IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

399

Alternate Parallel Processing Approach for FEM

David M. Ferndndez, Maryam Mehri Dehnavi, Warren J. Gross, and Dennis Giannacopoulos

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada

In this work we present a new alternate way to formulate the finite element method (FEM) for parallel processing based on the solution
of single mesh elements called FEM-SES. The key idea is to decouple the solution of a single element from that of the whole mesh, thus
exposing parallelism at the element level. Individual element solutions are then superimposed node-wise using a weighted sum over
concurrent nodes. A classic 2-D electrostatic problem is used to validate the proposed method obtaining accurate results. Results show
that the number of iterations of the proposed FEM-SES method scale sublinearly with the number of unknowns. Two generations of
CUDA enabled NVIDIA GPUs were used to implement the FEM-SES method and the execution times were compared to the classic FEM

showing important performance benefits.

Index Terms—Acceleration, finite element method, graphic processing units (GPU), multicore, parallel processing.

1. INTRODUCTION

OLVING increasingly complex electromagnetic (EM)

problems using modern computing resources inevitably
requires employing parallel programming paradigms in re-
sponse to the current trend of advances in microprocessor
architecture. The advent of the multicore/manycore proces-
sors brings about an important turning point in programming
practices; in particular, for EM practitioners and the scientific
community this translates to rewriting legacy libraries and
applications with new parallel formulations that can efficiently
realize the performance benefits offered by these modern
computing resources as shown recently in [1], [2]. This work
focuses on the finite element method (FEM), a popular numer-
ical simulation technique, and proposes an alternate way for
solving the linear systems derived that is well suited for parallel
manycore (graphic processing unit-GPU) implementations.
The remaining sections describe the new proposed method,
sources of parallelism, its advantages and current limitations
and the GPU implementations details. Finally the results and
conclusions are presented.

II. NEw FEM SINGLE ELEMENT SOLUTION
(FEM-SES) METHOD

The classic FEM formulation can be thought of as a seven step
process [3] as shown by the block arrows in Fig. 1: 1) discretiza-
tion of the domain; 2) definition of boundary conditions (BC);
3) construction of the element stiffness matrices; 4) assembly
of the global coefficient matrix imposing BCs; 5) solution of
the algebraic system; 6) post-processing of results; and if a re-
quired 7) enhancing the solution using mesh refinement and/or
changing the basis functions (restarting the whole process). Tra-
ditionally, the solution of FEM has been parallelized in three
ways: a) partitioning and solving in parallel the derived alge-
braic system [1], [2], [4]; b) employing domain decomposition
techniques [4]-[7]; and c¢) using multigrid techniques [6], [7].

Manuscript received July 05, 2011; revised October 03, 2011; accepted Oc-
tober 14,2011. Date of current version January 25, 2012. Corresponding author:
D. Ferndndez (e-mail: david.fernandezbecerra@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2011.2173304

However, a greater amount of parallelism is sought to take ad-
vantage of the aforementioned manycore trend.

Therefore, we propose to decouple the element solution from
that of the whole mesh by directly computing on the element
stiffness matrices concurrently, going from step three to five
in Fig. 1 (shown by the curved arrow). In this new scenario,
boundary conditions are applied directly to the element matrices
as described later in Subsection II.A. Such disconnected solu-
tions are then averaged node-wise using a weighted sum over
all concurrent nodes in an iterative fashion until convergence is
achieved. Furthermore, this approach does not require building
a global coefficient matrix skipping step four in Fig. 1 and mod-
ifying steps three and five encircled in the dashed line. A similar
approach is presented in [8] where the solution is computed by
nodes as opposed to the element approach proposed here. The
mathematical formulation for the proposed decoupled single el-
ement solution (called FEM-SES) approach is presented next.

