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ABSTRACT 
In this work, we discuss possible strategies for increasing 
the computational power of the MapReduce framework in a 
dynamic manner, using SnowFlock’s cloning mechanism. 
We describe the implementation strategy that we have 
chosen and rationalize our decisions. We then discuss 
issues that we encountered during the implementation and 
the evaluation that we performed. Besides initial evaluation 
of the idea, our work provides ground and identifies issues 
related to the future exploration of this approach.   

1. INTRODUCTION 
MapReduce[1] is a programming model designed for 
processing large volumes of data in parallel by dividing the 
work into a set of independent tasks. It allows programmers 
to think in a data-centric fashion: they focus on applying 
transformations to sets of data records, and allow the details 
of distributed execution, network communication and fault 
tolerance to be handled by the MapReduce framework. The 
framework has become prevalent due to its simplicity as a 
cloud programming model.  

Conceptually, a MapReduce program (also referred to as a 
Job) transform lists of input data elements into lists of 
output data elements. It does this in two phases: the map 
phase and the reduce phase. Each phase is made up of 
several tasks which run on a cluster of machines (workers). 

Hadoop, a popular implementation of the MapReduce 
framework [2], is commonly installed on shared hardware 
controlled by virtual machine monitors (Cluster Setup 
Hadoop installation [3]). Such installations require 
identification and configuration of all machines in the 
cluster upfront. Adding a new machine to the cluster 
involves additional installation steps performed by a cloud 
administrator – a process that might take a significant 
amount of time (“minutes”, according to [4]). Additionally, 
a job's configuration needs to be updated and may require 
the job itself to be restarted. 

While Hadoop allows controlling the way cluster machines 
are used (by providing explicit configuration options that 
define the number of spawned map and reduce tasks for 
each job, as well as the number of map and reduce tasks for 

each worker), it does not provide a way to dynamically 
grow its computational power. Enhancing Hadoop with the 
ability to dynamically provision machines as a job is being 
processed is the main objective of our work. Towards this 
end, we propose to integrate Hadoop with SnowFlock [5] – 
a system that allows Xen virtual domains [6] to be cloned 
into impromptu clusters in a matter of sub-seconds. An 
application that has been designed to work in the 
SnowFlock environment should be able to expand its 
processing footprint in sub-second time, and then reduce it 
again when the computation is finished. Fast cloning is 
achieved by transmitting a VM state on demand, instead of 
replicating it upfront. 

In what follows, we discuss the MapReduce framework in 
more details. We then explore different strategies for 
enhancing the Hadoop MapReduce implementation with the 
ability to expand its computational power in a dynamic 
manner. We discuss the strategies that we implemented for 
this project and evaluate our implementation by comparing 
the performance of the extended Hadoop system to the 
original one. Finally, we outline related approaches and 
discuss the future work. 

2. MAP-REDUCE EXECUTION FLOW 
A MapReduce program consists of two phases – map and 
reduce. A computation unit of each phase is referred to as a   
task. A special entity, called master, is responsible for 
keeping track of the job’s execution and assigning tasks to 
workers.  

The input to the map phase is a set of data files in an 
arbitrary format – line-based log files, multi-line input 
records, etc. These files are split into input splits, each of 
which describes a unit of work that comprises a single map 
task in a MapReduce program. The program executes as 
follows (see also Figure 1 for the high level architecture 
view): 

1. A worker who is assigned a map task reads the contents 
of the corresponding input split. It parses key/value 
pairs out of the input data using the record reader and 
passes each pair to the user-defined map function. The 
intermediate key/value pairs produced by the map 
function are buffered in memory.  

2. Periodically, the buffered pairs are written to local disk, 
partitioned into R regions, corresponding to R reduce 
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tasks. The locations of these buffered pairs on the local 
disk are passed back to the master, who is responsible 
for forwarding these locations to the reduce workers.  

3. When a reduce worker is notified by the master about 
these locations, it uses remote procedure calls to read 
the buffered data from the local disks of the map 
workers (shuffling). When a reduce worker has read all 
of the intermediate data, it sorts it by the intermediate 
keys so that all occurrences of the same key are grouped 
together. The sorting is needed because typically many 
different keys map to the same reduce task.  

4. The reduce worker iterates over the sorted intermediate 
data and for each unique intermediate key encountered, 
it passes the key and the corresponding set of 
intermediate values to the user-defined reduce function. 
The output of the reduce function is appended to a final 
output file for this reduce partition. 

