eng., vol. 16, no. 1, pp. 77-
108, 2009.

[16] K. Xu et al., “FSAI Preconditioned CG Algorithm Combined with
GPU Technique for the Finite Element Analysis of Electromag-
netic Scattering Problems,” Finite Elements in Analysis and Design,
vol. 47, no. 4, pp. 387-393, 2011.

[17] J.D. Owens et al., “A Survey of General-Purpose Computation on
Graphics Hardware,” Computer Graphics Forum, vol. 26, no. 1,
pp. 80-113, 2007.

[18] http://developer.nvidia.com/cuda-toolkit-32-downloads, 2013.

1860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

TABLE 8
ParaSails Execution Time Compared to GPU Results

The time to setup (ParaSails-Setup) and compute (ParaSails-Preconditioner) the SAI preconditioner with the same sparsity as A (� ¼ 1 in GSAI) on
ParaSails for one processor/core compared to the time required to compute the preconditioner on GTX480 (GPU-SAI) and TESLA M2070 using the
GSAI preconditioning algorithm (ParaSails-Total is computed by adding ParaSails-Setup and ParaSails-Preconditioner).

[19] D.F. Cosgrove, J.C. Dias, and A. Griewank, “Approximate Inverse
Preconditioning for Sparse Linear Systems,” Int’l J. Computer
Math., vol. 44, no. 1-4, pp. 91-110, 1992.

[20] E. Chow and Y. Saad, “Approximate Inverse Preconditioners via
Sparse-Sparse Iterations,” SIAM J. Scientific Computing, vol. 19,
no. 3, pp. 995-1023, 1998.

[21] http://www.computational.unibas.ch/software/spai/spaidoc.
html, 2013.

[22] M.J. Grote and H.D. Simon, “Parallel Preconditioning and
Approximate Inverses on the Connection Machine,” Parallel
Processing for Scientific Computing, vol. 2, pp. 519-523, 1992.

[23] T. Huckle, “Approximate Sparsity Patterns for the Inverse of a
Matrix and Preconditioning,” Proc. IMACS World Congress on
Scientific Computation, 1997.

[24] L. Kolotilina, “Explicit Preconditioning of Systems of Linear
Algebraic Equations with Dense Matrices,” SIAM J. Matrix
Analysis and Applications, vol. 13, pp. 2566-2573, 1992.

[25] L. Kolotilina and A.Y. Yeremin, “Factorized Sparse Approximate
Inverse Preconditionings I: Theory,” SIAM J. Matrix Analysis and
Applications, vol. 14, no. 1, pp. 45-58, 1993.

[26] M. Benzi, C.D. Meyer, and M. Tuma, “A Sparse Approximate
Inverse Preconditioner for the Conjugate Gradient Method,”
SIAM J. Scientific Computing, vol. 17, no. 5, pp. 1135-1149, 1998.

[27] M. Benzi and M. Tuma, “A Sparse Approximate Inverse
Preconditioner for Nonsymmetric Linear Systems,” SIAM
J. Scientific Computing, vol. 19, no. 3, pp. 968-994, 1998.

[28] M. Benzi and M. Tuma, “A Comparative Study of Sparse
Approximate Inverse Preconditioners,” Applied Numerical Math.,
vol. 30, no. 2/3, pp. 305-340, 1999.

[29] M. Bollhöfer and V. Mehrmann, “Algebraic Multilevel Methods
and Sparse Approximate Inverses,” SIAM J. Matrix Analysis and
Applications, vol. 24, no. 1, pp. 191-218, 2002.

[30] M. Bollhöfer and Y. Saad, “A Factored Approximate Inverse
Preconditioner with Pivoting,” SIAM J. Matrix Analysis and
Applications, vol. 23, no. 3, pp. 692-705, 2001.

[31] S. Kharchenko et al., “A Robust AINV-Type Method for
Constructing Sparse Approximate Inverse Preconditioners in
Factored Form,” Numerical Linear Algebra with Applications,
vol. 8, no. 3, pp. 165-179, 2001.

