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ABSTRACT
Proximal Newton methods are iterative algorithms that solve l1-
regularized least squares problems. Distributed-memory implemen-
tation of these methods have become popular since they enable
the analysis of large-scale machine learning problems. However,
the scalability of these methods is limited by the communication
overhead on modern distributed architecture. We propose a sto-
chastic variance-reduced proximal method along with iteration-
overlapping and Hessian-reuse to find an efficient trade-off between
computation complexity and data communication. The proposed
RC-SFSITA algorithm reduces latency costs by a factor of k with-
out altering bandwidth costs. RC-SFISTA is implemented on both
MPI and Spark and compared to the state-of-the-art framework,
ProxCoCoA. The performance of RC-SFISTA is evaluated on 1 to
512 nodes for multiple benchmarks and demonstrates speedups of
up to 12× compared to ProxCoCoA with scaling properties that
outperform the original algorithm.
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1 INTRODUCTION
Mathematical optimization is one of the main pillars of machine
learning where parameters of an optimization problem are com-
puted based on observed data. A popular approach to estimate pa-
rameters in convex optimization problems is solving a regularized
least squares problem [24, 29, 30] using proximal methods [11, 28].
Since classical optimization methods are iterative by nature, when
operating on large amounts of distributed data, the processors need
to communicate at each iteration. On modern computer architec-
tures the communication cost, i.e. the cost of moving data between
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levels of the memory hierarchy or between processors over a net-
work, is often orders of magnitude larger than computation cost,
i.e. the cost of floating point operations (flops), and this gap is in-
creasing [15]. Thus optimization methods should be reformulated
to maintain an efficient trade-off between the algorithm’s compu-
tational complexity, i.e. the total number of arithmetic or logical
operations an algorithm performs, and data communication.

A common approach to improving the performance of optimiza-
tion methods on distributed platforms is to reformulate the algo-
rithm to reduce the number of iterations needed to reach the optimal
solution. The methods are often referred as communication-efficient
methods. Work such as [23, 31] attempt to improve the conver-
gence properties by applying different solvers to locally stored
data. CoCoA [31] uses a local solver on each machine and shares
information between solvers with highly flexible communication
schemes. ProxCoCoA [30], GLMNET [16], and BLITZ [20] propose
communication-efficient algorithms for proximal methods, how-
ever, the methods do not necessarily preserve the exact arithmetic
of the conventional algorithm.

Iteration-overlapping techniques [1, 6] reduce the overall com-
munication cost in optimization methods by unrolling iterations in
the algorithm to break the dependencies between vector updates.
These work produce a solution identical to that of the conventional
algorithm in exact arithmetic. k-step Krylov solvers [7, 10] compute
k basis vectors at-once by unrolling k iterations of the standard
algorithm. P-packSVM [35] proposes a SGD-based SVM algorithm
which communicates every k iterations. CA-BCD [13] reduces com-
munication for the class of l2-regularization least squares problems
by rearranging the computations to execute k iterations per com-
munication round, i.e. the total number of times that processors
exchange messages over a network. SA-accBCD [14] applies a simi-
lar approach to proximal least squares problems. While these work
reduce communication costs by reducing the number of commu-
nication rounds, they increase the amount of communicated data
at each round, i.e. message size. Also, since these methods are de-
terministic, every iteration operates on all the data which leads to
high computational complexity for overdetermined problems.

Overdetermined problems involving a large number of data
points are often solved with random sampling, i.e. a stochastic
approach, to reduce the overall computational complexity of the
algorithm with reducing the size of data that the algorithm oper-
ates on. Examples of such work include stochastic formulations
of gradient descent [18, 21] and proximal gradient methods [19].
However, the rate of convergence of a basic stochastic method is
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slower than that of the deterministic algorithm due to the variance
introduced by random sampling [5]. Stochastic proximal methods
such as Acc-Prox-SVRG [26] and Prox-SVRG [34] propose variance-
reduction techniques to overcome this challenge. Even though the
computational complexity of stochastic optimization methods is
lower than deterministic formulations, the performance of stochas-
tic methods are often bound by data communication required at
each iteration of the algorithm.

This paper reformulates Proximal Newton (PN)methods for overde-
termined problems to improve their performance on distributed
platforms. PN methods use a first-order inner solver, which is the
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [2] in this
work, to solve a subproblem iteratively at each iteration.We propose
a Reduced-Communication Stochastic FISTA algorithm (RC-SFISTA)
that reduces the communication cost of the inner solver in PN
methods by overlapping k iterations without changing the mes-
sage size. RC-SFISTA uses a stochastic variance-reduced method
to also reduce the computational complexity of PN methods. The
contributions of the paper are as follows:

• Anovel stochastic variance-reduced formulation of the FISTA
algorithm, called SFISTA, is introduced that reduces the com-
putation complexity of PN methods. A convergence theo-
rem is provided for the stochastic variance-reduced method
which shows the same convergence rate as its deterministic
formulation.

• Iterations in the proposed SFISTA method are overlapped
to reduce communication rounds and latency costs without
increasing the number of messages.

• A Hessian-reuse algorithm is developed that enables the
reuse of data when solving a subproblem in SFISTA. The
parameter S in the Hessian-reuse methods enables finding
an efficient trade-off between computational complexity and
communication costs in the algorithm.

• The upper bounds for parameters k in iteration-overlapping
and S in the Hessian-reuse method are provided with respect
to machine and algorithm specifications.

• RC-SFISTA is implemented on both MPI and Spark and is
compared to the state-of-the-art framework ProxCoCoA. RC-
SFISTA outperforms the classical method up to 12× with
MPI on 256 processors. We also demonstrate that RC-SFISTA
performs better than ProxCoCoA up to 12× on 256 workers
for the tested datasets.

