
1162 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 5, MAY 2011

Enhancing the Performance of Conjugate Gradient
Solvers on Graphic Processing Units

Maryam Mehri Dehnavi, David M. Fernández, and Dennis Giannacopoulos

Electrical and Computer Engineering Department, McGill University Montreal, QC H3A 2A7 Canada

A study of the fundamental obstacles to accelerate the preconditioned conjugate gradient (PCG) method on modern graphic processing
units (GPUs) is presented and several techniques are proposed to enhance its performance over previous work independent of the GPU
generation and the matrix sparsity pattern. The proposed enhancements increase the performance of PCG up to 23 times compared to
vector optimized PCG results on modern CPUs and up to 3.4 times compared to previous GPU results.

Index Terms—Computer architecture, conjugate gradients (CGs), graphic processing units (GPUs), parallel processing.

I. INTRODUCTION

R EAL world electromagnetic problems constantly demand
more precise and sophisticated simulations in reasonable

time frames. To meet such demands in modern finite element
method (FEM) applications, programmers must efficiently
exploit new technological advancements in modern computing
systems. Graphic processing units (GPUs) have evolved very
quickly over the last few years and significantly overwhelm
CPU specifications in both raw power and memory bandwidth
[1]. To benefit from the pervasive computing resources in a
GPU, compute intensive data-parallel sections of large prob-
lems should be optimized to run on the GPU architecture.

This paper focuses on enhancing the performance of the pre-
conditioned conjugate gradient (PCG) algorithm [4], a popular
sparse linear solver in FEM using current GPU processors. Effi-
cient techniques to parallelize PCG on GPUs are presented that
overcome the main limitations imposed by both the PCG al-
gorithm (namely poor data locality and sequential execution),
and the programming constraints of modern GPUs (e.g., effi-
cient use of different GPU resources, minimizing data com-
munication, hiding memory access latencies and reducing the
number of kernel calls). The effectiveness of these techniques is
demonstrated using a range of matrices and speedup results are
compared with other state-of-the-art PCG multicore and GPU
implementations.

II. GPU ARCHITECTURE

Initially driven by the demand for powerful high-definition
3-D graphics, modern GPUs have become massively parallel,
multithreaded architectures. Easy to learn APIs (Application
Programming Interfaces) such as compute unified device ar-
chitecture (CUDA [3]) has enabled the acceleration of modern
scientific applications via massive multithreading. In particular,
NVIDIA GPUs offer important computing power for these ap-
plications. Fig. 1 shows the general architecture of NVIDIA
graphic cards. Scalar processors (SPs) are the basic processing
units of the architecture and are clustered in groups of eight
called streaming multiprocessors (SMs).

Manuscript received May 31, 2010; accepted September 18, 2010. Date
of current version April 22, 2011. Corresponding author: M. Mehri (e-mail:
maryam.mehridehnavi@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2010.2081662

Fig. 1. NVIDIA GPU architecture.

Sections of an application that exhibit rich data parallelism
are scheduled to run on the GPU. Executing a parallel section
on the GPU using CUDA involves: a) transferring required data
to GPU global memory; b) launching the device (GPU) kernel;
and c) transferring results back to host memory. Threads in-
side a kernel are grouped into thread blocks, which are exe-
cuted on SMs. Threads in a block communicate via fast shared
memory, but threads in different blocks communicate through
long latency global memory. Major challenges in optimizing an
application on GPUs are: global memory access latency, dif-
ferent execution paths in each warp (32 consecutive threads in
a block) namely thread divergence, communication and syn-
chronizations between threads in different blocks and resource
utilization.

III. PRECONDITIONED CONJUGATE GRADIENT (PCG)

The conjugate gradient (CG) algorithm is one of the most
popular iterative linear solvers available today, mainly due to
its fast convergence, constant decrease in error-per-iteration and
efficient memory usage [4]. Before introducing the paralleliza-
tion and performance enhancing techniques, one must choose
an appropriate PCG version with good parallelization proper-
ties as presented in the next section.

A. Choosing a PCG Algorithm

Many variations of the PCG algorithm exist, depending on
their formulation. In this paper, we implemented a classical PCG

0018-9464/$26.00 © 2011 IEEE

DEHNAVI et al.: ENHANCING THE PERFORMANCE OF CONJUGATE GRADIENT SOLVERS ON GRAPHIC PROCESSING UNITS 1163

Fig. 2. Highlighting several bottleneck operations in PCG Shewchuk [4] versus
PCG Chronopoulos [2].

algorithm [4] and a variation presented in [2] with better data lo-
cality that minimizes the number of kernel calls, the GPU global
memory loads, and the communication overhead. Fig. 2 presents
both algorithms highlighting sections in the main iteration loop
where vectors are loaded for the sparse matrix vector multipli-
cation (SMVM), SAXPY (vector updates,) and dot
product operations.

