
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Autotuning divide-and-conquer stencil computations

Ekanathan Palamadai Natarajan1*, Maryam Mehri Dehnavi1*†, and Charles E.

Leiserson1*

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139

SUMMARY

This paper explores autotuning strategies for serial divide-and-conquer stencil computations, comparing
the efficacy of traditional “heuristic” autotuning with that of “pruned-exhaustive” autotuning. We present
a pruned-exhaustive autotuner called Ztune that searches for optimal divide-and-conquer trees for stencil
computations. Ztune uses three pruning properties — space-time equivalence, divide subsumption, and
favored dimension — that greatly reduce the size of the search domain without significantly sacrificing
the quality of the autotuned code.
We compared the performance of Ztune with that of a state-of-the-art heuristic autotuner called OpenTuner
in tuning the divide-and-conquer algorithm used in Pochoir stencil compiler. Over a nightly run on ten
application benchmarks across two machines with different hardware configurations, the Ztuned code ran
5%–12% faster on average, and the OpenTuner tuned code ran from 9% slower to 2% faster on average,
than Pochoir’s default code. In the best case, the Ztuned code ran 40% faster, and the OpenTuner tuned
code ran 33% faster than Pochoir’s code. Whereas the autotuning time of Ztune for each benchmark could
be measured in minutes, to achieve comparable results, the autotuning time of OpenTuner was typically
measured in hours or days. Surprisingly, for some benchmarks, Ztune actually autotuned faster than the time
it takes to perform the stencil computation once. Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Autotuning, Stencil computations, Divide-and-conquer, Trapezoidal decomposition

1. INTRODUCTION

Many compute-intensive scientific applications perform “stencil computations.” A stencil defines
the value of a grid point in a d-dimensional spatial grid at time t as a function of the values of
neighboring grid points at recent times before t. A stencil computation [1–18] involves computing
the stencil at each grid point for several time steps. Stencil computations are conceptually simple
to implement using nested loops, but naive looping implementations suffer from poor cache
performance. Tiling [2, 19, 20] can enhance performance, although tiling can make the code overly
specific to a particular cache size, decreasing portability across machines. Cache-oblivious [21]
divide-and-conquer stencil codes based on Frigo and Strumpen’s trapezoidal decomposition [5, 6]
are robust to changes in cache size and provide an asymptotic improvement in cache efficiency over
looping implementations.

Because stencil computations constitute a dominant part of the compute time of many important
scientific applications, the problem of autotuning [2, 9, 22–30] — automatically selecting key

†Author’s current address is Rutgers University, Department of Electrical and Computer Engineering, 94 Brett Rd, Piscataway,
NJ 08854, and the current email address is maryam.mehri@rutgers.edu
∗Correspondence to: MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139.
E-mail: {epn, mmehri, cel}@mit.edu

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 E. PALAMADAI NATARAJAN ET AL.

constants in an application to optimize its performance — has emerged as an important technology
for stencil computations (see, for example, [2,9,26,27]). Autotuning is especially valuable whenever
a stencil code must be ported to a machine with a different hardware configuration from where the
code was originally developed. Without proper tuning, significant performance can be lost. Because
the original programmer may no longer be around to tune the adjustable constants in the code, it
makes sense to automate the tuning process.

Historically, the earliest application-specific autotuners were exhaustive: they simply enumerated
the search domain.† Examples for exhaustive autotuners include FFTW [22, 23], which optimizes
Fourier transforms, and ATLAS [24], which optimizes matrix multiplication. Since exhaustive
enumeration can be time consuming for some applications, later autotuners [2, 9, 25–30] were
heuristic, using heuristics and sophisticated machine-learning methods to find parameter settings
that produced good runtimes. There are several prominent examples for application-specific
heuristic autotuners. PATUS [26] and Sepya [27] autotune tiled stencil computations using machine-
learning based search techniques. SPIRAL [28] uses heuristic search to generate platform-tuned
implementations for digital signal processing algorithms. OSKI [25] autotunes sparse matrix kernels
using both heuristic and exhaustive search methods. Other heuristic autotuning packages include
PetaBricks [29], which autotunes algorithmic choices in programs, and Active Harmony [30],
which is an automated runtime tuning system. More recently, heuristic autotuning frameworks, such
as OpenTuner [31], have allowed programmers to build application-specific autotuners. Despite
this recent trend towards heuristic autotuning, this paper examines if exhaustive autotuning with
pruning is viable for the domain of divide-and-conquer stencil computations. It describes a pruned-
exhaustive autotuning strategy, and compares its efficacy with state-of-the-art heuristic autotuning in
optimizing the performance of a serial divide-and-conquer stencil code based on the TRAP algorithm
used in the Pochoir stencil compiler [15].

Given the attention that “parallelism” receives in high-performance computing, why optimize
the performance of “serial” divide-and-conquer stencil codes? Of course, it would be ideal to
optimize the performance of parallel divide-and-conquer stencil codes using autotuning. However,
as a first step in that direction, it is useful to understand how to autotune serial divide-and-
conquer stencil codes and the performance improvements accrued in autotuning such codes, before
autotuning their parallel counterparts. Serial codes are relatively simple to autotune since they
do not face a host of issues that arise in a parallel execution like memory bandwidth saturation,
interprocessor communication, and nondeterminism in scheduling work among processors. Hence
it makes sense to develop the theory and practice of autotuning the serial execution of divide-and-
conquer stencil codes, and then extend the theory and practice to autotune their parallel execution
taking into account the additional issues that arise in a parallel execution. Besides, optimized
serial codes tend to be competitive with their parallel counterparts, and often motivate efficient
parallel implementations. For example, we compared the performance of the autotuned serial TRAP
algorithm with that of Pochoir’s parallel TRAP algorithm in computing a periodic heat [32] stencil
on a 2D grid of size 4096×4096 for 512 timesteps. On a modern Ivy Bridge machine, whose specs
are shown in Figure 19, the autotuned serial TRAP code was just 16% slower than the parallel TRAP
code executed using 2 processor cores. Of course, with more cores, the parallel execution will be
much faster. Nevertheless, parallel codes are typically benchmarked against optimized serial codes.

Since our focus is on autotuning serial codes, we modified TRAP to disable parallelism. We also
disabled the “hyperspace cuts,” which enhance the parallelism of TRAP, and replaced them with
sequential cuts, as in the original algorithms due to Frigo and Strumpen [5, 6]. The modified code
performs equivalently to Pochoir’s original TRAP code when run serially. For the rest of the paper,
we will use the term TRAP to refer to the serial version of the TRAP code.

At a higher level, the TRAP code executes a fixed recursion, dividing a given problem into
subproblems, or terminating the recursion and executing a base case kernel function when the size
of the problem falls beneath a threshold constant. The actual code is more complicated in that it

†We use the term search domain rather than the more conventional search space to avoid confusion with the geometric use of
“space” endemic to stencil computations.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 3

Nehalem Ivy Bridge︷ ︸︸ ︷ ︷ ︸︸ ︷
Benchmark Dims Grid size Time steps OpenTuner Ztune OpenTuner Ztune

APOP 1 2,000,000 524,288 0.98 0.98 1.32 0.96
Heat1 2 1000×2000 512 0.93 0.94 0.92 0.92
Heat2 2p 100×20,000 8192 0.84 0.88 0.84 0.89
Life 2p 2000×3000 1024 0.97 0.97 0.99 0.99
Heat3 2p 4000×4000 1024 0.94 0.96 0.89 0.91
Heat4 2p 4096×4096 512 1.00 1.00 0.67 0.60
Heat5 2p 10,000×10,000 4096 1.16 0.92 1.00 0.87
LBM 3 100×100×130 64 0.84 0.98 0.93 0.97
Wave 3 1000×1000×1000 64 3.57 0.96 1.45 0.88
Heat6 4 70×70×70×70 32 0.98 0.90 0.99 0.87

Geometric mean 1.09 0.95 0.98 0.88

Figure 1: Performance of autotuned TRAP codes relative to Pochoir’s default hand-tuned TRAP code on
ten stencil benchmarks. The reported numbers are the better of two runs. OpenTuner was run 16 hours to
autotune each benchmark, whereas Ztune took its natural time: less than an hour for Wave and at most
a few minutes for the others. The header Dims indicates the number of spatial dimensions of the grid.
The stencils are periodic if the Dims column contains a “p”. The header Grid size indicates the sizes of
the spatial dimensions of the grid. The header Time steps indicates the size of the time dimension. The
benchmarks are sorted first by the number of spatial dimensions and second by spatial volume. The header
OpenTuner indicates the ratio of the runtime of OpenTuner tuned TRAP code to the runtime of Pochoir’s
TRAP code. The header Ztune indicates the ratio of the runtime of Ztuned TRAP code to the runtime of
Pochoir’s TRAP code. A lower ratio indicates that the autotuned code runs faster than Pochoir’s code. The
last row displays the geometric means of the ratios. The header Nehalem gives ratios on the machine, on
which Pochoir was developed. The header Ivy Bridge gives ratios on a relatively modern machine that
supports AVX instructions. The detailed specs of the machines are shown in Figure 19.

uses two different kernel functions, a faster kernel at the interior of the grid, and a slower kernel at
the boundaries of the grid that checks if memory accesses fall off the grid. Hence, the code uses two
different threshold constants, one for problems that lie completely in the interior, and the other for
problems that impinge on the boundary. These threshold constants along different “dimensions” of
the grid were determined by trial-and-error hand tuning by the authors of Pochoir. Handtuning the
values for the threshold constants helps avoid recursive function-call overhead, optimally use the
computer’s memory hierarchy, and handle stencil computations at the boundaries efficiently.

The traditional way of autotuning TRAP is to simply parameterize the threshold constants, and
to search for optimal parameter values over the domain of possible base-case sizes called the
base domain. In contrast, this paper presents a different autotuning strategy that gains insight
from how TRAP operates. We define a search domain called the choice domain that generalizes
TRAP, where at each problem in the recursion tree, a parameter is created that chooses whether
to divide the problem in one of several ways and recur, or execute the base case. As we shall
see, the choice domain is much larger in size than the base domain, but can be pruned to produce
faster autotuning times. We present an exhaustive autotuner called Ztune that searches the choice
domain to find the fastest recursion tree for a stencil computation. Although Ztune, in principle,
exhaustively enumerates the choice domain, it uses three pruning properties that prune the choice
domain effectively. These properties reduce the autotuning time by orders of magnitude without
significantly sacrificing the performance of the tuned stencil code.