2 BACKGROUND
This section introduces PN methods for solving a class of optimiza-
tion problems that arise frequently in machine learning applica-
tions. The performance model used in this work to evaluate the
effectiveness of the proposed reformulations will also be discussed.

2.1 The proximal Newton method
Composite optimization problems arise frequently inmachine learn-
ing and data analytics applications. For example, consider:

min
w ∈Rd

F (w) ≡ f (w) + д(w) (1)

where д : Rd → R is a continuous, convex, possibly non-smooth
function and f : Rd → R is a convex function, twice continuously

differentiable, with an L-Lipschitz gradient, expressed as:

f (w) = 1
m

m∑
i=1

fi (w) (2)

This is a general class of problems that includes numerous machine
learning problems including logistic regression and regularized
least squares problems, or more general empirical risk minimization
problems.

PNmethods shown in Algorithm 1 are used to solve the optimiza-
tion problem in (1). These methods could be seen as generalization
of the classical proximal gradient methods where the curvature
of the function, i.e. Hessian, is used to select a search direction
[22]. PN methods define a subproblem at each iteration which can
be minimized using a first-order inner solver shown in line-4 of
Algorithm 1. First-order methods that use proximal mapping to
handle the non-smooth segment of the objective function in (1) are
very popular and perform well in practice [4, 8].

Algorithm 1: Proximal Newton Method
1 Input: w0, {γn }
2 repeat
3 Update Hn , an approximation of Hessian
4 zn = argmin

y

1
2 (y −wn )THn (y −wn )

+∇f (wn )T (y −wn ) + д(y)

5 ∆wn = zn −wn

6 wn+1 = wn + γn∆wn

7 until Stopping conditions are satisfied
8

Inner Solver

L1-regularized least squares problem. The general problem
in (1) can represent a large class of regression problems. In particular,
we focus on the l1-regularized least squares problem:

f (w) = 1
2m

m∑
i=1

(xTi w − yi )2, д(w) = λ∥w ∥1 (3)

where xi ∈ Rd is the i-th data point and yi ∈ R is the correspond-
ing label. We set X = [x1, ...,xm ] ∈ Rd×n as the input data matrix,
where rows are the features and columns are the samples, and
y ∈ Rn holds the labels. w ∈ Rd is the optimization variable, and
λ ∈ R is the regularization (penalty) parameter. In this case, the
gradient and Hessian of f (w) is given by:

∇f (w) = 1
m
(XXTw − Xy) H =

1
m
XXT (4)

where H ∈ Rd×d is the Hessian and with defining R ∈ Rd as
R = 1

mXy, for the l1-regularized least squares problem the gradient
of f will be

∇f (w) = Hw − R (5)

2.2 The inner solver
The subproblem in PN methods can be solved using a first-order
method. While inner solvers like coordinate descent [33] are used
in PN methods, this work uses FISTA which is the most popular
method in the family of accelerated proximal methods. FISTA has
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the same convergence rate as the accelerated coordinate descent
methods [22]. The FISTA algorithm is shown in Algorithm 2 where
the proximal mapping is defined as:

Algorithm 2: FISTA
1 Input: w0 = w−1 = 0 ∈ Rd , t0 = 1, γ .
2 for n = 1, ..., N do

3 tn =
1+

√
1+t 2

n−1
2

4 vn = wn−1 +
tn−1−1
tn (wn−1 −wn−2)

5 wn = Proxγ (vn − γ ∇f (vn ))
6 output wN

Proxγ (w) = argmin
x

{ 1
2γ

∥x −w ∥2 + д(x)} (6)

In this work, we use FISTA as an inner solver for PN methods.
We focus on optimizing the performance of FISTA for l1-regularized
least squares problems and demonstrate that improving the inner
solver performance improves the performance of the PN method
by reducing its overall computation and communication cost.

2.3 Performance model
This work proposes novel formulations of the PN solvers to im-
prove their performance when executed on distributed hardware
platforms. The following elaborates the performance model used
to demonstrate the effectiveness of the proposed method. The cost
of an algorithm includes arithmetic and computation. Tradition-
ally, algorithms have been analyzed with floating point operation
costs. However, communication costs are essential in analyzing
algorithms in large-scale simulations [17]. The cost of floating
point operations and communication, including bandwidth and
latency, can be combined to obtain the performance model. In this
work we use a simplified model known as the α − β model [12].
In distributed-memory settings, communication cost includes the
“bandwidth cost", i.e. the number of words sent either between lev-
els of a memory hierarchy or between processors over a network,
and the “latency cost”, i.e. the number of messages sent, where a
message either consists of a group of contiguous words being sent
or is used for interprocess synchronization. The total execution
time of an algorithm is:

T = γF + αL + βW (7)

where T is the overall execution time and γ , α , and β are machine-
specific parameters that represent the cost of one floating point
operation, the cost of sending a message, and the cost of moving a
word. Parameters F , L, andW represent the number of flops, the
number of messages communicated between processors, and the
number of words moved respectively.

3 THE REDUCED-COMMUNICATION
STOCHASTIC FISTA (RC-SFISTA)

We propose RC-SFISTA that improves the performance of the FISTA
algorithm as well as PN methods on distributed platforms. RC-
SFISTA is developed to maintain an efficient trade-off between

computation and communication costs in PN methods. We first in-
troduce a novel variance-reduced stochastic formulation of FISTA
(SFISTA) to reduce its computational complexity with random sam-
pling. The communication cost of the formulated SFISTA is then
reduced in a subsequent step with iteration-overlapping. A Hessian-
reuse method is also proposed that provides an effective trade-off
between computational complexity and communication costs for
the inner solvers in SFISTA. The extension and applicability of
the proposed RC-SFISTA method for second-order optimization
methods, specifically PN methods, are elaborated at the end.