The main advantages of the Chronopoulos variant of the PCG
algorithm compared to the Shewchuk method are as follows:

• In the PCG-Chronopoulos version vectors are loaded in
the same place within the main loop as opposed to across
the whole loop for the Shewchuk version. This property
allows multiple operations to reuse data while on shared
memory, reducing long latency memory accesses and ex-
hibiting better data locality.

• Dot products are clustered together in the Chronopoulos
variant reducing the number of synchronization steps on
both the GPU and the CPU.

• Efficient partitioning of vector and matrix values enables
coalesced loading of data and maximum GPU resource uti-
lization during PCG kernel calculations.

B. Previous Work

Accelerating the PCG algorithm on massively parallel hard-
ware platforms, especially GPUs, is very challenging due to the
sequential nature of the algorithm. Buatois et al. [1] accelerated
the CG solver on GPUs using the blocked compressed sparse
row storage (BCSR) format. Their algorithm is optimized for a
limited set of matrices with specific sparsity patterns. Wiggers
et al. [5] reorder matrix rows to decrease the execution time of
the SMVM kernel for CG. Sorting rows increases preprocessing
and execution time on the CPU. In [6] and [7] a mixed preci-
sion iterative refinement algorithm is proposed for the CG. The
single precision inner solver in their method is the most time
consuming kernel in the overall solution and accelerating its ex-
ecution is the major focus of our work.

The performance of SMVM using various compressed
storage formats on GPUs has been studied in [8]. Using a
decision based method, [9] chooses the best performing storage
format for SMVM from [8] prior to executing the CG algo-
rithm, at the expense of storing (generating) several copies of

Fig. 3. PCG Chronopoulos [2] algorithm implemented on the GPU, optimizing
PCSR [10] adds two new kernels to the implementation.

Fig. 4. (a) Percentage of the average execution time of kernels in the PCG
Chronopoulos; (b) fusing kernels in PCG (K1 to K4 represent the kernels in
optimized PCG).

the matrices in the various storage formats. Formats such as JDS
[9], HYB [8], ELL [8], BCSR [1] require extra preprocessing
to benefit from the GPU processors (sorting rows, blocking
nonzero values, redundant padding, etc.) that are not negligible
compared to the fast execution time of the SMVM and CG
algorithms on the GPU. The Prefetch-CSR (PCSR) algorithm
proposed in [10] requires very little padding and preprocessing
and outperforms the previous SMVM algorithms including one
of the best performing algorithms, namely the Row per Warp
method from NVIDIA [8]. By using an optimized version of
the PCSR algorithm and the Row per Warp method this paper
proposes new techniques to overcome major bottlenecks in
accelerating PCG on GPUs.

IV. IMPLEMENTING PCG ON GPUS

We propose four optimizations to the original Choronopoulos
PCG in order to decrease its execution time on the GPUs.
Without optimization, implementing the Chronopoulos variant
of the PCG algorithm leads to 8 kernels and some scalar updates
on the CPU (Fig. 3). Fig. 4(a) shows the percentage of average
time spent on each of these kernels in the naive implementation
of the PCG algorithm on the GPU. We enhance the performance
of the Chronopoulos PCG by optimizing the SMVM kernel,
fusing SAXPY operations, using a Jacobi preconditioner and
binding vectors to GPU texture memory.

A. Optimizing the SMVM Kernel

As shown in Fig. 4(a) on average 80% of the total PCG exe-
cution time is spent on the SMVM kernel; thus, using the best
performing SMVM algorithm is essential in decreasing PCG ex-
ecution time. In this paper, we compare the effects of two of the
best performing SMVM algorithms proposed in previous work
[8], [10] in the PCG algorithm. The first algorithm is the Row per
Warp method introduced by Bell et al. [8] and the prefetch com-
pressed row storage (PCSR) [10] is the second SMVM method

1164 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 5, MAY 2011

used. Unlike SMVM algorithms based on other storage formats,
the Row per Warp method and PCSR do not require extra pre-
processing since they are based on the compressed sparse row
(CSR) storage format.

Row Per Warp: In the Row per Warp [8] method each warp
is assigned a row to compute one vector result. The method is
efficient if the sparse matrix has a regular sparsity pattern and its
bandwidth is approximately equal to a multiple of a warp size.

Prefetch CSR: The PCSR method [10] partitions the ma-
trix nonzeros to blocks of the same size and distributes them
amongst GPU resources. The algorithm pads rows with zeros
to increase data regularity and use of parallel reduction tech-
niques. Prefetching data is also used to hide global memory ac-
cesses. To further increase the performance of the algorithm, in
this work we have eliminated the atomic updates of the Y vector
by replacing the original SMVM kernel with three sub-kernels,
namely, clear Y vector, SMVM and Y vector update (Fig. 3).
Thus, in the optimized version of PCSR, atomic sums of the Y
vector values corresponding to partitioned rows between blocks
are removed (the two added kernels, clear Y vector and Y vector
update are small and have a fast execution time compared to the
SMVM kernel).