 

 
Figure 1 - MapReduce Framework. 

 

Fault tolerance of the MapReduce job is ensured by the 
master, which pings every worker periodically and, if no 
response is received from a worker in a certain amount of 
time, marks the worker as failed. Any map task or reduce 
task in progress on a failed worker is reset to idle and 
becomes eligible for rescheduling.  

Hadoop’s MapReduce framework uses HDFS [7] as the 
underlying storage mechanism. HDFS supports fault-
tolerance by replicating data to different nodes. Thus, 
intermediate results that are produced by the MapReduce 
jobs and stored in HDFS are protected by the same 
mechanism. 

3. PROPOSED EXTENSIONS 
We explored several strategies that extend Hadoop’s 
MapReduce implementation with SnowFlock’s ability to 
dynamically spawn new virtual machines. The most obvious 

approach involves introducing clones for increasing the 
number of map and reduce tasks that are able to execute in 
parallel. However, since the number of these tasks is 
defined by the number of input splits and the number of 
intermediate partitions, respectively, these numbers are 
known before the job begins executing and the desired 
multiplexing level can be achieved statically. On the other 
hand, the number of records processed by each map or 
reduce task is unknown in advance, because it depends on 
the input itself – the records in each input split and the 
number of keys in each reduce partition. Thus, we have 
chosen to focus on multiplexing the execution within a 
single map or reduce task. We define the following two 
cloning strategies:  

1. Create clones as part of the map task, before the user-
defined map functions are called; destroy them after 
they finish processing and returning their output to the 
map task. 

2. Create clones as part of the reduce task, before the user-
defined reduce functions are called; destroy them after 
they finish processing and returning their output to the 
reduce task. 

However, due to the time constraints and due to the 
unexpected issues discussed in Section 5, we implemented 
cloning in the map phase only. We believe that the cloning 
in the reduce phase can be implemented in a similar 
manner. 

In our architecture, the original map task creates clones to 
process tuples generated by the map’s record reader. Each 
clone processes a subset of input tuples. As in the native 
MapReduce implementation, a tuple is processed by a call 
to the user-define map function. Tuples and their processing 
results (intermediate key/value pairs) are transferred 
between the original task and the spawned clones over the 
network. Intermediate results are then committed to disk by 
the original map task. 

One consequence of this approach is the introduction of 
network overhead even for data-local map tasks.1 However, 
allowing only the original map task to commit the produced 
intermediate key/value pairs to disk preserves MapReduce’s 
fault-tolerance using Hadoop’s native implementation: if 
some tuples are unprocessed because of clone or network 
failures, the map task is deemed incomplete and is 
rescheduled by the master. The simplicity of this fault-
tolerance mechanism comes at a price: due to the increased 
number of clones, the potential for machine failure to 
disrupt the task increases as well, since if one clone fails, 
the entire task fails. We discuss possible solutions to this 
issue in Section 8.  

                                                                 
1 We investigate the overhead introduces by transferring tuples 
over the network in our evaluation. 



4. PROTOTYPE IMPLEMENTATION 
We implemented two versions of the prototype, varied by 
how clones are created and destroyed in the map phase.  

In the first version, the map task fills buckets of input tuples 
(configured to 1K tuples per bucket) and spawns a clone for 
each bucket once it finishes filling it. The clone is destroyed 
immediately after it finishes processing the bucket that was 
assigned to it. This method relies on having clones process 
buckets that are in memory due to the shared state that 
clones obtain from the original when they are spawned. It 
should be noted that besides the data associated with tuples, 
additional types of memory pages, such as kernel and user 
pages, are transferred by SnowFlock as well.  

After implementing this version, it became apparent that it 
does not perform well due to the overhead of creating and 
destroying clones (and transferring the state for each 
created clone). Thus, we devised a second version that 
reuses clones. In this version, a fixed number of clones are 
created when a map task starts its execution. These clones 
live for the whole duration of the map task and are 
destroyed right before it finishes. They pull buckets of input 
tuples from the queue that the original map task populates, 
process them, and send the intermediate tuples back to the 
original.  

An RPC protocol is used for communication purposes. 
Figure 2 outlines the details of the communication between 
an original and a cloned map tasks. An original map task, 
depicted on the left part of the figure, together with 
Hadoop’s file system HDFS, reads the input data from 
HDFS locally. An RPC server, which is started by the 
original map task, is used to communicate with a clone, 
which is depicted on the right. RPC is used by clones to 
pull buckets, and then to send bucket of processed tuples 
back. 