3.1 Reducing computational complexity with a
stochastic formulation

We reduce the computational complexity of FISTA with random
sampling at each iteration to significantly decrease the number of
floating point operations in the algorithm. The stochastic variance-
reduced FISTA (SFISTA) algorithm is developed for the general
optimization problem in (1) and afterwards for the l1-regularized
least squares problem. FISTA is made stochastic by estimating the
gradient in line 5 of Algorithm 2 with:

∇ f̂ (vn ) =
1
m̄

∑
i ∈In

∇fi (vn ) (8)

where In is a subset of size m̄ = ⌊bm⌋ from 1, ...,m chosen uni-
formly at random and 0 < b < 1 is the sampling rate. Even though
estimating the gradient in (8) reduces the computational complexity
of FISTA, the convergence rate of the stochastic method is slower
due to the variance introduced by sampling. Therefore, we use a
variance-reduction method where the gradient is estimated by:

∇ f̂ (vn ) =
1
m̄

©­«
∑
i ∈In

∇fi (vn ) −
∑
i ∈In

∇fi (ŵs )
ª®¬ + ∇f (ŵs ) (9)

and ŵs is the value of w in every N iterations. The last term in
(9) computes the full gradient using all data samples at every N
iteration which reduces the variance and allows us to preserve
the convergence rate of FISTA. The SFISTA algorithm is shown in
Algorithm 3. An approach similar to [27] can be used to prove the
convergence of SFISTA. The main theorem which guarantees the
convergence is as follows:
Theorem 1. Consider Algorithm 3 with mini-batch size of m̄ and
the Lipschitz constant L where the step size γ is a positive number
such that:

γ−1 ≥ max ©­«L2 +
√

1
4
+

4L2(m − m̄)
m̄(m − 1) ,L

ª®¬ (10)

and

γ <

(
1 −

t2
N−1
t2
N

)
m̄(m − 1)
8L(m − m̄) (11)

then,

E[F (wN )] − F (w∗) ≤ E[F (ŵs )] − F (w∗)
t2
N (1 − η)N

+
C2

2γt2
N (1 − η)N

(12)
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for some C ≥ 0 and 0 < η < 1 − t 2
N−1
t 2
N

. E[] denotes the expectation
with respect to In and w∗ is the optimal solution to problem (1).
Since tN = O(N ), η can be chosen to be close enough to 0 so that
SFISTA converges to the optimal solution with a rate of O(1/N 2):

E[F (wN )] − F (w∗) ≤ C1
N 2

(
E[F (ŵs )] − F (w∗)

)
+

C2
2

γN 2
(13)

for positive constants C1 and C2. Also, with additional constraints,
such as strong convexity of the objective function, a better rate for
stochastic PN methods with variance-reduction is obtainable [34].

Algorithm 3: SFISTA
1 Input: ŵ0 = w−1 = 0 ∈ Rd , t0 = 1, γ
2 for s = 0, ... do
3 w0 = ŵs

4 for n = 1, ..., N do

5 tn =
1+

√
1+t 2

n−1
2

6 vn = wn−1 +
tn−1−1
tn (wn−1 −wn−2)

7 wn = Proxγ (vn − γ ∇f̂ (vn ))
8 ŵs+1 = wN

9 output wN

The total number of floating point operations for the proposed
stochastic formulation of FISTA with a sampling rate of b is reduced
by a factor of 1/b which reduces the computational complexity
without changing the convergence rate.

SFISTA for the l1-regularized least squares problem. This
work focuses on the problem of l1-regularized least squares where
the gradient is computed based on (4) and the gradient and the
Hessian are related by (5). As seen in (9), the gradient is estimated
with random sampling of the input data at each iteration. For l1-
regularized least squares since the non-smooth function is a l1-norm
operator, we write the update in line-7 of Algorithm 3 as:

wn = Sλγ (vn − γ∇ f̂ (vn )) (14)
where Sα (β) = siдn(β)max(|β |−α , 0). We also use the same symbol
In to represent the sampling matrix In = [ei1 , ei2 , ..., eim̄ ] ∈ Rm×m̄

where {ih ∈ [m]|h = 1, ...,m̄} is chosen uniformly at random and
ei ∈ Rm is all zeros except entry i . Finally, to simplify SFISTA, we
rewrite the update for vn as:

vn = wn−1 + µn (wn−1 −wn−2) (15)

where µn = tn−1−1
tn . The SFISTA algorithm for l1-regularized least

squares problem is shown in Algorithm 4.
As demonstrated, SFISTA for l1-regularized least squares con-

verges to the optimal solution with a rate of O(1/N 2). Therefore,
it keeps the convergence rate of FISTA and reduces number of
required floating point operations at each iteration.

3.2 Reducing communication costs with
overlapping iterations and Hessian-reuse

SFISTA solves the l1-regularized least squares problem by itera-
tively computing a Hessian matrix and thereafter updating local
variables. Since SFISTA communicates data at each iteration, it

Algorithm 4: SFISTA for l1-regularized least squares problem
1 Input: ŵ0 = w−1 = 0 ∈ Rd , t0 = 1, γ
2 for s = 0, ... do
3 w0 = ŵs

4 for n = 1, ..., N do

5 tn =
1+

√
1+t 2

n−1
2

6 µn =
tn−1−1
tn

7 vn = wn−1 + µn (wn−1 −wn−2)
8 дn = 1

m̄
(
X In ITnX

Tvn − X In ITny
)

9 θn = vn − γдn
10 wn = Sλγ (θn )
11 ŵs+1 = wN

12 output wN

becomes communication-bound when ran on distributed memory
systems for large datasets. We reduce the communication over-
head of SFISTA for the l1-regularized least squares problem by (1)
proposing an iteration-overlapping technique that reduces latency
costs in SFISTA by O(k) without altering bandwidth costs and con-
vergence behavior; (2) and introducing a subproblem that reduces
total number of iterations N needed for SFISTA to convergence
which results in lower bandwidth and latency costs. The combina-
tion of these techniques, which we call the Reduced-Communication
SFISTA (RC-SFISTA) algorithm, reduces the number of iterations in
the algorithm that require data communication over the network.