The sheer number of choice parameters in the choice domain renders naive heuristic search over
that domain infeasible. Consequently we had to resort to heuristic search over the base domain.
To that effect, we used the state-of-the-art OpenTuner framework [31] to perform heuristic search
over the the base domain, and find optimal values for the threshold constants. OpenTuner takes as
input, the parameterized threshold constants and the base domain specification for each parameter.
It then finds optimal values for these parameters by running the TRAP code with different parameter
settings from the base domain, while simultaneously pruning the base domain using heuristics and
machine-learning based algorithms.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 E. PALAMADAI NATARAJAN ET AL.

Figure 1 compares the performance of autotuned TRAP codes with that of Pochoir’s default TRAP
code using the hand-tuned threshold constants, on ten stencil benchmarks on two machines, whose
specifications are shown in Figure 19. The benchmark suite includes American put stock-option
pricing (APOP) [33]; a heat equation [32] on a 2D grid (Heat1), a 2D torus (Heat2, Heat3, Heat4,
and Heat5), and a 4D grid (Heat6); Conway’s game of Life (Life) [34]; the lattice Boltzmann method
(LBM) [35]; and a 3D finite-difference wave equation (Wave) [36]. For this experiment, we ran
Ztune until it completed, which took less than an hour for any benchmark, and typically less than
7 minutes. Since OpenTuner took several days to completion, we ran OpenTuner for 16 hours (a
nightly run) and recorded the results.

Compared with Pochoir’s hand-optimized code across the two machines, the Ztuned code is on
average‡ 5%–12% faster, and the OpenTuner tuned code is on average 9% slower to 2% faster. On
the Nehalem machine, where Pochoir was developed, the Ztuned code is on average 5% faster.
Supporting the contention that tuning attains even more importance when porting code, on the
more modern Ivy Bridge machine, which has a different hardware configuration from Nehalem,
the Ztuned code is on average 12% faster. Moreover, Ztune generally produces a faster tuned code
than OpenTuner. In particular, the Ztuned code is on average 11%–15% faster than the OpenTuner
tuned code across the two machines.

The scenario where a scientist repeats the stencil computation on the same grid several times
is common. Since autotuning time can be amortized over several runs of stencil computation, it
makes sense to autotune the stencil code for a given grid and for a given number of time steps.
For cases where the number of time steps is significantly larger than the spatial dimensions of
the grid, the pruning properties reduce the tuning problem in practice to one where the number of
time steps is proportional to the spatial dimensions, thereby saving considerable autotuning time.
Even for our benchmarks, where the spatial and time dimensions are proportional to each other,
the autotuning time of Ztune is at most a few multiples of the runtime of the tuned code, and,
surprisingly, sometimes the autotuning time is less than the runtime.

Contributions

This paper makes the following research contributions:

• We describe Ztune, an exhaustive autotuner for serial divide-and-conquer stencil
computations.

• We use three pruning properties — space-time equivalence, divide subsumption, and favored
dimension — which improve the runtime of Ztune significantly, and we document the
advantage that each property accrues to Ztune.

• We show that the memory consumption of Ztune under space-time equivalence is O(2dn lgh),
where n is the spatial volume of a d-dimensional spatial grid and h is the size of the time
dimension. We also show that Ztune takes O(2dn2h) time to autotune under space-time
equivalence.

• We demonstrate empirically that Ztune can produce faster divide-and-conquer stencil codes
with less tuning time than state-of-the-art heuristic autotuning.

Outline

The remainder of the paper is organized as follows. Section 2 reviews the serial TRAP algorithm
and the “planned” TRAPPLE algorithm, which is optimized by Ztune. Section 3 describes the
Ztune algorithm. Section 4 provides an overview of the three pruning properties, reports on the
performance of Ztune on varying grid sizes, and discusses the effects of noise in autotuning. Sections
5, 6, and 7 describe each of the pruning properties in detail. Section 8 describes OpenTuner, and
reports on relative comparisons between Ztuned and OpenTuner tuned codes, when OpenTuner is
run a few multiples of time longer than Ztune. Besides, Section 8 also compares the performance

‡All averages of ratios in this paper are geometric means.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 5

Z 

xa2 + dxa2(tb – ta) 

xb2 + dxb2(tb – ta) 

xb1 + dxb1(tb – ta) 

xa1 + dxa1(tb – ta) 

ta 

tb 

xa1 

xb1 xa2 

xb2 

x2 

x1 

t 

(a)

Z12 

Z11 

Z13 

(b)

Z02 

Z01	  

(c)

Figure 2: Dividing a 3-dimensional zoid with space and time cuts. (a) A zoid Z =
zoid(ta, tb,xa1,xb1,dxa1,dxb1,xa2,xb2,dxa2,dxb2). (b) An x1-cut of Z trisects the zoid into three
side-by-side subzoids Z11, Z12 and Z13. The stencil dependencies require that Z11 be processed before Z12
and Z13. (c) A time cut of Z bisects the zoid into bottom and top subzoids Z01 and Z02, respectively. The
stencil dependencies require that Z01 be processed before Z02.

of Ztuned divide-and-conquer stencil codes with that of autotuned tiling-based stencil codes, and
reports on the performance of Ztune on two more machines with different architectures. Section 9
offers some concluding remarks.

2. THE TRAP AND TRAPPLE ALGORITHMS

This section describes the TRAP algorithm used by the Pochoir stencil compiler [15], and how we
can adapt it into a “planned” algorithm called TRAPPLE suitable for autotuning by Ztune. This
section also defines a “plan-finding” problem for autotuning divide-and-conquer stencil codes.

Although the details of TRAP are generally unimportant for the discussion of autotuning, it is
helpful to understand a little about it. TRAP operates recursively on regions of a space-time grid
called hypertrapezoids, or simply zoids [15] for short. A 3-dimensional zoid Z ⊆ N×Z2, can
be specified by two time coordinates ta, tb ∈ N, two x1-coordinates xa1,xb1 ∈ Z, two x1-slopes§

dxa1,dxb1 ∈Z, two x2-coordinates xa2,xb2 ∈Z, and two x2-slopes dxa2,dxb2 ∈Z. The zoid defined

§Technically, inverse slopes, but we follow the terminology of [5].

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 E. PALAMADAI NATARAJAN ET AL.

TRAP(Z)
1 h = height(Z)
2 if h < thresh0 // base case
3 for each (t,x1,x2) ∈ Z
4 KERNEL(t,x1,x2)
5 else // recursive case
6 w1 = width(Z,1)
7 w2 = width(Z,2)
8 if w1 ≥max(thresh1,4σ1h) // x1-cut
9 trisect Z with an x1-cut into subzoids Z11, Z12, and Z13

10 TRAP(Z11) ; TRAP(Z12) ; TRAP(Z13)
11 elseif w2 ≥max(thresh2,4σ2h) // x2-cut
12 trisect Z with an x2-cut into subzoids Z21, Z22, and Z23
13 TRAP(Z21) ; TRAP(Z22) ; TRAP(Z23)
14 else // time cut
15 bisect Z with a time cut into subzoids Z01 and Z02
16 TRAP(Z01) ; TRAP(Z02)

Figure 3: Pseudocode for the TRAP divide-and-conquer stencil algorithm operating on a 3-dimensional zoid.
TRAP takes as input a 3-dimensional zoid Z. The values thresh0, thresh1, and thresh2 are threshold constants,
which can be tuned. The values σ1 and σ2 are the slopes [15] of the stencil in the x1- and x2-dimensions,
respectively. The application-specific KERNEL procedure is not shown.

by these parameters is given by

Z = zoid(ta, tb,xa1,xb1,dxa1,dxb1,xa2,xb2,dxa2,dxb2)

= {(t,x1,x2) ∈ N×Z2 : ta≤ t < tb ;
xa1 +dxa1(t− ta)≤ x1 < xb1 +dxb1(t− ta) ; and
xa2 +dxa2(t− ta)≤ x2 < xb2 +dxb2(t− ta)} .

This definition can be straightforwardly extended to a (d + 1)-dimensional zoid spanning d
spatial dimensions and the time dimension. As an example, a 3-dimensional zoid Z is shown
in Figure 2(a). The height of Z is given by height(Z) = tb− ta. The width of Z along the x1-
dimension is the maximum of its two lengths along the x1-dimension, that is, width(Z,1) =
max(xb1− xa1,(xb1 +dxb1(tb− ta))− (xa1 +dxa1(tb− ta))). The width along the x2-dimension is
defined similarly. The spatial volume of Z is the product of its widths along all spatial dimensions.

The basic algorithm

Figure 3 shows the pseudocode for TRAP operating on a 3-dimensional zoid. For didactic purposes,
we have abstracted away many details, which are well described in [5,6,15]. TRAP works as follows.
In the base case, which occurs when the height of the zoid falls below a threshold thresh0 tested
for in line 2, lines 3–4 perform the stencil computation on each grid point in the input zoid Z
using an application-specific KERNEL procedure. In the recursive case, lines 8–16 perform either
a space cut of Z along one of the spatial dimensions or a time cut of Z along the time dimension,
and make recursive calls on the subzoids. An x1-cut and a time cut on a 3-dimensional zoid are
illustrated in Figures 2(b) and 2(c), respectively. Note that Frigo and Strumpen’s original stencil
algorithm [5] bisects both in space and time. Since we are autotuning the TRAP code in Pochoir, we
follow Pochoir’s conventions of trisecting in space and bisecting in time.