[32] M. Benzi and M. Tuma, “A Comparative Study of Sparse
Approximate Inverse Preconditioners,” J. Applied Numerical Math.,
vol. 30, no. 2/3, pp. 305-340, 1999.

[33] W. Tang, “Towards an Effective Sparse Approximate Inverse
Preconditioner,” SIAM J. Matrix Analysis and Applications, vol. 20,
no. 4, pp. 970-986, 1999.

[34] J. Cosgrove et al., “Structural Properties of the Graph of
Augmented Sparse Approximate Inverses,” Proc. Symp. Applied
Computing, pp. 131-136, 1990.

[35] G. All’eon et al., “Sparse Approximate Inverse Preconditioning for
Dense Linear Systems Arising in Computational Electromag-
netics,” Numerical Algorithms, vol. 16, no. 1, pp. 1-15, 1997.

[36] W. Tang and W. Wan, “Sparse Approximate Inverse Smoother for
Multigrid,” SIAM J. Matrix Analysis and Applications, vol. 21, no. 4,
pp. 1236-1252, 2000.

[37] M. Mehri Dehnavi, D. Fernandez, and D. Giannacopoulos, “Finite
Element Sparse Matrix Vector Multiplication on GPUs,” IEEE
Trans. Magnetics, vol. 46, no. 8, pp. 2982-2985, Aug. 2010.

[38] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multi-
plication on CUDA,” technical report, NVIDIA, 2008.

[39] T.D. Davis, Direct Methods for Sparse Linear Systems, pp. 7-17,
SIAM, 2006.

[40] M. Mehri Dehnavi, D. Fernandez, and D. Giannacopoulos,
“Enhancing the Performance of Conjugate Gradient Solvers on
Graphic Processing Units,” IEEE Trans. Magnetics, vol. 47, no. 5,
pp. 1162-1165, May 2011.

[41] http://developer.download.nvidia.com/compute/cuda/4_0_
rc2/toolkit/docs/CUSPARSE_Library.pdf, 2013.

[42] http://developer.download.nvidia.com/compute/cuda/2_0/
docs/CUBLAS_Library_2.0.pdf, 2013.

[43] http://www.cise.ufl.edu/research/sparse/matrices, 2013.
[44] https://www.sharcnet.ca, 2013.

Maryam Mehri Dehnavi received the BSc
degree in electrical engineering from Isfahan
University of Technology, Iran, in 2005 and the
MSc degree in computer engineering from the
University of Calgary, Canada, in 2007. She is
currently working toward the PhD degree at
the Department of Electrical and Computer
Engineering at McGill University, Montreal,
Canada and a visiting researcher at the
Parallel Computing Laboratory (ParLab) in the

University of California Berkeley. From January 2011 to April 2011,
she was a visiting scholar at the Parallel Systems and Computer
Architecture Lab (PASCAL), University of California, Irvine. She was
the recipient of the 2009 Alexander Graham Bell Canada Graduate
Scholarship (CGS3 Doctoral) from the Natural Science and Engineer-
ing Council of Canada (NSERC), the 2010 international internship
scholarship of the Fonds Nature et Technologies, McGill 2011 visiting
researcher travel grant, Best Student Paper Award in IEEE
Conference on Computational Electromagnetics (Compumag 2009),
2008 McGill graduate scholarship and 2005 University of Calgary
graduate scholarship. Her research interests include: scientific
computing, general-purpose computation on graphics hardware,
computer architecture/engineering, parallel computing, numerical
analysis, and computer aided design for electromagnetic simulations.
She is a member of the IEEE.