Latency, arithmetic, and bandwidth costs in SFISTA. We
use the model discussed in (7) to analyze the performance of SFISTA.
Table 1 summarizes the latency, bandwidth, and flop cost of SFISTA.
As demonstrated, the performance and scalability of SFISTA is
limited by latency and bandwidth costs which both increase with
number of iterationsN and number of processors P . The RC-SFISTA
formulation proposed in this section reduces the latency cost by a
factor of O(k) while preserving the bandwidth cost.

Overlapping iterations in SFISTA to reduce latency costs.
We propose a novel formulation of SFISTA that allows for iterations
of the algorithm to be overlapped to reduce communication costs.
Available work that overlap iterations in some optimization meth-
ods, they do not support FISTA, reduce latency costs at the expense
of increasing the amount of data moved among processors over a
network, i.e. message cost. However, our reformulation of SFISTA
does not alter the message costs and provides an O(k) reduction
in latency costs of the algorithm with overlapping iterations. By
leveraging the fact that multiple instances of the Hessian could be
generated at once, we unroll k-consecutive iterations in SFISTA.
The recurrence updates in SFISTA should be unrolled for k itera-
tions so that updates to the optimization variable can be postponed
for k iterations. Lets define ∆wn = Sλγ (θn ) − wn−1. We start by
changing the loop index in Algorithm 4 from n to nk + j where n is
the outer loop index, k is the recurrence unrolling parameter, and j
is inner loop index. Assuming we are at iteration nk + 1 and vnk ,
дnk , θnk and ∆wnk have been computed and if ∆vnk = vnk+1−vnk ,
then the updates for the next iteration are:
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Table 1: Latency, flops, and bandwidth costs for N iterations of RC-SFISTA and SFISTA. Parameters d , m̄, k , and S represent #
columns, # sampled rows, the iteration-overlapping parameter, and the inner loop parameter; f is the matrix non-zero fill-in.

Algorithm Latency cost (L) Flops cost (F) Bandwidth cost (W)
SFISTA O (Nloд(P)) O

(
Nd2m̄f

P

)
O(Nd2loд(P))

RC-SFISTA O
(
Nloд(P )

k

)
O

(
Nd2m̄f

P + Sd2
)

O
(
Nd2loд(P)

)

Figure 1: A high-level description of RC-SFISTA implemented on a distributed memory system of P processors.

∆wnk+1 =Sλγ (θnk+1) −wnk

дnk+1 =
1
m̄

[
X Ink+1I

T
nk+1X

T (vnk + ∆vnk ) − X Ink+1I
T
nk+1y

]
θnk+1 =vnk + ∆vnk − γдnk+1

thus, for iteration nk + 2 the updates are computed as follows:

∆wnk+2 =Sλγ (θnk+2) − (wnk + ∆wnk+1)

дnk+2 =
1
m̄

[
X Ink+2I

T
nk+2X

T (vnk + ∆vnk + ∆vnk+1)

− X Ink+2I
T
nk+2y

]
θnk+2 =vnk + ∆vnk + ∆vnk+1 − γдnk+2

Therefore, by induction we will have

дnk+j =
1
m̄

[
X Ink+j I

T
nk+jX

T

(
vnk +

j−1∑
i=0

∆vnk+i

)
− X Ink+j I

T
nk+jy

]
θnk+j =vnk +

j−1∑
i=0

∆vnk+i − γдnk+j

∆wnk+j =Sλγ (θnk+j ) − (wnk +

j−1∑
i=1

∆wnk+i ) (16)

and ∆vn+k is obtained via

∆vnk+j =(1 + µnk+j+1)
[
wnk+j −wnk+j−1

]
−µnk+j

[
wnk+j−1 −wnk+j−2

]
=(1 + µnk+j+1)∆wnk+j − µnk+j∆wnk+j−1

(17)

With this approach, updates are postponed for k consecutive
iterations. Communication in (16) is avoided by computing the fol-
lowing matrices for k iterations and storing them on all processors:

Hnk+j =
1
m̄
X Ink+j I

T
nk+jX

T , Rnk+j =
1
m̄
X Ink+j I

T
nk+jy (18)

Hn is the approximatedHessian at iterationn for the l1-regularized
least squares problem and the processors over the network com-
municate only every k iterations. This will reduce the number of
messages transfered by a factor of O(k). The resulting method does
not change the convergence of SFISTA and keeps the same number
of arithmetic operations.

The RC-SFISTA algorithm is shown in Algorithm 5. Algorithm
parts that relate to implementing iteration-overlapping is high-
lighted in red. As shown, the number of iterations in line 2 is
reduced by a factor of k . The inner loop in line 3 computes local
matricesH and R and the inner loop at line 7 updates local variables
without communication. Table 1 shows the latency, bandwidth, and
flop cost of RC-SFISTA. With iteration-overlapping, the latency of
SFISTA is reduced by a factor of k while bandwidth costs do not
change which can potentially lead to a k-fold speedup.