TRAP makes specific divide choices at each recursive step. It may choose to execute the base
case (lines 3–4) or divide the given zoid along the x1 dimension (lines 9–10), or the x2 dimension
(lines 12–13), or the time dimension (lines 15–16) into subzoids. As shown in Figure 3, the divide
choices are influenced by different threshold constants, which were determined by trial-and-error

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 7

TRAPPLE(Z,z)
1 if z.choice =−1 // base case
2 for each (t,x1,x2) ∈ Z
3 KERNEL(t,x1,x2)
4 else // recursive case
5 if z.choice = 1 // x1-cut
6 trisect Z with an x1-cut into subzoids Z11, Z12, and Z13
7 let z.children = 〈z11,z12,z13〉
8 TRAPPLE(Z11,z11) ; TRAPPLE(Z12,z12) ; TRAPPLE(Z13,z13)
9 elseif z.choice = 2 // x2-cut

10 trisect Z with an x2-cut into subzoids Z21, Z22, and Z23
11 let z.children = 〈z21,z22,z23〉
12 TRAPPLE(Z21,z21) ; TRAPPLE(Z22,z22) ; TRAPPLE(Z23,z23)
13 elseif z.choice = 0 // time cut
14 bisect Z with a time cut into subzoids Z01 and Z02
15 let z.children = 〈z01,z02〉
16 TRAPPLE(Z01,z01) ; TRAPPLE(Z02,z02)
17 else error “invalid choice”

Figure 4: Pseudocode for the planned algorithm TRAPPLE operating on a 3-dimensional zoid Z. In addition
to Z, TRAPPLE takes as input the root node z of a “plan” for Z. TRAPPLE assumes that the children of z and
the subzoids of Z are maintained in the same order.

handtuning by the authors of Pochoir. Different values can yield different runtimes, and handtuning
to find optimal values that minimize runtime can be a laborious task.

For example, suppose that TRAP is passed a zoid Z that fits in the computer’s L1 cache, and
that height(Z) ≥ 2. If the threshold constant thresh0 is set to 2, then TRAP would divide the zoid
and recur. But terminating the recursion and executing the base case might be faster than dividing
and recurring, because it avoids function-call overhead. On the other hand, if thresh0 is set to too
large a value, and if Z does not fit in L1, then executing the base case might result in many cache
misses, yielding slower code. Thus, thresh0 must be tuned, as must the other tunable constants.
The actual TRAP code in Pochoir is more complicated than that shown in Figure 3, and uses two
kernel functions: a faster kernel at the interior of the grid, and a slower kernel at the boundaries that
checks if memory accesses fall off the grid. Hence, two different threshold constants are used in
each dimension, one for zoids that lie completely in the interior, and the other for zoids that impinge
on the boundary. It might be better to divide zoids that impinge on the boundary, even if they fit in
cache, if the subzoids use more of the faster kernel. The tradeoff between tuning for cache locality
and for faster kernel usage makes handtuning the threshold constants even harder.

The planned algorithm

The tuning strategy employed by Ztune is not to choose values for the tunable constants like thresh0.
Instead, Ztune focuses on the divide choices themselves, associating each recursive instantiation of
the TRAP function with its own divide choice. Given a (d+1)-dimensional zoid Z, each instantiation
of TRAP has at most d + 2 divide choices: it can make a time cut; it can make an xi-cut for some
i ∈ {1,2, . . . ,d}; or it can terminate the recursion and execute the base case. We shall represent the
divide choice for Z as an integer in the set {−1,0,1, . . . ,d}, where −1 corresponds to the base case,
0 corresponds to the time dimension, and choices 1,2, . . . ,d correspond to the spatial dimensions
x1,x2, . . . ,xd , respectively.

Of course, we must modify TRAP so that it is parametrized by the divide choices rather than the
threshold constants. Figure 4 shows how TRAP can be transformed into a planned algorithm called
TRAPPLE, which uses divide choices for making decisions about the divide-and-conquer execution
of the code. TRAPPLE operates on a plan, which is an ordered tree of divide choices made by the
algorithm at each recursive step of computation. Each node z in the plan correponds to a zoid Z that
arises during the execution of TRAPPLE, and has the following fields:

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 E. PALAMADAI NATARAJAN ET AL.

• z.choice: the divide choice for Z, drawn from {−1,0,1, . . . ,d}.
• z.children: an ordered list of the children of z, or NIL if the divide choice is−1, corresponding

to a base case.

If the divide choice for a node z, which corresponds to a zoid Z, is to divide Z into k subzoids
Z1,Z2, . . . ,Zk, then z has k ordered children z1,z2, . . . ,zk, where node zi corresponds to zoid Zi. As
TRAPPLE executes, it consults the root node z of the plan for the input zoid Z. Using the divide
choice stored in z.choice, it either executes the base case, or divides Z into subzoids and recursively
calls itself on each, passing the subzoid Zi and the corresponding child node zi as arguments.

Plan-finding

The autotuning problem for divide-and-conquer stencil codes can now be stated as follows. Define
the (execution) cost of a piece of code to be the time taken to execute the code on a given computer.
The cost of a plan is the time taken to execute the plan. The plan-finding problem is to find an
optimal plan, that is, a plan with the minimum cost, to perform stencil computation on a given
grid on a given computer. At its heart, Ztune is simply a plan-finding algorithm for TRAPPLE.
Two computers may have different costs for the same plan, due to differences in their hardware
architecture, operating system, and compiler, among other things. For example, the cost of a plan
may vary with the cache size. Hence, a solution to the plan-finding problem may not be portable
across computers.

3. ZTUNE

This section presents the Ztune algorithm, which finds an optimal plan for the TRAPPLE stencil
algorithm. Ztune can be slow, but later sections will show how to make it run fast. This section also
formalizes the search domain explored by Ztune.

Figure 5 shows the pseudocode for procedure ZTUNE, which instruments the TRAPPLE algorithm
with timer calls, and finds an optimal plan for stencil computation on a (d + 1)-dimensional
zoid Z. Although performance is not exactly repeatable, our experience with Ztune shows that
instrumentation can be sufficiently accurate to produce highly efficient plans. ZTUNE uses the
following auxiliary procedures:

• TIC() starts a timer.
• TOC() stops the timer and returns the elapsed time since the last call to TIC.
• CHOICE(Z) returns the set of possible divide choices for Z, where the set excludes the choice
−1 for executing Z as a base case.

• BASE-CASE(Z,z), shown in Figure 6, chooses base case as the divide choice for Z, if
executing the base case is no more expensive than the current plan for Z.

Besides ZTUNE uses two procedures INSERT and LOOKUP, which store and look up optimal plans
for zoids, avoiding repeated plan-finding for the same zoid. We shall discuss the implementation
of INSERT and LOOKUP in Section 5, where we introduce the notion of equivalence among zoids.
ZTUNE measures the costs of all possible divide choices for zoid Z, and stores the best choice in
the corresponding node z. Each node z in the plan has an additional field z.cost, which stores the
optimal cost, that is, the cost of an optimal plan for the corresponding zoid. Determining where to
place TIC and TOC within code in order to properly measure all relevant costs without also capturing
bookkeeping overhead is a bit tricky. To measure function-call overhead in calling ZTUNE, a call to
ZTUNE must be immediately preceded by a TIC and immediately succeeded by a TOC.

ZTUNE works as follows. Line 1 measures the call cost, that is, the function-call overhead in
invoking ZTUNE. Line 23 starts the timer, which the caller of ZTUNE can stop and measure the
return cost, that is, the function-call overhead in returning from ZTUNE. The sum of the call and
return costs is the link cost, which is the total function-call overhead in calling ZTUNE on Z. If
LOOKUP finds the root node z of an optimal plan for zoid Z in line 2, then ZTUNE simply returns z
in line 24. Otherwise, ZTUNE proceeds as follows.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 9

ZTUNE(Z)
1 call-cost = TOC()
2 z = LOOKUP(Z)
3 if z == NIL
4 Allocate plan node z
5 z.cost = ∞

6 z.children = NIL
7 C = CHOICE(Z)
8 for each choice c ∈C
9 TIC()

10 Divide Z using choice c into kc subzoids Zc1,Zc2, . . . ,Zckc

11 rec-cost = TOC()
12 for i = 1 to kc
13 TIC()
14 (zci,call-costci) = ZTUNE(Zci)
15 ret-costci = TOC()
16 rec-cost += call-costci + zci.cost+ ret-costci
17 if rec-cost < z.cost
18 z.cost = rec-cost
19 z.choice = c
20 z.children = 〈zc1,zc2, . . . ,zckc〉
21 BASE-CASE(Z,z)
22 INSERT(Z,z)
23 TIC()
24 return (z,call-cost)

Figure 5: Procedure ZTUNE, which finds an optimal plan for the TRAPPLE stencil algorithm operating on a
(d+1)-dimensional zoid Z. ZTUNE returns an ordered pair consisting of the root node z of the optimal plan
and the partial function-call overhead call-cost. The sections of code that are timed are highlighted in blue
and underlined. Although line 14 is shown as being timed, only the function-call overhead in calling ZTUNE
is measured. The definitions of the TIC, TOC, CHOICE, INSERT, and LOOKUP procedures are not shown.

BASE-CASE(Z,z)
1 TIC()
2 for each (t,x1,x2, . . . ,xd) ∈ Z
3 KERNEL(t,x1,x2, . . . ,xd)
4 base-cost = TOC()
5 if base-cost ≤ z.cost
6 z.cost = base-cost
7 z.choice =−1 // base case
8 z.children = NIL

Figure 6: Pseudocode to execute the base case. BASE-CASE takes as input a zoid Z and the root node z of a
plan for Z. The sections of code that are timed are highlighted in blue and underlined.

Recursive case For each possible divide choice c of zoid Z, lines 9–11 measure the divide cost of
Z, that is, the time taken to divide Z using choice c into subzoids. The recursion cost of Z for choice
c is the sum of the divide cost of Z, and the link and optimal costs of subzoids created using choice
c. Lines 11–16 compute the recursion cost for choice c, which is maintained in variable rec-cost, as
follows. Line 11 initializes rec-cost with the divide cost of Z. Line 14 recursively finds an optimal
plan for subzoid Zci and the call cost. Line 15 measures the return cost. Line 16 increments rec-cost
with the sum of the link and optimal costs of Zci. Lines 18–20 update the attributes of node z, if
rec-cost is smaller than the cost of the current plan for Z.

Base case Line 21 invokes procedure BASE-CASE, which is shown in Figure 6. BASE-CASE
works as follows. Lines 1–4 measure the base-case cost of Z, that is, the time to perform stencil

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 E. PALAMADAI NATARAJAN ET AL.

computation on Z using an application-specific procedure KERNEL. If the measured base-case cost
is at most the cost of the current plan for Z, then lines 6–8 update the attributes of node z accordingly.

Line 22 of ZTUNE invokes INSERT, which inserts node z, as the root of an optimal plan for zoid
Z, into a lookup table. Procedure ZTUNE is guaranteed to terminate, if TRAPPLE terminates for each
divide choice of Z.