A. Mathematical Formulation

Equations (1)—(3) present the classic FEM variational formu-
lation for a static EM boundary value problem that will be used
for simplicity, without loss of generality. Here F'(y) represents
the functional to minimize, ¢ the unknown potentials and p the
boundary conditions (BC) applied

§F(p) =0 ey
@ = p, on the boundary I)
L[o\’ dp\°
o) =3 [/ [am (%) o (a—y) ORNE)
Q

The functional can then be applied to each element in the
discretized domain as shown in (4)—(5), where the superscript
e refers to the element index

F(p) =) F(¢°) “

e=1
(o) - L ¢\ ¢\
F'(w')zi//[a%%) +ay<3v>
Q. ’

Next the local functionals are minimized and BCs are en-
forced element-wise independently, see (6). This is where the

Q. (5)

0018-9464/$31.00 © 2012 IEEE

400

undary Condition
cal Numbering

-

7. Refinement

(e.g. hp-adaption)

1. Space discretization

2. Define boundary conditions (BC)
3. Construction of element matrices (K,)

Toc*

4. Global matrix assembly K, ,

5. Solution of global/element-based systems
6. Display and evaluation of results

IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

(imposition of BC)

Fig. 1. Steps in the classic finite element method (FEM) and the proposed changes for the FEM-SES method enclosed within the dashed line.

Jacobi relaxation scheme: x""=Mx"+b
» For elements with 1 BC:

Py :[I/kll 0 X' b~k @5 | o7
P IR (| PYT o
> For elements with 2 BC (not computed iteratively):
[@gew]:[llkss}x[bs_(

> For interior elements (no boundary conditions):

new

0 ky,
ky 0

=~

new

Step 1: Update local estimate using a
given relaxation criteria (e.g. Jacobi)

(08 1/k,; 0 0 0 ki ki q’frw]
=] 0 1k, 0 [X{=|ky 0 Kyl |l (9)
e [0 0 1k { ky ks O cpgmv}

new
~[cl|g| (10)
global new
D6 Jiocal

new
1
new

P,

C: modified connectivity information using weights.

new ___new (
©1(globat) = P1(local)

kl] new kGG
+
k11+k55) (pbxlo(ul)(kll+khs) (11)

Check for convergence to desired precision.
— If (converged): exit.
— else: repeat step 1.

Step 2: Couple local solutions using
weighted average enforcing continuity

Fig. 2. 2-step iterative relaxation method: Step-1 shows update rationale for elements with or without BCs and Step-2 shows a weighted average example.

new method departs from the classic FEM
oF* e e e
{5} O R (A S W
¥ BC_reduced

To obtain the global solution from (6) for each of the elements
a 2-step iterative relaxation approach is proposed. As presented
in Fig. 2, the first step updates the local element solutions inde-
pendently using the current estimate of the unknowns and the
reduced local matrices in a relaxation-type of technique (e.g.,
step 1 in Fig. 2 shows a Jacobi update scheme). The reduced
element matrices are obtained from the original element ma-
trices subject to boundary conditions in a matrix modification
process. The second step sums the local solutions from overlap-
ping element nodes using a weighted average to compute the
global node solutions. The weights (or weight factors) are com-
puted using the main diagonal values of the element matrices
for overlapping nodes. Fig. 2 shows how the weights are calcu-
lated and used to computed the unknown value for global node 1
(1 global) based on the corresponding local solutions (1 iocal
and ¢1 10ca1)- Finally, a convergence check is performed to ei-
ther exit or repeat the process.

B. Sources of Parallelism, Advantages and Disadvantage

Sources of parallelism identified in the new approach are:

* clement stiffness matrices can be built in parallel and pre-
served in distributed CPU/cores to be computed later;

* elements solutions may be computed in parallel indepen-
dently of any other element;

» the weighted average can be performed in parallel across
nodes taking into account the element connectivity.

Two drawbacks of the proposed 2-step iterative relaxation
method can be identified: a) it will have slow convergence sim-
ilar to that of Jacobi iterative method, but a great deal of paral-
lelism is obtained in exchange; thus, by exploiting parallelism
in each iteration, the new approach reduces the total execution
time of the finite element method as demonstrated in the results
section; and b) computing the global solution requires a single
synchronization per iteration. Among other advantages, the pro-
posed FEM-SES method does not require special numbering
(local and global numberings) thus less housekeeping time and
effort, no global coefficient matrix is built, uses the same infor-
mation as the classic FEM, and good scaling is expected con-
sidering that the element connectivity is almost constant as the
mesh is further refined to better represent the geometry and re-
solve the solution of the problem.