David M. Fernández received the BSc degree
in electrical engineering in la Universidad del
Zulia, LUZ, Maracaibo-Venezuela, 1998, the
MSc degree in applied computing, LUZ, in
2002, and the PhD degree in electrical and
computing engineering from McGill University,
Montreal, Canada, in 2011. He currently works
as a professor at LUZ, where he teaches
microprocessors architecture and numerical
methods for electrical engineering. He has

served as a reviewer for IEEE Transactions of Magnetics. He
graduated as the best student of 1998, also obtained the best poster
award at CCPW-2009 (Carlton University) and later the best student
talk at HPCS-2011 (Montreal-Canada). His main research topics
include hardware acceleration of electromagnetic computations
through different multi/many core architectures, sparse matrix compu-
tations, and PLC emulation. She is a member of the IEEE.

DEHNAVI ET AL.: PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONING ON GRAPHIC PROCESSING UNITS 1861

Jean-Luc Gaudiot received the diplôme d’In-
génieur from the �Ecole Supérieure d’Ingénieurs
en Electrotechnique et Electronique, Paris,
France, in 1976 and the MS and PhD degrees
in computer science from the University of
California, Los Angeles, in 1977 and 1982,
respectively. He is currently a professor and
chair of the Electrical and Computer Engineering
Department at the University of California, Irvine.
Prior to joining UCI in January 2002, he was a

professor of electrical engineering at the University of Southern
California since 1982, where he served as and director of the Computer
Engineering Division for three years. He has also done microprocessor
systems design at Teledyne Controls, Santa Monica, California (1979-
1980) and research in innovative architectures at the TRW Technology
Research Center, El Segundo, California (1980-1982). He consults for a
number of companies involved in the design of high-performance
computer architectures. His research interests include multithreaded
architectures, fault-tolerant multiprocessors, and implementation of
reconfigurable architectures. He has published more than 200 journal
and conference papers. His research has been sponsored by NSF, DoE,
and DARPA, as well as a number of industrial organizations. In January
2006, he became the first editor-in-chief of IEEE Computer Architecture
Letters, a new publication of the IEEE Computer Society, which he
helped found to the end of facilitating short, fast turnaround of
fundamental ideas in the Computer Architecture domain. From 1999
to 2002, he was the editor-in-chief of the IEEE Transactions on
Computers. In June 2001, he was elected chair of the IEEE Technical
Committee on Computer Architecture, and reelected in June 2003 for a
second 2-year term. He has also chaired the IFIP Working Group 10.3
(Concurrent Systems). He is one of three founders of PACT, the ACM/
IEEE/IFIP Conference on Parallel Architectures and Compilation
Techniques, and served as its first program chair in 1993, and again
in 1995. He has also served as a program chair of the 1993 Symposium
on Parallel and Distributed Processing, HPCA-5 (1999 High Perfor-
mance Computer Architecture), the 16th Symposium on Computer
Architecture and High Performance Computing (Foz do Iguacu, Brazil),
the 2004 ACM International Conference on Computing Frontiers, and
the 2005 International Parallel and Distributed Processing Symposium.
He is a member of the IEEE, the ACM, and the ACM SIGARCH. In 1999,
he became a fellow of the IEEE. He was elevated to the rank of AAAS
fellow in 2007.

Dennis D. Giannacopoulos received the
BEng and PhD degrees in electrical engineer-
ing from McGill University, Montreal, Canada,
in 1992 and 1999, respectively. He has been
with the Department of Electrical and Computer
Engineering at McGill University since 2000,
where he is currently an associate professor
and a member of the Computtional Electro-
magnetics Group. He has been the recipient of
his department’s professor of the Year Award

twice. His research interests include parallel adaptive finite element
analysis for electromagnetics and the acceleration of computational
electromagnetics algorithms on emerging parallel architectues. He has
authored or coauthored more than 85 referred journal and conference
publications. His students have received three best paper/presentation
awards at international conferences and symposia. His research has
been sponsored by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Fonds de recherche du Québec-
Nature et technologies (FQRNT), and the Canada Foundation for
Innovation (CFI). He has served on the editorial boards and technical
program committees of several major international conferences and
served as cochair of the editoral board for the 14th Conference on
the Computation of Electromagnetic Fields. He is a member of the
IEEE, the International Compumag Society, and the Ordre des
Ingéniuers du Québec.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