Search domain

In principle, the basic Ztune algorithm explores the search domain of all possible ways of executing
the planned divide-and-conquer stencil algorithm TRAPPLE in order to select the best plan. To close
this section, we formalize this notion.

The choice domain for TRAPPLE run on a given (d + 1)-dimensional zoid Z can be viewed as
the set of all possible plans for Z. Many of the plans have a common structure, and in particular,
the roots of all plans share one of the at most d + 1 divide choices that actually divide Z, as well
as the −1 base-case divide choice. We can represent the entire choice domain as a single tree as
follows. For any node z in the tree corresponding to a zoid Z, let kc be the number of subzoids
produced by choice c ∈ {0,1, . . . ,d}. Then node z has k =

∑
c∈CHOICE(Z) kc children, where the

child zci corresponds to the ith zoid produced by dividing Z according to choice c. Since each node
in the choice domain corresponds to a particular zoid, for convenience, we shall sometimes view the
choice domain as this tree of zoids. ZTUNE can now be viewed as walking this search domain tree,
finding the optimal cost at each node in the tree, selecting the best divide choice, and recording the
results in a plan, which is a subtree of the choice domain.

Analysis

The number of plans in the choice domain is huge, however, and is exponential in the height of the
zoid at the root, as we shall see in the following analysis. First, we state the following lemma, which
we use in our analysis, and skip its proof.

Lemma 1
Consider the recursion tree R obtained by dividing an integer m > 0 into bm/2c and dm/2e, and
recursively dividing those two integers similarly, until we have 1. There exist at most 2 distinct
integers

⌊
m/2k

⌋
and

⌈
m/2k

⌉
at level k ≥ 0 of tree R.

Since the recursion tree R has lgm+1 levels, it follows from Lemma 1 that R has at most 2 lgm+2
distinct integers.

Theorem 2
Consider a zoid Z with height h > 1,h ∈ Z+. The number of plans in the choice domain rooted at Z
is Ω(2h/2).

Proof
At each time cut, the TRAPPLE algorithm bisects a zoid with height h > 1 into two subzoids of
heights bh/2c and dh/2e. It follows from Lemma 1 that the set S of heights of zoids in the choice
domain is given by {h,bh/2c,dh/2e, . . . ,1}. We use induction over the heights in S to prove the
theorem. Let P(h) be the number of plans in the choice domain rooted at a zoid with height h. Then
the inductive hypothesis is given by P(h) ≥ 2h/2. We consider 2 base cases, namely heights 2 and
3, as possible values for the heights

⌊
h/2k

⌋
,
⌈
h/2k

⌉
∈ S for some k ∈ Z+. Note that recursive time

cuts of a zoid with height h > 3 will eventually result in subzoids with height 2 or 3. The base case
holds for h = 2, since a height 2 zoid can be divided in time, or executed as a base case. Similarly,
a height 3 zoid can be divided in time into subzoids of heights 1 and 2, or executed as a base case,
producing P(3) = 3≥ 23/2 different plans. For the inductive step, assume that P(bh/2c)≥ 2bh/2c/2,
and P(dh/2e) ≥ 2dh/2e/2. Zoid Z with height h can be divided in time into two subzoids of heights
bh/2c and dh/2e, or executed as a base case. Then the number of plans in the choice domain rooted
at Z is P(h) = P(bh/2c) ·P(dh/2e)+1≥ 2h/2.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 11

Benchmark STE + DS + FD STE + DS STE

APOP 1,252.39 1,251.87 —
Heat1 1.73 1.61 1.62
Heat2 51.27 51.36 51.58
Life 17.14 16.59 —
Heat3 25.32 25.19 —
Heat4 20.24 19.95 —
Heat5 576.83 582.84 —
LBM 13.23 13.42 13.48
Wave 818.74 827.87 —
Heat6 19.08 18.90 —

Figure 7: Runtimes (in seconds) of the tuned TRAPPLE code on Ivy Bridge under different combinations
of the three pruning properties. A dash sign (—) indicates that plan-finding timed out after two days. The
reported runtimes are the median of five runs.

Benchmark STE + DS + FD STE + DS STE

APOP 36 35 —
Heat1 19 51 11,584
Heat2 234 348 85,013
Life 267 520 —
Heat3 59 202 —
Heat4 43 134 —
Heat5 314 1,116 —
LBM 34 683 103,221
Wave 3,582 53,349 —
Heat6 348 34,682 —

Figure 8: Plan-finding times (in seconds) of Ztune on Ivy Bridge under different combinations of the three
pruning properties. A dash sign (—) indicates that plan-finding timed out after two days. The reported plan-
finding times are the median of five runs.

Benchmark Ratio Benchmark Ratio

APOP 0.03 Heat4 2.10
Heat1 11.04 Heat5 0.54
Heat2 4.56 LBM 2.54
Life 15.56 Wave 4.38
Heat3 2.32 Heat6 18.22

Figure 9: Ratio of plan-finding time to runtime under all three pruning properties. The reported ratios are
the median of five runs.

The subsequent sections of the paper improve the exploration of the choice domain using three
pruning properties.

4. ZTUNE’S PRUNING PROPERTIES

This section provides an overview of Ztune’s pruning properties — space-time equivalence (STE),
divide subsumption (DS), and favored dimension (FD) — which speed up plan-finding significantly
while preserving the runtime performance of the tuned TRAPPLE code. A detailed description of the
three pruning properties is deferred to Sections 5, 6, and 7. This section presents empirical results
comparing autotuning times of Ztune and runtimes of the tuned TRAPPLE code under the three
pruning properties. This section also describes the performance of Ztune on various grid sizes, and
concludes with a discussion on the effects of noise in autotuning.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 E. PALAMADAI NATARAJAN ET AL.

0.2 0.4 0.6 0.8 1
·104

1

5

10

15

Width of square grid

Pl
an

-fi
nd

in
g

tim
e/

Ru
nt

im
eZ

tu
ne

d
co

de
Non power-of-2 width

Power-of-2 width

(a)

0.2 0.4 0.6 0.8 1
·104

0.6

0.7

0.8

0.9

1

Width of square grid

Ru
nt

im
eZ

tu
ne

dc
od

e/
Ru

nt
im

eT
RA

P
co

de

Non power-of-2 width
Power-of-2 width

(b)

Figure 10: Performance of the Ztuned code in computing the 2D periodic heat stencil for 512 time steps
on square grids with different sizes, on Ivy Bridge. The grid sizes include power-of-2 and non power-of-2
widths. (a) Ratios of plan-finding time to runtime of the Ztuned code. (b) Ratios of the runtime of Ztuned
TRAPPLE code to the runtime of Pochoir’s TRAP code. A lower ratio indicates that the Ztuned code runs
faster than Pochoir’s code. The reported ratios are the median of five runs.

The naive ZTUNE procedure is slow, because the choice domain is huge. By reducing the
size of the choice domain, the three pruning properties greatly accelerate tuning. The space-time
equivalence property makes the assumption that two zoids with the same shape and size have the
same optimal plan, irrespective of where they are located in the space-time grid. FFTW [22, 23]
uses a similar notion of equivalence in its tuning strategy. Coarsening the base-case sizes in divide-
and-conquer stencil codes and tuning for tile sizes in tiling-based stencil codes implicitly assume
equivalence. Because of STE, it makes sense to save plans in a lookup table so that they can be
reused elsewhere in the search domain. The divide-subsumption property assumes that if a zoid is
divided since it does not fit in cache, then all its ancestors in the search domain can be divided,
without computing their base-case costs. The intuition is that none of the ancestors will fit in cache
either, and hence measuring their base-case costs higher up in the tree is fruitless. The favored-
dimension property exploits the layout of spatial grids as a linear array in memory. Computations
along the unit-stride dimension execute faster than those along the other dimensions because of
prefetching and vectorization. Consequently, FD restricts the search to zoids that have a longer unit-
stride dimension. [37] describes experiments in tiling-based stencil codes, where choosing tiles that
are longer in the unit-stride dimension results in faster runtimes.

Figure 7 shows that the various pruning properties do not significantly affect the runtimes of the
tuned TRAPPLE codes. All three codes perform nearly the same for the three benchmarks all could
compute. The tuned code generated under STE + DS + FD runs on average at the same speed as
that generated under STE + DS. The worst-case behavior occurs in the Heat1 benchmark, where the
tuned code generated under STE + DS + FD was 1.73/1.61−1 = 7 percent slower.

Figure 8 shows that the pruning properties greatly accelerate plan-finding. Whereas Ztune with no
pruning properties fails to find a plan for any benchmark in two days (and hence the table contains
no column for no properties), STE alone succeeds in finding plans for 3 of the 10 benchmarks. STE
+ DS successfully finds plans for all benchmarks, speeding up plan-finding under just STE by a
factor of 202 on average. Plan-finding under STE + DS + FD ran on average 4.9 times faster than
plan-finding under STE + DS. The best speedup in this case occurs in the Heat6 benchmark, where
plan-finding under all three properties was 34,682/348 = 99 times faster.

Figure 9 shows the ratio of plan-finding time of Ztune to the runtime of the tuned TRAPPLE code
under all three properties. This ratio is important, since it indicates how long it takes to amortize the
autotuning or plan-finding time over the runtime of the tuned TRAPPLE code for a given benchmark.
Interestingly, plan-finding is actually faster than the runtime for the APOP and Heat5 benchmarks.
Plan-finding under all three properties, in practice, seems to take time at most a few multiples of the
runtime.

Figure 10 shows the performance of Ztuned code on increasing grid sizes. Figure 10(a) shows
that the ratio of plan-finding time to runtime of the tuned code decreases as grid sizes increase. Due

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 13

Benchmark Ratio Benchmark Ratio

APOP 1.07 Heat4 1.14
Heat1 1.08 Heat5 1.09
Heat2 1.08 LBM 1.09
Life 1.00 Wave 1.03
Heat3 1.06 Heat6 0.97

Figure 11: Comparison of “predicted” and “actual” runtimes on Ivy Bridge under all three pruning
properties. The header Ratio indicates the ratio of actual to predicted runtimes. Ratios close to 1.0 indicate
that the predicted and actual runtimes agree, and that autotuning is less prone to noise. The reported ratios
are the median of five runs.

to the pruning properties, most of the plan-finding time is spent in measuring the base-case costs of
different zoids in the choice domain that fit in cache. Since the fraction of zoids that fit in cache is
high for smaller grids, their plan-finding times are higher. As this fraction is low for bigger grids,
their plan-finding times are also relatively lower. Figure 10(b) shows that larger grids benefit more
from tuning. The Ztuned code is at most 12% faster for grids with non power-of-2 widths, and at
most 40% faster for grids with power-of-2 widths.