III. PARALLELIZATION OF FEM-SES

In this section, techniques to parallelize the FEM-SES are
presented. A sequential implementation of the new method is
profiled first to determine the dominant computing kernels. The
two most important operations in the algorithm are the actual
assembly of the element matrices and the 2-step iterative re-
laxation method itself, whereas all other operations are consid-
ered as pre and post-processing steps. For the largest datasets
tested the profiling showed that the 2-step iterative relaxation
method dominates all other operations (assembly, pre and post-
processing). Consequently we concentrate on parallelizing the
2-step iterative relaxation, which correspond to the last two
sources of parallelism identified in Section II.B.

FERNANDEZ e al.: ALTERNATE PARALLEL PROCESSING APPROACH FOR FEM

Define global memory
GPU variables

| Transfer host (CPU) data |

to device (GPU)

Kernel 1: compute element
solutions.

device (GPU) kernel launches. All
other boxes are executed on the
host (CPU).

~—

Solution using weighted

Shaded boxes correspond to CUDA
average. J

Returns a single scalar value
to host memory.

product on current error.

[Kernel 2: oompu’(e global

Kernel 3: CUBLAS dot]‘ ----

using dot product result

Converged? True
Max. Iter.?

Fig. 3. Workflow to parallelize the 2-step iterative relaxation method on
NVIDIA GPUs.

‘ Compute 2-norm of the error

Transfer solution
to host (CPU)

A. GPU Implementation

To implement the 2-step iterative relaxation algorithm on the
GPU, we used the CUDA 3.2 SDK [9]. The host (CPU-side)
function first defines the GPU global memory required to store
the element matrices K, (including their right hand sides b..), the
global unknown vector ¢, and the pre-computed weight factors
w,!. These data sets are then transferred to global GPU memory.
Next, the host function loops over the three device (GPU) ker-
nels (shown as shaded boxes) that parallelize different sections
of the 2-step iterative relaxation until the convergence criteria
is satisfied (Fig. 3). It was necessary to create this logical parti-
tion in the method due to the limitations in the synchronization
mechanisms available in current NVIDIA GPUs. Once conver-
gence is achieved the host function exits the loop and transfers
the global solution ¢ back to host memory. Large data trans-
fers only occur outside the loop minimizing the effects of global
memory access latencies. Only single scalar values are trans-
ferred inside the loop in Kernel 3.

Kernel 1 computes the solutions of each element in parallel
as described in step 1 of Fig. 2. Each thread in the kernel com-
putes the solution of one element and stores it in device global
memory. Each block in this kernel consists of 256 threads and
the number of blocks in the grid is computed dynamically at run-
time depending on the problem size, which equals the number of
elements (in the FEM mesh) divided by the block size. Most of
the memory accesses are coalesced due to sequential addressing
of the K., b. and w, data sets but non-uniform and indirect ac-
cess will still be required for the unknown -vector. The indi-
rect accesses are one of the main performance limiting factors
in this kernel. To minimize the effects of accessing the ¢-vector
(which is used several times in a thread), it is stored into shared
memory. Techniques such as loop unrolling and variable reuse
are also used to enhance performance. Fig. 4 presents the code

IThe subindex e is used to refer to the matrix/vector of an element, otherwise
global values are assumed.

401

1.__global__ void FEM_coalesed_solver_kernel(int
num_elements, float *K_dis, float *b_dis, int*
fem_nodes, float *w, float *phi, float *d |_odata) {

2 // Local memory.

3 float templ;

4. int data_disp, int data_disp3;

5 // Shared memory.

6 _ shared__ float temp2[256*3];

7 77 Use block and thread IDs to select the element.

8. data_disp = blockDim.x*blockIdx.x + threadIdx.x;

9. 1if (data_disp < num_elements) {

10. data_disp3 = data_disp * 6;

11. data_disp = data_disp * 3;

12. // Load x to shared memory (partially coalesced).
13- temp2[threadIdx.x*3] = phi[fem_nodes[data_displ];
14. temp2[threadIdx.x*3+1] = phi[fem_nodes[data_disp+1]];
15. temp2[thready*3+2] = phi[fem_nodes[data_disp+2]];
16. // Coalesced access to all variables.