B. Jacobi Preconditioner

A Jacobi preconditioner was implemented mainly for its ease
of parallelization in the PCG method. As an additional benefit,
because the solver for this type of preconditioner can be treated
as a SAXPY operation, it can be fused with other operations as
described in the next section.

C. Fusing Kernels

Although the PCG algorithm is mainly implemented on
the GPU in previous work, gathering result vector values and
performing vector dot products require going back to the CPU,
resulting in multiple kernel calls. In each kernel call data is
loaded to fast access GPU shared memory in partitions. Upon
termination of a kernel, all data is stored back to the GPU global
memory, requiring proceeding kernels to reload data to shared
memory before their execution. Thus, besides the launching
time of each kernel, increased communication is another major
drawback of multiple kernel calls.

There are two objectives of fusing individual kernels, the
first is to minimize the number of kernels, saving time between
kernel calls; and the second is to take advantage of the vectors
loaded into shared memory avoiding double loads. The fusions
are done in three steps [Fig. 4(b)]. In the first step the SAXPY
kernels are fused in to a single kernel. The second step fuses
the preconditioner and clear Y vector kernels in to the SAXPY
kernel. The dot product and the SMVM kernels are fused into
one kernel in the last step (scalar updates of the dot product are
still performed on the CPU).

Fusing reduces the total number of kernels from 8 to 4 in the
PCG algorithm. Although optimized implementations of other
PCG algorithms might result in small number of kernels, the
resulting kernels after fusion in the proposed method have sig-
nificant implications leading to increased performance:

• Most vectors are only loaded once onto shared memory per
iteration.

Fig. 5. Effect of the optimizations proposed in Section IV in increasing the
performance of the PCG algorithm on GT8800.

TABLE I
SPARSE MATRICES USED FOR TESTING

• Fusing the main operations in the PCG algorithm into
one kernel [K1 in Fig. 4(b)] increases coalesced memory
fetches reducing global memory accesses.

• Kernels 3 and 4 [K3 and K4 in Fig. 4(b)] are small and do
not require large number of memory loads.

D. Texture Binding

The texture memory is a fast on-chip cached memory space.
Loading vectors to texture memory decreases the effect of
global memory access latencies and enhances the performance
of the PCG algorithm kernel. We bind vectors that benefit the
most from the cached space to texture memory. By binding
vectors to texture memory we increase the execution speed of
the PCG algorithm. Since vector values in PCG are updated
in each iteration, vectors need to be binded/unbinded to/from
texture memory in each iteration.

V. RESULTS

The performance of the optimizations proposed is evaluated
using 7 sparse matrices from [11] with different sparsity pat-
terns and application areas (Table I). The execution speed of the
PCG algorithm is presented in GFLOPs (billion floating point
operations per second). For each PCG Chronopoulos iteration,
the algorithm computes 1 SMVM and 7 vector operations; thus,

flops plus scalar updates are counted (nnz:
number of nonzeros, : matrix dimension).

The performance of the optimized algorithm is tested on two
different generations of NVIDIA graphic cards the G80 and
GT200 series. NVIDIA GT8800 and GTX280 graphic cards

DEHNAVI et al.: ENHANCING THE PERFORMANCE OF CONJUGATE GRADIENT SOLVERS ON GRAPHIC PROCESSING UNITS 1165

Fig. 6. Performance of the PCG-Row per Warp [8] method compared to pro-
posed optimized PCG Chronopoulos [2] algorithm on G80 and GT200.

are used as representatives of the G80 and GT200 series, re-
spectively. The GTX280 consists of 30 SMs, 16-K registers,
and 1 GB of global memory compared to the 14 SMs, 8-K reg-
ister file, and 512 MB of device memory on the GT8800. Both
GPUs have 16 KB of shared memory but the GT8800 operates
at a higher frequency (1.5 GHZ versus 1.29 GHZ). The GT200
generation has higher compute capabilities and handles thread
divergence more efficiently while the maximum graphic card
power and average cost of the GTX280 is approximately double
that of the GT8800 card.

Fig. 5 shows the effect of the optimizations proposed in
Section IV step by step. Using the Row per Warp algorithm as
the SMVM kernel, the PCG Chronopoulos method outperforms
the Shewchuk algorithm for all the matrices. By replacing the
Row per Warp SMVM with the optimized version of PCSR the
average performance of the PCG algorithm increases up to 60%
as shown in Fig. 5. While using PCSR as the SMVM kernel,
binding vectors to texture memory increases performance on
average 50%. Fusing SAXPY operations increases performance
on average 6% compared to the nonfused version [Fig. 4(b)].
The two other fusing steps also contribute to an average 6%
increase in performance.