Cloning itself is conducted within a user-defined 
MapReduce job, thus, allowing all clone handling to be 
accomplished without modifying the Hadoop code. 
Embedding the cloning into the Hadoop infrastructure 
seems quite straightforward and is beneficial because this 
will allow running existing MapReduce jobs without 
modification. However, since the exact placement of the 
code that manages cloning does not influence the results of 
our evaluation, we have chosen the first approach and left 
embedding of the code into Hadoop framework for the 
future work. 

5. DISCUSSION 
While working on this project, we encountered several 
technical issues that prevented us to achieve the results that 
we expected. We discuss these issues below.  

First, the stability of clones was unpredictable. Typically, 
after requesting an allocation of clones, clones would not 
start up at the same time, with delays ranging from several 

 
Figure 2 – Architecture. 

seconds to minutes between clone starts. In some cases, 
several clones failed to start at all. In other cases, clones 
stopped responding for some time before coming back alive 
and continuing to process tuples. As a result, clones did not 
share the workload equivalently. Some discussions with the 
SnowFlock team members indicated this might be a 
network issue. It was beyond our ability to resolve this 
issue. 

In addition, due to the memory limitations of the virtual 
machine, the number of tuples that the original map task 
could queue for the clones was severely limited, resulting in 
clones being idle. This affected the results of our 
experiments. 

Due to the way originals and clones are networked, we were 
unable to perform evaluations when map tasks running in 
parallel on several VM spawn clones for the same job. This 
is because the network is setup so that original VMs can 
communicate with each other, as well as with their 
corresponding clones, but clones from one original cannot 
communicate with other originals and their clones. When 
clones are spawned from multiple machines in parallel, 
most were unable to communicate with the NameNode, 
which runs on one of the VMs. Deeper introspection of 
both SnowFlock and Xen scripts is required to implement 
our network requirements. 

6. EVALUATION 
We run experiments on a cluster of two machines with eight 
cores each. One machine was used as a SnowFlock master 
while the other was used for hosting clones. The master 
machine was preconfigured with a virtual machine running 
the Hadoop NameNode, JobTracker, TaskTracker and 
DataNode.  

For our experiments, we used a bucket of 1K tuples. Some 
preliminary testing showed that smaller bucket sizes 
performed worse than larger bucket sizes. Figure 3 
benchmarks the processing overhead as function of the 
bucket size – the number of tuples in a bucket that is passed 
from the original to the clone. The experiments were 



performed with one clone spawned from the original map 
task. While it can be seen that large buckets perform better 
than small buckets, we did not increase the bucket size 
beyond 1K in our experiment because the performance 
improvement was insignificant, while we had to avoid 
running out of memory, which happened due to the 
combination of two facts: (1) the available memory was 
limited and (2) clones sometimes became idle.  
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Figure 3 – Processing Overhead for Varying Bucket Size 

 

To benchmark our implementation, we evaluated the 
performance of the WordCount MapReduce application on 
a 177M snapshot of the Wikipedia data available in an xml 
format. As the baseline, we measured the performance of 
the unmodified Hadoop processing the input in three 
different forms: (1) one virtual machine configured to run 
one map task at a time, (2) one machine configured to run 
three map tasks at a time, and (3) three machines configured 
to run one map task each (each machine performs a data-
local map task). Since Hadoop uses 64M blocks, by default, 
the 177M input data is split into three input splits, which 
allowed us to initiate three concurrent map tasks, when 
needed. 

We compared the performance of the unmodified Hadoop 
with the performance achieved with cloning. For cloning, 
we used one machine that runs one map task at a time and 
spawns various numbers of clones – from one clone per job 
up to six clones per job (the clone host we were provided 
with allows up to six clones). Also, as discussed in  
Section 5, we could not perform cloning from several 
machines in parallel due to the network configuration 
problems.  

The results of our experiments are summarized in Figure 4. 
Each experiment was executed twice and we present an 
average between these two runs.2 It is easy to see that the 
modified version (bars that correspond to 1-6 clones) 
performs worse that the original one. In addition, in spite of 
the expected result of having improved performance when 
                                                                 
2 Due to clone instability discussed in Section 5, we only have one 

run of the experiment with three and six clones. 

increasing the number of clones, we observe a high variety 
in the results.  