The Hessian-reuse method. We propose a novel technique
called Hessian-reuse to further reduce the number of outer itera-
tions in RC-SFISTA. The objective of Hessian-reuse, which solves a
local subproblem, is to find an efficient trade-off between data com-
munication and local operations, operations that are computed on
the same processor and do not lead to inter-processor data commu-
nication. By solving a subproblem local to each processor, shown in
lines 9-15 of Algorithm 5, we expect the overall problem to converge
faster, i.e. the number of iterations corresponding to the for-loop in
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line 2 which require inter-processor data communication to reduce.
The following discusses the Hessian-reuse method and analyzes
why a better convergence is expected with this formulation.

Every update in SFISTA requires matrices Hn and Rn which can
be reused repeatedly to update local variables. Reusing the Hessian
could contribute more to minimizing the objective function and in
particular it will reduce the total number of iterations N in SFISTA.
Since both latency and bandwidth costs increase with the number
of iterations, this approach can reduce communication overhead.
Lets first see the subproblem in PN methods which is provided by:

zk = argmin
y

1
2
(y −wn )THn (y −wn ) + ∇f (wn )T (y −wn ) + д(y)

= argmin
y

Φ(y) + д(y) (19)

whereΦ(y) is the smooth segment of the objective function. To solve
this minimization problem, RC-SFISTA requires the gradient of the
smooth segment of this objective problem given by ∇Φ(y) = Hny −
Rn which has the same equation for the gradient in l1-regularized
least squares problem in (5). This means applying SFISTA to solve
the subproblem at (19) is identical to applying the SFISTA recurrence
updates while using the same Hn and Rn to compute the gradient.

While we apply iteration-overlapping, the single update rules
for SFISTA (lines 6-10 Algorithm 4) are changed into a new inner
loop update. In other words, the update rules are changed to:

∆vsnk+j =(1 + µs+1)∆ws
nk+j − µs∆w

s
nk+j−1 (20)

дsnk+j =Hnk+j

(
vnk +

j−1∑
i=0

∆vsnk+i

)
− Rnk+j (21)

θsnk+j =vnk +

j−1∑
i=0

∆vsnk+i − γдsnk+j (22)

∆ws
nk+j =Sλγ (θ

s
nk+j ) − (wnk +

j−1∑
i=1

∆ws
nk+i ) (23)

where ∆ws
n = Sλγ (θsn ) −ws

n−1 and ∆w1
n = ∆wn . Using the same

Hessian for multiple iterations could be seen as sampling the same
data points from matrices X and y. This is doable as long as inner
loop parameter S is small compared to the total iterations N . Other-
wise, the subproblem is over-solved and executes redundant flops
which could increase the overall runtime of the algorithm. The
applied Hessian-reuse method is shown with blue in Algorithm 5.
The inner loop at Line 9 updates the local variables for S iterations
redundantly on all processors. The parameter S is tuned to find an
efficient trade-off between computation and communication.

As discussed, with iteration-overlapping, RC-SFISTA reduces
the latency costs by a factor of O(k) without increasing bandwidth
costs. With the Hessian-reuse method, RC-SFISTA increases the
algorithm’s computation complexity to further reduce communi-
cation rounds. Thus, the parameter S should be tuned to find an
efficient trade-off between computation complexity and data com-
munication. The algorithm’s cost is shown in Table 1.

3.3 Extension to proximal Newton methods
RC-SFISTA could be used both as an inner solver inside PN meth-
ods or as an independent solver for the l1-regularized least squares
problem. RC-SFISTA approximates the Hessian with random sam-
pling which follows the same logic in line 3 of Algorithm 1. Then
both methods minimize a quadratic subproblem that follows (19).
Therefore, RC-SFISTA could also be used as an inner solver for
PN methods. In this case, the iteration-overlapping approach re-
duces latency costs by a factor of O(k) and if used independently it
benefits from both iteration-overlapping and Hessian-reuse.

Algorithm 5: RC-SFISTA for the l1-regularized least squares
problem
1 Input: X ∈ Rd×m , y ∈ Rm , w0 = w−1 = 0 ∈ Rd , k ∈ N, b ∈ (0, 1],

t0 = 1, m̄ = ⌊bm ⌋,γ
2 for n = 0, ..., Nk do
3 for j = 1, ..., k do
4 Generate Ink+j = [ei1, ei2, ..., eim̄ ] ∈ Rm×m̄ where

{ih ∈ [m] |h = 1, ..., m̄ } is chosen uniformly at random
5 Hnk+j =

1
m̄X Ink+j ITnk+jX

T , Rnk+j = 1
m̄X Ink+j ITnk+jy

6 set G = [Hnk+1 |Hnk+2 |... |H(n+1)k ] and
R = [Rnk+1 |Rnk+2 |... |R(n+1)k ] and send them to all
processors.

7 for j = 1, ..., k do
8 Hnk+j and Rnk+j are d × d and d × 1 blocks of G and R

respectively
9 for s = 1, ..., S do

10 update ∆vsnk+j−1 based on (20)
11 update дsnk+j based on (21)
12 update θ snk+j based on (22)
13 update ∆ws

nk+j based on (23)
14 ws

nk+j = ∆ws
nk+j +w

s−1
nk+j

15 wnk+j = wS
nk+j

16 output wN

4 IMPLEMENTATION ON DISTRIBUTED
ARCHITECTURES

This section presents the implementation of RC-SFISTA on a dis-
tributed architecture. The theoretical upper bounds for parameters
related to iteration overlapping and the Hessian-reuse implementa-
tions are also provided based on machine specification.