The results from plan-finding are highly reproducible. In 10 plan-finding runs on each benchmark
under all three pruning properties on the Ivy Bridge machine, the tuned runtimes differed by at most
1% on average.

Effects of noise on measurements

The accuracy of time measurements can be affected by different sources of noise. Noise during
autotuning can be broadly classified into two types. Noise from sources external to the autotuner
and the tuned program, such as hardware and system effects, are exogenous. Noise internal to the
auotuner and the tuned program, due to their implementation and the assumptions made by the
pruning properties, are endogenous. To keep exogenous noise minimal, we ran the experiments
in a quiesced machine environment. We further disabled noise sources like Intel’s Turbo Boost
technology that can change the processing core’s operating speed during autotuning. We took care to
avoid endogenous noise sources like printf and cout statements, which interfere with measurements
during tuning. The effects of cold misses, which are incurred the first time data is brought into
cache, on measurements are negligible since the number of cold misses is significantly smaller than
the number of memory accesses for stencil codes. For example, given a zoid with spatial volume n
and height h, the number of cold misses is n, whereas the number of memory accesses is Θ(nh). To
keep the cold miss effects minimal, we warmed up the cache by performing stencil computation on
the entire spatial grid for a few time steps before tuning.

Figure 11 gives a qualitiative measure of noise in autotuning. We define Predicted time to be the
cost of an optimal plan found by plan-finding, that is, the estimated runtime of the Ztuned code.
Actual time is the time taken to execute the plan, that is, the actual runtime of the Ztuned code.
Figure 11 shows that the predicted and actual runtimes of the plans differ on average by 6%, and
indicates that Ztune’s tuning strategy is less prone to noise.

We shall examine the pruning properties in detail in the next 3 sections.

5. SPACE-TIME EQUIVALENCE PROPERTY

This section describes Ztune’s “space-time equivalence” (STE) property, which speeds up plan-
finding by assuming that zoids with the same shape and size have the same optimal plan irrespective
of their location in the space-time. We show that plan-finding under STE incurs O(2dn lgh) memory
overhead, where n and h are the spatial volume and height, respectively, of a (d + 1)-dimensional
zoid Z. We also show that plan-finding for Z under STE takes O(2dn2h) time. This section concludes

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 E. PALAMADAI NATARAJAN ET AL.

with a discussion on the practical validity of STE. As mentioned before, STE succeeds in finding
plans on 3 of the 10 benchmarks given two days of plan-finding time for each benchmark.

Two 3-dimensional zoids Z ⊆ N× Z2 and Z′ ⊆ N× Z2 are space-time equivalent if there
exists a bijection f : Z → Z′ and constants T,X1,X2 ∈ Z such that for all (t,x1,x2) ∈ Z, we have
f (t,x1,x2) = (t + T,x1 + X1,x2 + X2), that is, Z′ is a translation of Z in space-time. Space-time
equivalent zoids in higher dimensions are defined similarly. The space-time equivalence property
states that two space-time equivalent zoids have the same optimal plan. Two zoids that are not
space-time equivalent are space-time distinct, or distinct for short. The functionality of INSERT and
LOOKUP auxiliary procedures under space-time equivalence can now be defined.

• INSERT(Z,z) inserts the root node z of an optimal plan for zoid Z into a lookup table, which
maintains the root nodes of optimal plans for distinct zoids. The lookup table can be a
dictionary, for example a hash table.

• LOOKUP(Z) searches the lookup table for the root node of an optimal plan for Z.

Analysis

Before we analyze space-time equivalence, it is important to note that the TRAPPLE algorithm takes
Θ(n) memory and Θ(nh) time to perform stencil computation on a (d + 1)-dimensional zoid with
spatial volume n and height h. Hence, it would be useful if plan-finding does not incur significantly
more memory and time overheads than TRAPPLE.

We introduce some definitions, many of which are borrowed or adapted from [5, 6, 15]. A
3-dimensional zoid Z = zoid(ta, tb,xa1,xb1,dxa1,dxb1,xa2,xb2,dxa2,dxb2) is well-defined if its
height is positive, its widths along the x1- and x2- dimensions are positive, and the lengths of its
bases along the x1- and x2- dimensions are nonnegative. We assume that the zoids we consider are
well-defined. Define the projection trapezoid Z1 of zoid Z along spatial dimension x1 to be the
2D trapezoid that results from projecting Z onto the dimensions x1 and t. The projection trapezoid
Z1 has two bases (sides parallel to the x1 axis). We say that Z1 is upright, if the longer base of
Z1 corresponds to time ta, and inverted otherwise. These definitions can be extended to higher
dimensional zoids. The space-time volume of a zoid is the product of its spatial volume and height.

Now suppose we assume no equivalence, that is, no two zoids in the search domain have the
same optimal plan. Then plan-finding under no equivalence does not need to store and look up plans
of zoids. However, it can still incur a large memory overhead in maintaining the optimal plan, as
stated in the following theorem.

Theorem 3
Consider a (d + 1)-dimensional zoid Z with spatial volume n and height h. Let L be the average
space-time volume of zoids that correspond to the leaves of an optimal plan for Z. Then the optimal
plan has at least nh/L nodes.

Proof
The space-time volume of Z is given by nh. Since a leaf has space-time volume L on average, the
optimal plan has nh/L leaves.

More importantly, plan-finding under no equivalence (and without the divide-subsumption and
favored-dimension properties) doesn’t find plans for any benchmark within two days. Hence,
Figures 7 and 8 do not report on the time measurements under no equivalence.

We analyze the memory and time overheads of space-time equivalence in the following.

Lemma 4
Consider a zoid Z with height h. The zoids in the search domain tree rooted at Z have Θ(lgh)
different heights.

Proof
The height of a zoid decreases only when it is cut in time. At each time cut, the TRAPPLE algorithm
bisects a given zoid with height h′ > 1 into two subzoids with heights bh′/2c and dh′/2e. The result
then follows from Lemma 1.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 15

Theorem 5
Consider a (d +1)-dimensional zoid Z with spatial volume n and height h. The search domain tree
T rooted at Z has O(2dn lgh) distinct zoids.

Proof
We count the number of distinct zoids for each possible height h′ ∈ {h,bh/2c,dh/2e, . . . ,1}. Let
wi,1 ≤ i ≤ d be the width of Z in spatial dimension xi. Then, the number of upright (or inverted)
distinct 2D projection trapezoids of a given height h′ along the spatial dimension xi is at most wi,
the width along that dimension. Hence the number of distinct (d+1)-dimensional zoids of height h′

is at most (2w1 ∗2w2 ∗ · · · ∗2wd) = 2d(w1 ∗w2 ∗ · · · ∗wd) = 2dn. Since the zoids in T have Θ(lgh)
different heights from Lemma 4, the result follows.

Theorem 6
Consider a (d +1)-dimensional zoid Z with spatial volume n and height h. Procedure ZTUNE takes
O(2dn2h) time to find an optimal plan for Z, under space-time equivalence.

Proof
To find the plan-finding time for Z, we sum the base-case costs of all distinct zoids in the search
domain tree T rooted at Z. The base-case cost of a zoid is proportional to its space-time volume.
We assume that the divide cost, link cost, and the costs of INSERT and LOOKUP procedures are
negligible compared to the base-case cost of a given zoid. The base-case cost of a zoid of a given
height h′ is at most nh′, the maximum space-time volume for height h′. From Theorem 5, there
are at most 2dn distinct zoids of height h′. Hence the sum of base-case costs of distinct zoids
of height h′ is at most 2dn2h′. And the sum of base-case costs of distinct zoids of all heights
h′ ∈ {h,bh/2c,dh/2e, . . . ,1} is at most

∑
h′∈{h,bh/2c,dh/2e,...,1} 2dn2h′ = O(2dn2h).

However, the memory and time bounds in Theorems 5 and 6 might not be tight. In specific,
we conjecture that the memory overhead under space-time equivalence is Θ(n), which is also the
memory overhead of TRAPPLE. We also considered time equivalent zoids, which are translations in
just the time dimension, and a time equivalence property, which assumes that two time equivalent
zoids have the same optimal plan. Time equivalence incurred significantly more memory and plan-
finding time overheads, however, and failed to find a plan for any benchmark.

Handling Boundaries

STE, as defined, does not hold at the boundaries of the spatial grid. Recall that TRAP uses a faster
base-case kernel function for zoids that lie in the interior of the grid, and a slower kernel function
for zoids that impinge on the boundary. Consequently, two space-time equivalent zoids can have
different base-case costs if one lies in the interior and the other impinges on the boundary. To
address this anomaly, we use STE only for zoids that lie in the interior, and use a variant of STE
called “boundary equivalence” for zoids that impinge on the boundary. Suppose we have two 3-
dimensional zoids Z ⊆ N×Z2 and Z′ ⊆ N×Z2, such that, Z and Z′ impinge on the boundary in
the x1 dimension, but lie in the interior in the x2 dimension. Z and Z′ are boundary equivalent
in x1 if there exists a bijection f : Z → Z′ and constants T,X2 ∈ Z such that for all (t,x1,x2) ∈ Z,
we have f (t,x1,x2) = (t + T,x1,x2 + X2), that is, Z′ can be a translation of Z in all dimensions
except the spatial dimension x1. The boundary equivalence property states that two zoids that are
boundary equivalent in x1 have the same optimal plan. These definitions can be adapted when the
zoids impinge on the boundary in the x2 dimension, or in both the x1 and x2 dimensions.

Discussion

Why does STE despite being a theoretical property hold in practice? STE assumes that the “context
of execution” of two space-time equivalent zoids is the same, that is, the number of floating-point
operations and memory accesses, the memory layout of the spatial grid, cache alignment of the grid
points, and the states of the processor, memory hierarchy and other system components remain the
same. The number of floating-point operations and memory accesses, which dominate the runtime of

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 E. PALAMADAI NATARAJAN ET AL.