To further understand how the time is spent during a job’s 
execution, we instrumented the code and performed micro-
benchmarking, measuring time spent in specific activities 
during the execution. We benchmarked five such activities, 
presented in Figure 4: 

1. Clone create is the time spent creating a specified 
number of clones. 

2. Clone destroy is the time spent destroying the created 
clones. 

3. Map execution is the time spent processing input tuples 
(i.e., time spent in the user-defined map function) 

4. Implementation and network overhead is the time spent 
in our implementation, the major bulk of which involves 
the data transfer over the network. 

5. Hadoop processing is the processing overhead 
introduced by the Hadoop framework itself. 
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Figure 4 – Evaluation. 

These detailed metrics revealed that the map execution time 
does not decrease linearly as the number of clones 
increases. We attribute that to the fact that clones 
sometimes become stale and/or network is unstable. We 
have also noticed that the time to create and, especially, to 
destroy clones took significantly longer than was indicated 
in [5]. Also, the higher is the number of created clones, the 
longer it takes to destroy them, while clone creation time 
does not display such behavior.  

In addition, we observed that in our experiments, time spent 
in similar runs (e.g., same configuration, same number of 
clones) can vary significantly. We don’t know the exact 
cause, for that but we noticed that generally rebooting the 
machines improve the stability and performance of 
subsequent runs. Another guess could be disk contention, or 
the network instability. 



Table 1 presents the detailed results from our experiments 
with cloning. 

# 
clone 
create 

clone 
destroy 

map 
execution 

Impl. and 
network 
overhead 

hadoop 
processing total 

1 31083 40715 63277 753683 50221 938979 

1 34847 61026 37964 863104 73461 1044545 

2 35405 69726 122478 739478 48209 1015296 

2 34320 65425 46838 699349 45229 891161 

3 20551 93633 46890 676826 42254 880154 

4 42268 121146 62231 679973 44774 954311 

4 44908 150166 84984 1110168 63857 1435406 

5 47228 167336 269639 498080 48045 1030328 

5 28670 183334 80255 585044 45990 923293 

6 51968 145207 84725 552975 49615 884490 

Table 1 – Detailed Results of the Experiments (msec). 
As to our objective of multiplexing the map execution: even 
though we are able to observe some benefits from such 
multiplexing, e.g., map time for several experiments that 
use cloning are smaller than the map time of the original 
Hadoop with one map task3 (due to the dynamic creation of 
new virtual machines and, thus, better load balancing), 
these benefits are not consistent and are lost altogether due 
to the implementation overhead that is introduced. 

7. RELATED WORK 
Enhancing an existing framework with SnowFlock’s ability 
to dynamically clone virtual machines as required was 
instantiated in [8]. While in that work the authors combine 
SnowFlock with a parallel processing framework MPI, the 
idea behind the work is similar to ours – users of the system 
only need to maintain a fixed number of VMs, and install 
their usual applications. The system grows its 
computational power on demand and in a dynamic manner.  

In MapReduce Online [9], the authors propose a modified 
MapReduce architecture in which intermediate data is 
pipelined between the map and the reduce phases, while 
preserving the programming interfaces and fault tolerance 
models of previous MapReduce frameworks. To implement 
pipelining, the data between the map and the reduce phases 
is passed over the network instead of being materialized 
onto the disk. We use similar technique for exchanging data 
between a map task and its spawned clones – map task 
sends to the clones input buckets over the network, and the 
clones send back the processed results. 

8. FUTURE WORK 
First, additional effort is required to make the 
implementation more robust to handle the issues outlined in 
Section 5.  
                                                                 
3 69,74 msec comparing to the times shown in the forth 

column of Table 1. 

Looking forward, the cloning strategy that we implemented 
supports coarse-grained fault recovery mechanism: if at 
least one of the spawned clones or the original fails, the 
whole task fails. As the number of clones per task increases, 
failures become more prevalent and they should be treated 
gracefully. Thus, a finer-grained fault recovery mechanism 
that tracks and re-execute only the tuples that were assigned 
to the failed clone could be implemented. Another possible 
extension is to track and re-execute slow “struggler” clones 
in order to improve the overall execution time of a task.  

Instead of relying on the network to transfer data, a 
possibility of using a shared network-mounted disk that is 
mounted when a clone starts could be explored. However, 
this would incur a performance penalty due to the cost of 
serialization (in addition to the network overhead typically 
incurred for communicating with the shared disk).  

Implementing cloning in the reduce phase, as well as 
implementing additional cloning strategies mentioned in 
Section �3 is another aspect of a possible future work.  
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