4.1 Distributed implementation
An overview of implementing RC-SFISTA on distributed architec-
tures is shown in Figure 1. We assume that the data matrix X is
sparse with “f dm" non-zeros that are uniformly distributed, where
0 < f < 1 represents the percentage of non-zero fill-in in the
data matrix X . Also, X and y are partitioned column- and row-wise
respectively on P processors. In stage A, every processor randomly
samples columns from X and the corresponding rows from y for k
iterations. Using the sampled data, k instances of matrices H and
R are computed locally on each processor in stage B. Processor
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contributions are combined using MPI_Allreduce during stage C.
Since the result from MPI_Allreduce is stored on all processors,
RC-SFISTA will compute k iterations of solution updates without
any communication between processors and each processor solves
k subproblems for S iterations at stage D. This process is repeated
until a stopping criterion is met.

4.2 RC-SFISTA parameter bounds
The iteration-overlapping parameter k significantly improves the
performance of RC-SFISTA if latency costs dominate the overall
runtime of the algorithm. Also, the inner loop parameter S reduces
the total number of iterations in RC-SFISTA at the cost of more flops,
often leading to better performance. In this section, the bounds for
parameters k and S are derived based on algorithm and machine
specifications.

0 10 20 30 40 50

iteration

0

0.5

1

1.5

2

2.5

3

R
e
la

ti
v
e
 o

b
je

c
ti
v
e
 e

rr
o
r

mnist FISTA

mnist SFISTA, b=0.01

covtype FISTA

covtype SFISTA, b=0.01

SUSY, FISTA

SUSY SFISTA, b=0.001

abalone, FISTA

abalone, SFISTA, b=0.01

(a) The effect of sampling rate.

0 10 20 30 40 50

iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v
e
 o

b
je

c
ti
v
e
 e

rr
o
r

covtype, k=1

covtype, k=32

mnist, k=1

mnist, k=32

abalone, k=1

abalone, k=32

SUSY, k=1

SUSY, k=32

(b) The effect of parameter k.

Figure 2: Convergence of RC-SFISTA for different b and k.

RC-SFISTA runtime.Weuse themodel in (7) to analyze the per-
formance of RC-SFISTA. The total number of flops for RC-SFISTA
is dominated by the matrix-matrix multiplication in line 5 and the
Hessian-reuse in lines 10-14 in Algorithm 5. Also, RC-SFISTA only
communicates a matrix of size d2 every k iterations in line 6 re-
quiring O(d2k) words to be moved between processors with N

k
messages. Thus, the total runtime of Algorithm 5 is:

T = γ

(
Nd2m̄ f

P
+ Sd2

)
+ α

(
Nloд(P)

k

)
+ β

(
Nd2loд(P)

)
(24)

The iteration-overlapping parameter k. The theoretical up-
per bound for k depends on machine specifications and dataset
dimensions. Since k only appears in latency costs in (24), increasing
k will always lead to a lower running time. However, the perfor-
mance obtained from iteration-overlapping is more significant if
the latency cost dominates the total runtime. By considering latency
and bandwidth, the following upper bound is achieved:

k ≤ α

βd2 (25)

This upper bound shows that RC-SFISTA leads to better perfor-
mance on distributed platforms with a higher rate of latency to
bandwidth ratio (αβ ). Comparing the first two terms in (24), i.e. flops
and latency costs, we have:

k ≤ αNPloд(P)
γ [Nd2m̄ f + Sd2P]

. (26)

Equation 26 shows that for matrices with a lower sparsity degree
f , k can be larger. In particular, if the dataset is very sparse (f ∼ 0)
we can write:

kS ≤ αNloд(P)
γd2 . (27)

The upper bound in (27) provides a trade-off between the compu-
tational complexity and communication cost of RC-SFISTA where
increasing the value of the iteration-overlapping parameter k re-
sults in a tighter bound for S.

The inner loop parameter S. Equation (27) shows that for
higher values of k , a lower value for S is expected. Specifically, if
the upper bound (25) is used, then:

S ≤ βNloд(P)
γ

. (28)

Equation (28) states that the upper bound for S depends on
machine-specific parameters β andγ . Therefore, RC-SFISTA achieves
a better performance on distributed architectures with a higher ratio
of β

γ .

Dataset Row
numbers

Column
numbers

Percentage
of nnz (f )

Size
(nnz)

abalone 4177 8 100% 258.7KB
SUSY 5M 18 25.39% 2.47GB
covtype 581,012 54 22.12% 71.2MB
mnist 60,000 780 19.22% 114.8MB
epsilon 400,000 2000 100% 12.16GB

Table 2: The datasets for experimental study.

5 RESULTS
This section presents the experimental setup and performance re-
sults. We show that k does not change the convergence behavior of
SFISTA. Experimental results are provided that show the inner loop
parameter S improves the convergence of RC-SFISTA. Afterwards,
speedup results of the proposed method as an independent solver
and inner solver for PN methods is discussed. Finally, we demon-
strate that our method performs better than the state-of-the-art
framework ProxCoCoA up to 12×.

5.1 Experimental setup
Table 2 shows the datasets used for our experiments [9]. The datasets
are from dense and sparse machine learning applications and vary
in size and sparsity [9] . RC-SFISTA is implemented in C/C++ using
Intel MKL 11.1 for (sparse/dense) BLAS routines and MPI 2.1 for
parallel processing. We use the compressed sparse row format to
store the data of sparse datasets; abalone is stored as dense. Our
experiments are conducted on the XSEDE Comet CPU nodes [32].
Because of resource constraints on Comet, for experiments with less
than 64 nodes we use one processor per node, while for larger runs
multiple processors per node were used. For example, to execute
RC-SFISTA on 256 processors, we use 64 nodes and 4 processors
per node.

Regularization parameter λ. The parameter λ should be chosen
based on the prediction accuracy of the dataset and can affect con-
vergence rates. We tune λ so that our experiments have reasonable
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Figure 3: Convergence of RC-SFISTA for different values of inner loop parameter S.
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Figure 4: Speedup results for RC-SFISTA compared to SFISTA for different values of the iteration-overlapping parameter k.
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Figure 5: Speedup of RC-SFISTA vs. SFISTA for different S.

running time. The final tuned value for λ is 0.0001 for epsilon and
0.1 for all other benchmarks.