DIVIDE-SUBSUMPTION(Z,z)
1 measurebase = TRUE
2 for z′ ∈ z.children
3 if z′.choice 6=−1 // test if a subzoid of Z was divided
4 measurebase = FALSE
5 if measurebase == TRUE
6 BASE-CASE (Z,z)

Figure 12: Pseudocode for divide-subsumption. DIVIDE-SUBSUMPTION takes as input a zoid Z and the
root node z of a plan for Z.

stencil codes, and the memory layout of the spatial grid are the same for two space-time equivalent
zoids. The cache alignment of the grid points, and the states of the processor, memory hierarchy
and other system components might differ, during the execution of two space-time equivalent zoids.
However, these effects do not dominate the runtime of stencil codes. Empirical evidence shown
in Figure 11, which aggregates noise from all the pruning properties, indicates that STE holds
reasonably well in practice.

6. DIVIDE-SUBSUMPTION PROPERTY

This section describes Ztune’s “divide-subsumption” (DS) property, which speeds up plan-finding
significantly, using the notion that it may not be necessary to find the base-case cost of every zoid
in the search domain. For example, DS speeds up plan-finding for the APOP benchmark by a factor
of at least 4900.

The divide-subsumption property states that executing the base case cannot be the optimal divide
choice for a zoid Z, if it is not the optimal divide choice for a subzoid Z′ of Z. The intuition is that
procedure ZTUNE chose to divide Z′, since Z′ did not fit in cache and hence it was expensive to
execute the base case on Z′. Since Z is larger than Z′, Z will also not fit in cache and hence it will
also be expensive to execute the base case on Z. Once ZTUNE chooses to divide a zoid Z′ during the
bottom-up traversal of a search domain, it can divide the ancestors of Z′ in the search domain, and
avoid finding their base-case costs under DS. The property cuts the search domain such that zoids
that lie above the cut are divided, and zoids that lie below the cut are undivided and have the base
case executed on them.

Figure 12 shows a DIVIDE-SUBSUMPTION procedure, which works as follows. Lines 2–4
perform the DS test. If a subzoid of Z was divided, then the procedure skips measuring the base-
case cost of Z, by not calling BASE-CASE. Otherwise, line 6 calls BASE-CASE, which measures the
base-case cost of Z. DIVIDE-SUBSUMPTION assumes that plans from all possible divide choices
of Z except the base-case were already found, and that the current plan rooted at node z has the
smallest cost of all such plans. To perform plan-finding using DS, line 21 of the ZTUNE procedure
in Figure 5 can be replaced with a call to DIVIDE-SUBSUMPTION.

Figures 7 and 8 show the performance of plan-finding under DS and STE on the benchmarks.
DS successfully finds plans for all benchmarks, and takes at most 15 hours to find a plan for a
benchmark. It speeds up plan-finding under STE by a factor of 151–244. Significantly, faster plan-
finding with DS does not affect the quality of the runtime.

Discussion

A few important design choices that we made in our implementation are described in the following.
We do not assume DS for small zoids, since measuring their base-case costs can be error-prone.
Under DS, plan-finding might erroneously choose to divide a zoid, whereas the correct choice would
have been to execute the zoid as a base case. For example, a page fault during measurement can
artificially increase the base-case cost of a zoid Z. DS would then divide Z and all the ancestors of Z
in the choice domain, resulting in a sub-optimal plan. We say that two zoids Z1,Z2 are consecutive

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 17

0 1,000 2,000 3,000 4,000
0

5

10

15

Width in contiguous dimension

H
ei

gh
t

STE+DS+FD
STE+DS

(a)

0 100 200 300 400
0

5

10

15

Width in noncontiguous dimension

STE+DS+FD
STE+DS

(b)

Figure 13: Comparison of base case sizes in the plans created with STE+DS and STE+DS+FD for the Heat4
benchmark with grid size 4096×4096, and 512 time steps, on Ivy Bridge. (a) Widths of base case zoids in
the “contiguous” dimension. (b) Widths of base case zoids in the noncontiguous dimension.

descendants of a zoid Z3, if Z1 is a subzoid of Z2 and Z2 is a subzoid of Z3. To make DS robust,
we measure the base-case cost of each zoid in the choice domain, unless it has two consecutive
descendants that were divided.

7. FAVORED-DIMENSION PROPERTY

This section describes an empirical property used by Ztune called “favored-dimension” (FD), which
can greatly reduce plan-finding time, especially for stencils in higher dimensions. As an example,
FD speeds up plan-finding for the Heat6 benchmark by a factor of 99. FD exploits architectural
features of modern computers, such as vector units, cache blocking, and hardware prefetching,
which accelerate performance when a processing core operates on consecutive memory locations.
This section also reviews the empirical results that substantiate the effectiveness of the property.

Favored-dimension exploits the fact that when a processing core peforms computations on
consecutive locations in the linear array of memory, the hardware operates considerably faster than
when the computations are performed on nonconsecutive locations. Consequently, the way that the
spatial grid is laid out in memory strongly influences performance. [20,37] discuss this observation
in tiling-based stencil codes. For a d-dimensional array, the stride of a dimension i is the distance
in the linear array of memory between a grid point and an adjacent grid point, whose coordinates
differ only in dimension i. We assume that a d-dimensional spatial grid is stored in memory as
a linear array, where the dimensions are sorted by stride, with dimension 1 having the largest
stride and dimension d — the contiguous dimension — having the smallest. For a 2-dimensional
spatial grid, this layout corresponds to column-major order. These assumptions are without loss
of generality, as the same optimizations could be implemented no matter how the dimensions are
permuted. Figure 13 shows that an optimal plan found under STE and DS has base cases that are
significantly longer in the contiguous dimension than in the noncontiguous dimension. Favored-
dimension exploits this observation to prune the choice domain further.

The favored-dimension property for a (d+1)-dimensional zoid Z is illustrated in Figure 14 using
procedure PRUNE-CHOICE, which works as follows. Line 2 defines S as the set of noncontiguous
spatial dimensions along which Z can be divided. If the set S is not empty, then line 4 chooses a
noncontiguous spatial dimension i ∈ S arbitrarily. Line 5 returns a pruned set of divide choices,
which includes the spatial dimension i and may include the time dimension 0 depending on whether
time is a possible divide choice for Z. If the set S is empty, then possible divide choices for Z
are either the contiguous dimension, or the time dimension, or both, or none. In this case, Line 7
returns the original set C of divide choices, without pruning. To perform plan-finding with favored-
dimension, the call to CHOICE(Z) in line 7 of the ZTUNE procedure in Figure 5 can be replaced
with a call to PRUNE-CHOICE(Z).

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 E. PALAMADAI NATARAJAN ET AL.

PRUNE-CHOICE(Z)
1 C = CHOICE(Z)

// S is the set of noncontiguous dimensions in which Z can be divided
2 S =C∩{1,2, . . . ,d−1}
3 if S 6=∅
4 Choose a dimension i ∈ S arbitrarily
5 return C∩{0, i}
6 else
7 return C

Figure 14: Pseudocode for favored-dimension. PRUNE-CHOICE takes as input a (d+1)-dimensional zoid Z
and returns the set of divide choices for Z. Choice 0 corresponds to the time dimension, choices 1,2, . . . ,d−1
correspond to the noncontiguous spatial dimensions, and choice d corresponds to the contiguous spatial
dimension.

Favored-dimension does the following. It restricts that zoid Z be divided in at most 1 spatial
dimension. To leverage the compiler and hardware optimizations in the contiguous dimension, the
property avoids dividing Z along that dimension, where possible. Let P and P′ be the minimum cost
plans found with and without favored-dimension respectively, for zoid Z. Then favored-dimension
assumes that the cost of plan P is no higher than the cost of plan P′.

Figures 7, 8, and 9 illustrate the performance of favored-dimension on the benchmarks. Favored-
dimension speeds up plan-finding for 2 or higher dimensional problems by a factor of 1–99.
Although procedure PRUNE-CHOICE allows us to pick a noncontiguous dimension arbitrarily in
line 4 of Figure 14, for the experiments, we let the procedure choose a noncontiguous dimension
i ∈ S, such that, i has the biggest stride among the dimensions in S. Choosing the noncontiguous
dimension arbitrarily produces similar runtimes for the tuned TRAPPLE code.

8. EVALUATION

This section presents three different evaulations of the performance of Ztune. The first evaluation
compares the performance of the pruned-exhaustive autotuning strategy in Ztune with that of the
heuristic autotuning strategy in the OpenTuner [31] framework. The second evaluation compares the
performance of the Ztuned divide-and-conquer TRAPPLE code with that of autotuned tiling-based
stencil codes in Pluto [38, 39] and Patus [26]. Though making such a comparison is not the focus
of this paper, we examined if the Ztuned divide-and-conquer TRAPPLE code is indeed competitive.
The third evaluation reports on the performance of the Ztuned TRAPPLE code relative to Pochoir’s
default TRAP code on two more machines with different architectures.

Comparison with heuristic autotuning

In the first evaluation, we compare the pruned-exhaustive autotuning strategy in Ztune with the
heuristic autotuning strategy in the OpenTuner framework. We briefly describe OpenTuner’s search
domain, which is different from the choice domain of Ztune. Whereas the introduction of the paper
made an absolute comparison of the performance of Ztuned and OpenTuner tuned codes by running
OpenTuner for 16 hours, this section makes a relative comparison of the tuned codes, by running
OpenTuner for a few multiples of time longer than Ztune. We also report on the autotuning times
taken by OpenTuner so that the OpenTuner tuned code achieves similar runtime as the Ztuned code
on the benchmarks. Empirical evidence indicates that Ztune can autotune faster than OpenTuner,
explore a more complex search domain, and generally produce tuned code that is faster.