17. // Node 1

18. templ = b_dis[data_disp];

19. templ -= K_dis[data_disp3]*temp2[threadIdx.x*3+1];
20. templ -= K_dis[data_disp3+1]*temp2[threadIdx.x*3+2];
21. d_odata[data_disp] = templ * w[data_disp];

22. // Node 2

23. templ = b_dis[data_disp+1];

24, templ -= K_dis[data_disp3+2]*temp2[threadIdx.x*3];
255 templ -= K_dis[data_disp3+3]*temp2[threadIdx.x*3+2];
26. d_odata[data_disp+1] = templ * w[data_disp+1];

27. // Node 3

28. templ = b_dis[data_disp+2];

29. templ -= K_dis[data_disp3+4]*temp2[threadIdx.x*3];
30. templ -= K_dis[data_disp3+5]*temp2[threadIdx.x*3+1];
31. d_odata[data_disp+2] = templ * w[data_disp+2];

32.}}

Fig. 4. CUDA function used to implement Kernel 1 that computes the single
element solutions in FEM-SES.

for Kernel 1, which is the dominating computing kernel of the
three in FEM-SES.

After the local solutions are obtained, Kernel 2 is called to
compute the global node solutions using an average sum per
node. Once again, the host function launches a one dimensional
grid with 256 threads per block similar to Kernel 1, where each
thread gathers the results for one node. The same kernel com-
putes the error between the new approximation of the unknown
and the previous one, and stores it in device global memory.

The third kernel partially computes the 2-norm of the error
using the cublasSdot function from NVIDIA the CUBLAS
[10] library which returns the dot product of this vector to the
host function. The host function then computes the square root
to obtain the final value of the 2-norm, and finally convergence
is assessed. The GPU kernels are designed to avoid using syn-
chronizations primitives to minimize execution bottlenecks.

IV. RESULTS

A 2-D electrostatic coaxial cable problem (see Fig. 5) was im-
plemented to validate the new method and study its convergence
behavior. Tests were conducted on a 2.4 GHz Intel Core2 Quad
processor, with 4 GB of DDR2 global memory and running a
64-bit Linux operating system. Two NVIDIA GPUs are used;
a 8800GT clocked at 1.5 GHz with 512 MB of global memory
and 112 scalar processors (grouped into 14 streaming multipro-
cessors-SMs), and a GTX480 clocked at 1.4 GHz with 1.5 GB
of global memory and 480 scalar processors (grouped into 32
SMs). The C programming language was used to develop the
code for both CPU and GPU (GPU version uses CUDA intrin-
sics). Compilation was done with GCC 4.1.2 and the CUDA
SDK 3.2. All computations are carried out in single precision
considering that the GPUs used have limited double precision
support. Both CPU and GPU codes were compiled with —O3
optimizations flag. Additionally, the —arch = sm_20 flag was

402

2.05

2.00

1.95 Fd

1.90

1.85 |= Classic FEM
-+ Element based solution

1.80
10 100 1000

Energy (pJ/m)

s

10000 100000

Number of unknowns

Fig. 5. Energy comparison for classic FEM and proposed element-based for-
mulation. Insert shows a 2-D model of the square coaxial problem.

500
= Element based solution
200 -+ Reference theoretical CG
convergence
Reference linear scaling
300

Sub-linear
behavior

200

100 O(Y Number of Unknows)

100 200 300 400 500

(0] __ans

Number of iterations (thousands)

Number of unknowns (thousands)

Fig. 6. Iterations scaling with the increase of problem size.

used for the GTX480 to enable FERMI advanced architecture
features.

First, sequential implementations for both traditional FEM
and the proposed FEM-SES method were done on the CPU.
Fig. 5 compares the FEM energy results with those of the
new FEM-SES method demonstrating good agreement of the
results for different number of unknowns; thus validating the
new method. Next, the original mesh was refined to empirically
study the convergence scaling of the proposed method. The
solid line with out markers in Fig. 6 represents a reference linear
scaling (1:1 slope) and the line with square markers shows
the iteration count results. These results empirically prove a
sublinear iteration scaling of the proposed FEM-SES method
as the number of unknowns increases, which is a desirable
scaling property of iterative methods. Moreover, this sublinear
scaling is obtained even though the condition number increases
considerably (from 90 to 9672) as the number of unknowns
grows. The convergence rate for the conjugate gradient (CG)
method is also shown as a reference for comparison.

Finally, timing results for the reference implementation of the
classic FEM (with an efficient CG iterative solver) using hand
coded optimizations and up to 4 CPU threads (as explained in
[1]) were compared to the best GPU times, which resulted in
speedups of up to 14 times and 111 times for the 8800GT (first
generation CUDA enabled NVIDIA GPU) and the GTX480

IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

(third generation CUDA enabled NVIDIA GPU-Fermi), respec-
tively, compared to CPU times. The considerable better per-
formance obtained from the GTX480 is due to better support
for memory coalescing access, four times more computing re-
sources (scalar processors, local memory and register files) than
the 8800GT, and support for L1 cache.

V. CONCLUDING REMARKS AND FUTURE WORK

This work presents two major contributions, a new element-
based technique for solving the finite element method (called
FEM-SES) well suited for parallel processing, and a method-
ology for implementing the proposed FEM-SES method to ex-
ploit the parallel computing power of modern graphic proces-
sors. The goal of designing such a technique is to expose more
parallelism in the finite element method compared to traditional
approaches. The method was then implemented in two different
generations of NVIDIA GPUs obtaining up to 14 times speedup
on the 8800GT GPU and 111 times speedup on the GTX480
compared to optimized CPU results for the classic FEM. Future
work currently in progress includes exploring ways to accelerate
the convergence rate of the FEM-SES method by using pre-
conditioners, alternate relaxation techniques, or multigrid ap-
proaches. Also a multi-GPU implementation is currently under
development. Other potential future work includes validating
the method for non-static problems, and exploring cluster im-
plementations.

REFERENCES

[1] D. Ferndndez, D. Giannacopoulos, and W. J. Gross, “Multicore
acceleration of CG algorithms using blocked-pipeline-matching tech-
niques,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3057-3060, Aug. 2010.

[2] M. M. Dehnavi, D. M. Fernandez, and D. Giannacopoulos, “Enhancing
the performance of conjugate gradient solvers on graphic processing
units,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1162-1165, May 2011.

[3] J.-M. Jin, The Finite Element Method in Electromagnetics, 2nd ed.
Hoboken, NJ: Wiley, 2002.

[4] T. Itoh et al., Finite Element Software for Microwave Engineering.
Hoboken, NJ: Wiley, 1996, pp. 385-400.

[5] A. Toselli and O. Widlund, Domain Decomposition Methods—Algo-
rithms and Theory. Berlin, Germany: Springer Series in Computa-
tional Mathematics, 2005, vol. 34, p. 450.

[6] A. Takei et al., “Full wave analyses of electromagnetic fields with an
iterative domain decomposition method,” IEEE Trans. Magn., vol. 46,
no. 8, pp. 2860-2863, Aug. 2010.

[7] L. Yuanqing and Y. Jiansheng, “A finite element domain decomposi-
tion combined with algebraic multigrid method for large-scale electro-
magnetic field computation,” IEEE Trans. Magn., vol. 42, no. 4, pp.
655-658, Apr. 2006.

[8] J. P. A. Bastos and N. Sadowski, “A new method to solve 3-D mag-
netodynamic problems without assembling an Ax = b system,” IEEE
Trans. Magn., vol. 46, no. 8, pp. 3365-3368, Aug. 2010.

[9] CUDA Programming Guide for CUDA Toolkit 3.2. e-manual. NVIDIA
Corporation, Dec. 2010 [Online]. Available: http://developer.down-
load.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Pro-
gramming_Guide.pdf

[10] Cublas users guide. E-Manual. NVIDIA Corporation, Dec. 2010 [On-
line]. Available: http://developer.download.nvidia.com/compute/cuda/
3_2_prod/toolkit/docs/CUBLAS_Library.pdf