Fig. 6 shows the performance of the optimized PCG algo-
rithm compared to the Row per Warp method [8] on both G80
(GT8800) and GT200 (GTX280) NVIDIA GPU generations.
The proposed algorithm outperforms previous methods on both
platforms. Unlike previous methods [8], [9] which are not opti-
mized for matrices with small number of nonzeros per row, the
proposed optimizations, independent of the matrix sparsity pat-
tern, are able to increase considerably the performance for such
matrices.

Table II presents the speedup (SU) of the proposed method
compared to the Row per Warp (RW) method implemented on
the G80 and G200 architectures, the best vectorized CPU re-
sults in [12] as well as a naïve CPU implementation. A majority
of SMVM algorithms proposed in previous work such as the
Row per Warp method introduced in [8] rely on the architec-
ture to address thread divergence; thus, PCG algorithms using
such methods do not perform well on the G80 generation of
NVIDIA GPUs. Since PCSR’s performance is independent of
the GPU generation, our PCG implementation outperforms the
PCG version of the Row per Warp method on both GPU gen-
erations (Table II). Compared to vectorized PCG [12] using 4
threads on an Intel core2 Quad 2.4-GHZ architecture (4 MB of
L2 cache per core-pair and 4 GB of global DRAM) speedups of

TABLE II
SPEEDUP OF OPTIMIZED PCG COMPARED TO PCG-ROW PER WARP (RW) ON

GPU, VECTORIZED AND NONVECTORIZED CPU

up to 23 were achieved (Table II). On average 42 times speedup
was achieved compared to nonvectorized PCG using a single
thread on the same CPU (“CPU Regular” results in Table II).

Compared to single GPU results in [9] (their method uses
an SMVM decision algorithm to choose the best performing
storage format for each matrix, increasing preprocessing time),
for the same matrices we achieve on average 1.5 times speedup
(for similar matrices G3 circuit, thermal2, and BenElechi1
speedups of 1.5, 2, and 1.1 are achieved, respectively). Thus,
the proposed PCG optimizations can, potentially, give average
performances of up to 180 GFLOPS on multi-GPU platforms
compared to 120 GFLOPS in [9].

VI. CONCLUSION AND FUTURE WORK

The paper introduces several optimizations for the
Chronopoulos [2] PCG variant to accelerate the execution
of PCG on GPUs. The proposed optimizations increased the
performance of PCG on representatives of the G80 and GT200
generations of NVIDIA GPUs up to 3.4 and 2.5 times, respec-
tively, compared to previous methods [8]. In future work, we
intend to extend our algorithm to multi-GPU platforms and
other preconditioners.

REFERENCES

[1] L. Buatois, G. Caumon, and B. Lévy, “Concurrent number cruncher:
An efficient sparse linear solver on the GPU,” in Proc. HPCC, 2007,
pp. 358–371.

[2] A. Chronopoulos et al., “S-Step iterative methods for symmetric linear
systems,” J. Comput. Appl. Math., vol. 25, no. 2, pp. 153–156, 1989.

[3] NVIDIA CUDA [Online]. Available: http://developer.nvidia.com/ob-
ject/cuda.html

[4] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain, Aug. 1994.

[5] W. A. Wiggers et al., “Implementing the conjugate gradient algorithm
on multi-core systems,” in Proc. ISSC, 2007, pp. 11–14.

[6] S. Georgescu and H. Okuda, “GPGPU-enhanced conjugate gradient
solver for finite element matrices,” presented at the iWAPT, 2007.

[7] D. Goddeke, R. Strzodka, and S. Turek, “Accelerating double precision
FEM simulations with GPUs,” presented at the ASIM, 2005.

[8] N. Bell and M. G. Fernandez, Efficient Sparse Matrix-Vector Multipli-
cation on CUDA, NVIDIA Tech. Rep., 2008.

[9] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate
gradient solver on multi-GPU clusters using hypergraph partitioning,”
J. Res. Develop., vol. 5, no. 1, pp. 83–91, 2010.

[10] M. M. Dehnavi, D. Fernandez, and D. Giannacopoulos, “Finite element
sparse matrix vector multiplication on GPUs,” IEEE Trans. Magn., vol.
46, no. 8, pp. 2982–2985, Aug. 2010.

[11] University of Florida Sparse Matrix Collection [Online]. Available:
http://www.cise.ufl.edu/research/sparse/matrices

[12] D. Fernandez, D. Giannacopoulos, and W. J. Gross, “Multicore
acceleration of CG algorithms using blocked-pipeline-matching tech-
niques,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3057–3060, Aug. 2010.