Regrettably for scientific purposes, it is not feasible to configure OpenTuner to autotune
TRAPPLE. To do so, one needs to parametrize the divide choice at each node in the choice domain,
traversed by Ztune. Parametrizing the divide choice at each node creates a huge memory overhead,

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 19

Benchmark 1 2 4 8 16 32

APOP 1.65 1.65 1.65 1.65 1.65 1.65
Heat1 2.37 2.37 1.61 1.61 1.06 1.00
Heat2 12.15 12.15 12.15 4.45 1.53 1.09
Life 3.97 3.15 1.29 1.23 1.00 1.00
Heat3 5.10 1.53 1.53 1.53 1.14 1.14
Heat4 1.67 1.67 1.67 1.67 1.67 1.35
Heat5 1.20 1.20 1.20 1.20 1.20 1.20
LBM †4.35 †4.35 ‡3.03 ‡3.03 ‡1.77 1.56
Wave 5.79 5.79 2.33 2.33 1.64 1.64
Heat6 1.94 1.93 1.73 1.25 1.14 1.14

Figure 15: Ratios of the runtimes of OpenTuner tuned and Ztuned codes on Ivy Bridge. The column headers
indicate how many times longer OpenTuner tuned the benchmark than Ztune. The values indicate the ratios
of runtimes of OpenTuner tuned TRAP code to the runtimes of Ztuned TRAPPLE code. A bigger ratio
favors Ztune, and a smaller ratio OpenTuner. OpenTuner autotuned each benchmark using the IntegerValues,
PowersOfTwo, and ListOfNumbers search domains, and the best OpenTuner tuned runtime among the three
search domains was used to compute the ratio. Unannotated runtimes indicate PowersOfTwo search domain,
and those annotated with the daggers † and ‡ indicate IntegerValues and ListOfNumbers search domains,
respectively. Values are the best of two runs.

however, since the number of nodes in the choice domain is asymptotically larger than the space-
time volume of the zoid Z at the root of the choice domain. Recall that TRAPPLE incurs memory
overhead just proportional to the spatial volume of Z. Moreover, many of these parameters could
not be effectively manipulated by OpenTuner, since their very existence might depend on decisions
made higher in the recursion. For example, if a node executes a base case, the node has no
descendants, and so the parameters that would be associated with the descendants do not affect
the runtime. Nevertheless, the structure of OpenTuner provides no way for OpenTuner not to keep
twiddling these parameters and wasting time, even though they are irrelevant to the optimal plan.

Consequently, we had to restrict OpenTuner’s heuristic search to the domain of base-case
sizes, and optimally coarsen the base case of recursion in the TRAP algorithm. Two OpenTuner
parameters were created for each dimension of the space-time grid, one for the base-case size
of zoids that impinge on the boundary, and the other for the base-case size of zoids that do not
impinge on the boundary. This yielded a sizable search domain for OpenTuner, albeit smaller than
Ztune’s. OpenTuner uses an ensemble of search techniques that include greedy mutation, differential
evolution, and hill-climbing methods.

To provide a fair comparison with Ztune, we configured OpenTuner to tune the TRAP algorithm
using three search domains. Two of the search domains are relatively large in size, while the third
one is small. We contend that this configuration is fair to OpenTuner, since smaller search domains
allow OpenTuner to tune faster, while the larger search domains allow it to find a solution that
is closer to optimal at the expense of higher tuning times. The largest search domain defined
in OpenTuner is called IntegerValues. The parameter lower and upper bounds were set to cover
the grid size in each dimension. OpenTuner can choose any integer value within these bounds.
Given a (d + 1)-dimensional zoid Z with height h, and whose spatial widths are proportional to
h, the search domain of IntegerValues has O(hdhdh) = O(h2d+1) different base-case sizes, where
the factor 2 is due to two parameters being tuned in each spatial dimension. In contrast, Ztune’s
choice domain is larger with Ω(2h/2) different plans. Many values within the lower and upper
bounds can be redundant, however, since TRAP divides the spatial and temporal dimensions in
a fixed fashion. The next smaller search domain called ListOfNumbers uses the actual widths and
heights of zoids traversed by Ztune as the possible values for the parameters along the corresponding
dimensions. This reduces the size of the search domain for Z to O(h2d lgh), since there are only
Θ(lgh) different heights in the choice domain as shown in Lemma 4. The smallest search domain
is called PowersOfTwo. Similar to the IntegerValues search domain, the parameter lower and upper
bounds in PowersOfTwo were set to cover the grid size in each dimension, but only power-of-2

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 E. PALAMADAI NATARAJAN ET AL.

Benchmark Ztune (minutes) OpenTuner (hours)

APOP 0.58 37.93
Heat1 0.33 0.15
Heat2 6.58 4.17
Life 4.40 1.32
Heat3 1.09 2.66
Heat4 0.79 >100
Heat5 6.55 48.75
LBM 0.56 0.65
Wave 51.90 >100
Heat6 5.75 >100

Figure 16: Tuning time comparison of OpenTuner and Ztune on Ivy Bridge. The second column shows the
Ztune tuning times in minutes. The third column shows the number of hours OpenTuner needs to autotune, so
that the OpenTuner tuned code achieves the same runtime as the Ztuned code. OpenTuner data was obtained
from tuning each benchmark once. Due to the time-consuming nature of the experiment, we couldn’t run
OpenTuner more.

Tuned runtimes Tuning quality︷ ︸︸ ︷ ︷ ︸︸ ︷
Benchmark Ztune Pluto Patus Ztune Pluto

Heat1 1.24 0.93 6.49 0.93 0.88
Heat2 35.91 39.18 — 0.86 0.88
Heat3 17.23 44.10 — 0.87 0.87
Heat4 9.99 23.51 — 0.65 0.77

Figure 17: Comparison of the tuned runtimes (in seconds) of stencil codes under different autotuners, and
“tuning quality” of the autotuners on 4 Heat benchmarks, on the Haswell machine. The headers Ztune,
Pluto, and Patus under Tuned runtimes indicate the runtimes of the stencil codes autotuned with Ztune,
Pluto’s built-in autotuner, and Patus respectively. A dash sign (—) indicates that the benchmark could not
be specified in Patus since it is periodic, and hence the runtime is unknown. The reported numbers are the
better of two runs. The header Ztune under Tuning quality indicates the ratio of the runtime of the Ztuned
TRAPPLE code to the runtime of Pochoir’s TRAP code. Similarly, the header Pluto under Tuning quality
indicates the ratio of the runtime of Pluto’s autotuned tiled code to the runtime of Pluto’s default tiled code.
A lower ratio indicates that the autotuned code runs faster.

integer values can be chosen between the bounds. This reduces the size of the search domain for Z
further to O(lg2d+1 h).

Whereas Ztune runs its natural time to autotune, OpenTuner can be run for any length of time.
Figure 15 shows the ratios of the runtimes of OpenTuner tuned TRAP code to the runtimes of Ztuned
TRAPPLE code, where OpenTuner was run for 1,2, . . . ,32 times longer than Ztune. In general, the
longer OpenTuner tunes, faster are its tuned codes. As can be seen from Figure 15, despite an
enormous advantage in tuning time, an OpenTuner tuned code doesn’t beat the Ztuned code. We
also infer that the PowersOfTwo configuration for OpenTuner performs the best for most of the
benchmarks.

Figure 16 shows how long OpenTuner must run to produce code that runs as fast as the Ztuned
code. For example, to obtain the same runtime as the Ztuned code, OpenTuner must tune APOP
for almost 38 hours, whereas Ztune ran in under a minute. To achieve comparable runtimes to the
Ztuned code, OpenTuner has to tune most of the benchmarks for over an hour. Despite tuning for 100
hours, the OpenTuner tuned Heat4, Wave, and Heat6 benchmarks couldn’t achieve the performance
of the Ztuned code. We conclude that the pruned-exhaustive tuning strategy in Ztune can tune divide-
and-conquer stencil problems considerably faster than the heuristic tuning strategies in OpenTuner.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 21

Benchmark Haswell Opteron Benchmark Haswell Opteron

APOP 0.95 0.94 Heat4 0.68 0.71
Heat1 0.94 0.93 Heat5 0.86 0.90
Heat2 0.88 0.88 LBM 0.98 0.99
Life 1.00 1.01 Wave 0.85 0.98
Heat3 0.87 0.96 Heat6 0.90 0.93

Figure 18: Performance of the Ztuned TRAPPLE code relative to Pochoir’s default hand-tuned TRAP code
on the Haswell and Opteron machines. The headers Haswell and Opteron indicate the ratio of the runtime of
Ztuned TRAPPLE code to the runtime of Pochoir’s TRAP code on those machines respectively. A lower ratio
indicates that the Ztuned code runs faster than Pochoir’s code. The geometric mean of the ratios on Haswell
is 0.89, and that on Opteron is 0.92. The reported ratios are the better of two runs.

Comparison with autotuned tiling-based stencil codes

The second evaluation compares the performance of Ztuned divide-and-conquer TRAPPLE code
with that of autotuned tiling-based stencil codes. Though making such a comparison is not the focus
of this paper, we examined if the Ztuned TRAPPLE code is indeed competitive. Figure 17 compares
the runtime of Ztuned TRAPPLE code with the runtimes of autotuned tiling-based codes in Pluto
[38, 39] and Patus [26]. We ran the comparison on a few Heat benchmarks, which could be easily
specified in Pluto and Patus. Since Pluto recommends using a more recent version of Intel compiler,
we used ICC 15.0.6 to compile all the 3 autotuners, and used the same compiler flags. Pluto’s built-
in autotuner searches a fixed set of tile sizes to find an optimal tile size. Figure 17 reports Pluto’s best
runtime from among different settings like “tiled” and “lbpar”. Since Patus doesn’t support periodic
boundary conditions, it couldn’t be used to autotune the periodic benchmarks Heat2, Heat3, and
Heat4. The slow runtime of the Patus tuned Heat1 benchmark is probably due to the fact that it
doesn’t autotune for temporal blocking. Figure 17 also compares the “tuning quality”, which is the
ratio of the runtime of the autotuned code to the runtime of the default code, of Ztune and Pluto.
Since Patus doesn’t have a default code to run, we couldn’t report on its tuning quality. Figure 17
indicates that divide-and-conquer based TRAPPLE codes and Ztune are competitive with their tiling
based counterparts for the benchmarks considered. It would be premature to conclude that one
strategy is faster than the other, however, since this comparison is not exhaustive and not the focus
of this paper. Previous work [37, 40] describes experiments where tiling is faster than divide-and-
conquer strategies. We thank Uday Bondhugula for graciously clarifying all our questions about
autotuning the benchmarks in Pluto, and Matthias Christen for helping with Patus related queries.