Stopping criteria. The relative objective error en is used as the
stopping criteria where en = | F (wn )−F (w∗)

F (w∗) |. Algorithm 5 returns
when the relative objective error achieves a value less than a user-
specified tolerance tol which in this paper is chosen to provide a
reasonable execution time. The optimal solution,w∗ is computed
using Templates for First-Order Conic Solvers (TFOCS) which is

competitive with state-of-the-art methods [3]. TFOCS uses a first
order method where the tolerance for its stopping criteria is 10−8.

5.2 Convergence results
This section shows the effect of the sampling rate b on the con-
vergence of SFISTA where the algorithm’s computation cost is
significantly reduced with smaller values of b. We also demonstrate
the effect of parameters k and S on convergence rate and show that
RC-SFISTA is numerically stable.

The effect of b on convergence. The relative objective error for RC-
SFISTA for different values of sampling rate b is shown in Figure 2
(a) while setting k and S to 1. The convergence rates are almost
identical compared to FISTA. Smaller values for b result in a smaller
mini-batch size m̄ and therefore a lower computation cost.

The effect of k on convergence. The iteration-overlapping parame-
ter k does not change the convergence of RC-SFISTA since it is the
same as SFISTA in exact arithmetic. For fair comparison, random
sampling is fixed by using the same random generator seed, thus, in
both scenarios the same data points are used in the algorithm. The
convergence properties of RC-SFISTA for different values of k is
shown in Figure 2 (b). The experiments demonstrate that changing
k does not affect the stability and relative objective error. We tested
the convergence rate and stability behavior of the algorithm for up
to k = 128 and a similar trend was observed.

The effect of S on convergence. The convergence behavior of RC-
SFISTA for different values of S is shown in Figure 3. Increasing S
reduces the total number of iterations in RC-SFISTA to reach the
optimal solution. As seen in the figure, even for small values of S ,
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Figure 6: Relative objective error of RC-SFISTA compared to ProxCoCoA on 256 processors.

the improvement in convergence is noticeable. However, according
to (12), larger values of S degrade the convergence behavior of
RC-SFISTA which can also been seen in the figure for S equal to 10
for all benchmarks.

5.3 Speedup comparison
This section shows the speedup for RC-SFISTA compared to SFISTA
for different values of k and S. The tolerance parameter tol is set to
0.01 in all the experiments. We show that increasing k reduces la-
tency costs by a factor of k and improves performance of RC-SFISTA
on a distributed architecture. We also provide speedup results for
the inner loop parameter S and show the trade-off between the
computation cost of RC-SFISTA and data communication.
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Figure 7: Speedup results for PNmethod with RC-SFISTA as
inner solver compared to FISTA used as inner solver.

The effect of parameter k on speedup. The speedup of RC-SFISTA
compared to SFISTA for different number of processors (P) and
different values of k is shown in Figure 4. Parameter S is set to one
to only analyze the effect of k on the total runtime of the algorithm.
As shown in the figure, increasing k results in up to 4× speedup for
all datasets by reducing latency costs by a factor of k . However, for
larger values of k the performance of RC-SFISTA degrades for the
dataset epsilon since the computation cost dominates the overall
running time of the algorithm.

The value of k depends on machine specifications and the dataset
size. For example, the machine parameters α and β for the XSEDE
Comet nodes used in the experiments are 10−6 and 1.42 × 10−10,

thus, the theoretical upper bound (25) for the covtype dataset is 2.
However, according to (24) all values of k reduce the total runtime
of the algorithm, thus, RC-SFISTA continues to scale even for larger
values of k.

The effect of S on speedup. The speedup results of RC-SFISTA
compared to SFISTA on 256 processors for different values of S
are shown in Figure 5. The value of parameter k is tuned for all
benchmarks. Increasing S will result in better convergence proper-
ties by reducing the total number of iterations. S is increased until
an efficient trade-off between computation cost and data commu-
nication is reached. As shown in Figure 5, for larger values of S ,
the cost of redundant computation overwhelms the total cost of
the algorithm and the speedup decreases. For example, RC-SFISTA
shows a speedup of 3× compared to SFISTA for the mnist dataset
when S = 5, while it achieves a speedup of 2× when the inner
loop parameter increases to 10. The upper bound for parameter S
depends on both the architecture and the algorithm iterations N.
Since on XSEDE Comet nodes the value of γ is 4 × 10−10, based on
the upper bound in (27) with values k = 1, P = 256, and N = 200
for the mnist dataset we have S < 7. As shown in Figure 5, S = 5
gives the best speedup for mnist on 256 processors.

5.4 Comparison to ProxCoCoA
In this section, we compare RC-SFISTA with ProxCoCoA, a state-
of-the-are framework for solving large-scale l1-regularized least
squares problems. Since ProxCoCoA is optimized and implemented
in Apache Spark’s MLlib we also implemented RC-SFISTA using
Apache Spark MLlib[25]. When analyzing the performance of the
algorithms, we measure the relative objective error in terms of
wall-clock time. For all the experiments, the value of S is tuned for
best performance. The results with 256 workers on 256 processors
are shown in Figure 6. ProxCoCoA has a slow convergence for
all datasets, however, RC-SFISTA converges faster and reaches a
lower relative objective error compared to ProxCoCoA. Table 3
summarizes the speedup of RC-SFISTA compared to ProxCoCoA
on 256 workers. The parameter tol is set to 0.01 for all benchmarks
and the sampling rate b is set to 1% for RC-SFISTA.

Dataset SUSY covtype mnist epsilon
Speedup 1.57× 4.74× 12.15× 3.53×

Table 3: Speedup of RC-SFISTA compared to ProxCoCoA.
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5.5 Speedup results for PN methods
This section shows the results for RC-SFISTA used as an inner solver
in PN methods (Algorithm 1). The speedups are normalized over
the PN method with FISTA as an inner solver. The Hessian approx-
imation for both algorithms is obtained using uniform sampling
by initializing all processors with the same seed for the random
number generator. The parameter S for RC-SFISTA and the num-
ber of inner solver iterations for PN methods are tuned for best
performance. The speedup results on 512 processors are shown in
Figure 7. As demonstrated, as long as the latency cost dominates
the communication cost, increasing k results in a better speedup.

6 CONCLUSION
The performance of proximal Newton methods used for solving l1-
regularized least squares problems is limited by the performance of
the inner solver used in these algorithms. PN methods do not scale
well on distributed platforms when operating on large datasets. We
propose a novel inner solver, RC-SFISTA, that leverages randomized
sampling to overlap iterations and reduce latency costs by a factor of
k. The RC-SFSITA algorithm, keeps the convergence behavior and
preserves the overall bandwidth cost. The performance of the inner
solver is further improved by solving local subproblems on each
processor at cost of more floating point operations. Our experiments
show that RC-SFISTA provides up to 12× speedup compared to
SFISTA and the state-of-the-art method ProxCoCoA for the tested
datasets on distributed platforms.
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[21] Jakub Konečnỳ, Jie Liu, Peter Richtárik, and Martin Takáč. 2016. Mini-batch
semi-stochastic gradient descent in the proximal setting. IEEE Journal of Selected
Topics in Signal Processing 10, 2 (2016), 242–255.

[22] Jason D Lee, Yuekai Sun, and Michael A Saunders. 2014. Proximal Newton-type
methods for minimizing composite functions. SIAM Journal on Optimization 24,
3 (2014), 1420–1443.

[23] Dhruv Mahajan, S Sathiya Keerthi, and S Sundararajan. 2017. A distributed block
coordinate descent method for training l 1 regularized linear classifiers. Journal
of Machine Learning Research 18, 91 (2017), 1–35.

[24] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009. Online dic-
tionary learning for sparse coding. In Proceedings of the 26th annual international
conference on machine learning. ACM, 689–696.

[25] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, and others.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[26] Atsushi Nitanda. 2014. Stochastic Proximal Gradient Descent with Accel-
eration Techniques. In Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1574–1582. http://papers.nips.cc/paper/
5610-stochastic-proximal-gradient-descent-with-acceleration-techniques.pdf

[27] Atsushi Nitanda. 2014. Stochastic proximal gradient descent with acceleration
techniques. In Advances in Neural Information Processing Systems. 1574–1582.

[28] Neal Parikh, Stephen Boyd, and others. 2014. Proximal algorithms. Foundations
and Trends® in Optimization 1, 3 (2014), 127–239.

[29] Mark Schmidt, Alexandru Niculescu-Mizil, Kevin Murphy, and others. 2007.
Learning graphical model structure using L1-regularization paths. In AAAI, Vol. 7.
1278–1283.

[30] Virginia Smith, Simone Forte, Michael I Jordan, and Martin Jaggi. 2015. L1-
regularized distributed optimization: A communication-efficient primal-dual
framework. arXiv preprint arXiv:1512.04011 (2015).

[31] Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Michael I Jordan, and
Martin Jaggi. 2016. CoCoA: A General Framework for Communication-Efficient
Distributed Optimization. arXiv preprint arXiv:1611.02189 (2016).

[32] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
and others. 2014. XSEDE: accelerating scientific discovery. Computing in Science
& Engineering 16, 5 (2014), 62–74.

[33] Tong Tong Wu, Kenneth Lange, and others. 2008. Coordinate descent algorithms
for lasso penalized regression. The Annals of Applied Statistics 2, 1 (2008), 224–244.

[34] Lin Xiao and Tong Zhang. 2014. A proximal stochastic gradient method with
progressive variance reduction. SIAM Journal on Optimization 24, 4 (2014), 2057–
2075.

[35] Zeyuan Allen Zhu, Weizhu Chen, Gang Wang, Chenguang Zhu, and Zheng Chen.
2009. P-packSVM: Parallel Primal grAdient desCent Kernel SVM. In Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining (ICDM ’09). IEEE
Computer Society, Washington, DC, USA, 677–686. DOI:http://dx.doi.org/10.
1109/ICDM.2009.29

http://dx.doi.org/https://doi.org/10.1016/0167-8191(96)00022-1
http://papers.nips.cc/paper/5610-stochastic-proximal-gradient-descent-with-acceleration-techniques.pdf
http://papers.nips.cc/paper/5610-stochastic-proximal-gradient-descent-with-acceleration-techniques.pdf
http://dx.doi.org/10.1109/ICDM.2009.29
http://dx.doi.org/10.1109/ICDM.2009.29

	Abstract
	1 Introduction
	2 Background
	2.1 The proximal Newton method
	2.2 The inner solver 
	2.3 Performance model

	3 The Reduced-Communication Stochastic FISTA (RC-SFISTA)
	3.1 Reducing computational complexity with a stochastic formulation
	3.2 Reducing communication costs with overlapping iterations and Hessian-reuse
	3.3 Extension to proximal Newton methods

	4 Implementation on distributed architectures
	4.1 Distributed implementation
	4.2 RC-SFISTA parameter bounds

	5 Results
	5.1 Experimental setup
	5.2 Convergence results
	5.3 Speedup comparison
	5.4 Comparison to ProxCoCoA
	5.5 Speedup results for PN methods

	6 Conclusion
	7 Acknowledgements
	References