Performance of Ztune on other architectures

The third evaluation compares the performance of the Ztuned TRAPPLE code with that of Pochoir’s
TRAP code on two more machines — Haswell and Opteron, whose specifications are shown in
Figure 19. Recall that the introduction of the paper reported on the performance of Ztune on the
Nehalem and Ivy Bridge machines. Figure 18 shows the performance of Ztune on the Haswell and
Opteron machines. The Ztuned code is on average 11% faster on Haswell and 8% faster on Opteron
than Pochoir’s code.

9. CONCLUDING REMARKS

We have presented Ztune, a pruned-exhaustive autotuner for serial divide-and-conquer stencil
computations, and described three properties namely space-time equivalence, divide subsumption,
and favored dimension, which improve the performance of Ztune significantly. Pruned-exhaustive
autotuning in Ztune exploits its knowledge of divide-and-conquer stencil codes, to autotune faster
and produce tuned codes with similar or better runtimes than heuristic autotuning. Heuristic
autotuners are nevertheless useful tools to tune a broad range of applications, where domain-specific
autotuning tools might not necessarily exist.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



22 E. PALAMADAI NATARAJAN ET AL.

Nehalem Ivy Bridge Haswell Opteron

Manufacturer Intel Intel Intel AMD
CPU Xeon X5650 Xeon E5-2695 v2 Xeon E5-2666 v3 Opteron 6376
Clock 2.66 GHz 2.4 GHz 2.90 GHz 2.3 GHz
Hyperthreading Disabled Enabled Enabled Enabled
Turbo Boost Disabled Disabled Disabled Enabled
Processor cores 12 24 18 32
Sockets 2 2 2 4
L1 data cache/core 32 KB 32 KB 32 KB 16 KB
L2 cache/core 256 KB 256 KB 256 KB 2 MB
L3 cache/socket 12 MB 30 MB 25 MB 6 MB
DRAM 48 GB DDR3 128 GB DDR3 58 GB DDR3 256 GB DDR3
Compiler ICC 13.1.1 ICC 13.1.1 ICC 13.1.1 ICC 13.1.1
Operating system kernel Linux 3.13.0 Linux 3.13.0 Linux 4.1.10 Linux 2.6.32
Advanced Vector Extensions No Yes Yes Yes

Figure 19: Specifications of the machines used for benchmarking. We disabled Turbo Boost, where possible,
to enhance the reliability of time measurements.

More generally, we have presented a theoretical autotuning framework that can be used for tuning
many divide-and-conquer codes in scientific computing like matrix multiplication, convolution,
and dynamic-programming problems. We have extended Ztune to autotune divide-and-conquer
matrix-vector product and matrix multiplication, the preliminary results of which can be found
in [41]. Augmenting Ztune to autotune parallel divide-and-conquer codes is an interesting research
area. Parallel codes introduce a host of issues like memory bandwidth saturation, communication
overhead, and work-span optimization.

The tuning strategy in Ztune has some obvious drawbacks. Ztune doesn’t extrapolate its tuning
results, but autotunes every problem from scratch. Though it autotunes faster, the autotuning time
can be reduced significantly by extrapolation.

REFERENCES

1. Bleck R, Rooth C, Hu D, Smith LT. Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic
coordinate model of the North Atlantic. J. of Phys. Oceanography 1992; 22(12):1486–1505.

2. Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D, Shalf J, Yelick K. Stencil computation
optimization and auto-tuning on state-of-the-art multicore architectures. SC, ACM/IEEE, 2008; 4:1–4:12.

3. Dursun H, Nomura Ki, Peng L, Seymour R, Wang W, Kalia RK, Nakano A, Vashishta P. A multilevel parallelization
framework for high-order stencil computations. Euro-Par, 2009; 642–653.

4. Dursun H, Nomura Ki, Wang W, Kunaseth M, Peng L, Seymour R, Kalia RK, Nakano A, Vashishta P. In-core optimization
of high-order stencil computations. PDPTA, 2009; 533–538.

5. Frigo M, Strumpen V. Cache oblivious stencil computations. ICS, ACM, 2005; 361–366.
6. Frigo M, Strumpen V. The cache complexity of multithreaded cache oblivious algorithms. Theory of Computing Systems

2009; 45(2):203–233.
7. Kamil S, Datta K, Williams S, Oliker L, Shalf J, Yelick K. Implicit and explicit optimizations for stencil computations.

MSPC, ACM, 2006; 51–60, doi:http://doi.acm.org/10.1145/1178597.1178605.
8. Kamil S, Husbands P, Oliker L, Shalf J, Yelick K. Impact of modern memory subsystems on cache optimizations for stencil

computations. MSP, ACM, 2005; 36–43, doi:http://doi.acm.org/10.1145/1111583.1111589.
9. Kamil S, Chan C, Oliker L, Shalf J, Williams S. An auto-tuning framework for parallel multicore stencil computations.

IPDPS, IEEE, 2010; 1–12.
10. Krishnamoorthy S, Baskaran M, Bondhugula U, Ramanujam J, Rountev A, Sadayappan P. Effective automatic

parallelization of stencil computations. PLDI, ACM, 2007.
11. Nakano A, Kalia RK, Vashishta P. Multiresolution molecular dynamics algorithm for realistic materials modeling on

parallel computers. Comp. Phys. Comm. 1994; 83(2-3):197–214.
12. Nitsure A. Implementation and optimization of a cache oblivious lattice Boltzmann algorithm. Master’s Thesis, Institut für

Informatic, Friedrich-Alexander-Universität Erlangen-Nürnberg 2006.
13. Peng L, Seymour R, Nomura Ki, Kalia RK, Nakano A, Vashishta P, Loddoch A, Netzband M, Volz WR, Wong CC.

High-order stencil computations on multicore clusters. IPDPS, IEEE, 2009; 1–11.
14. Taflove A, Hagness SC. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech, 2000.
15. Tang Y, Chowdhury RA, Kuszmaul BC, Luk CK, Leiserson CE. The Pochoir stencil compiler. SPAA, ACM, 2011; 117–

128.
16. Williams S, Carter J, Oliker L, Shalf J, Yellick K. Optimization of a lattice Boltzmann computation on state-of-the-art

multicore platforms. JPDC 2009; 69(9):762–777.
17. Malas T, Hager G, Ltaief H, Stengel H, Wellein G, Keyes D. Multicore-optimized wavefront diamond blocking for

optimizing stencil updates. SIAM Journal on Scientific Computing 2015; 37(4):439–464.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



AUTOTUNING DIVIDE-AND-CONQUER STENCIL COMPUTATIONS 23

18. Malas TM, Hornich J, Hager G, Ltaief H, Pflaum C, Keyes DE. Optimization of an electromagnetics code with
multicore wavefront diamond blocking and multi-dimensional intra-tile parallelization. arXiv:1510.05218 2015; URL
http://arxiv.org/abs/1510.05218.

19. Song Y, Li Z. New tiling techniques to improve cache temporal locality. PLDI, ACM, 1999; 215–228.
20. Rivera G, Tseng C. Tiling optimizations for 3D scientific computations. SC, ACM/IEEE, 2000; 32:1–32:23.
21. Frigo M, Leiserson CE, Prokop H, Ramachandran S. Cache-oblivious algorithms. FOCS, IEEE, 1999; 285–297.
22. Frigo M. A fast Fourier transform compiler. ACM SIGPLAN Notices May 1999; 34(5):169–180.
23. Frigo M, Johnson S. The design and implementation of FFTW3. Proceedings of the IEEE 2005; 93(2):216–231.
24. Whaley RC, Dongarra J. Automatically tuned linear algebra software. SC, ACM, 1998; 1–27.
25. Vuduc R, Demmel JW, Yelick KA. OSKI: A library of automatically tuned sparse matrix kernels. J. of Phys., vol. 16, 2005;

521.
26. Christen M, Schenk O, Burkhart H. Patus: A code generation and autotuning framework for parallel iterative stencil

computations on modern microarchitectures. IPDPS, IEEE, 2011; 676–687.
27. Kamil SA. Productive high performance parallel programming with auto-tuned domain-specific embedded languages. PhD

Thesis, University of California, Berkeley 2012.
28. Moura JMF, Singer B, Xiong J, Johnson J, Padua D, Veloso M, Johnson RW. SPIRAL: A generator for platform-adapted

libraries of signal processing algorithms. Int. J. of High Perf. Comp. Appl. 2004; 18(1):21–45.
29. Ansel J, Chan C. PetaBricks: Building adaptable and more efficient programs for the multi-core era. XRDS 2010; 17(1).
30. Ţăpuş C, Chung IH, Hollingsworth JK. Active Harmony: Towards automated performance tuning. SC, ACM/IEEE, 2002;

1–11.
31. Ansel J, Kamil S, Veeramachaneni K, O’Reilly UM, Amarasinghe S. OpenTuner: An extensible framework for program

autotuning. Technical Report TR-2013-026, MIT CSAIL 2013.
32. Epperson JF. An Introduction to Numerical Methods and Analysis. Wiley-Interscience, 2007.
33. John C. Options, Futures, and Other Derivatives. Prentice Hall, 2006.
34. Gardner M. Mathematical Games. Scientific American 1970; 223(4):120–123.
35. Mei R, Shyy W, Yu D, Luo L. Lattice Boltzmann method for 3-D flows with curved boundary. J. of Comput. Phys 2000;

161(2):680–699.
36. Micikevicius P. 3D finite difference computation on GPUs using CUDA. GPGPU, ACM, 2009; 79–84.
37. Datta K, Kamil S, Williams S, Oliker L, Shalf J, Yelick K. Optimization and performance modeling of stencil computations

on modern microprocessors. SIAM Rev. 2009; 51(1):129–159.
38. Bondhugula U, Baskaran M, Krishnamoorthy S, Ramanujam J, Rountev A, PSadayappan. Automatic transformations for

communication-minimized parallelization and locality optimization in the polyhedral model. International Conference on
Compiler Construction (ETAPS CC), ACM, 2008; 132–146.

39. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A practical automatic polyhedral parallelizer and locality
optimizer. PLDI, ACM, 2008; 101–113.

40. Bondhugula U, Bandishti V, Cohen A, Potron G, Vasilache N. Tiling and optimizing time-iterated computations on periodic
domains. PACT, ACM, 2014; 39–50.

41. Pantawongdecha P. Autotuning divide-and-conquer matrix-vector multiplication. Master’s Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology Jun 2016.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe


