
Cloning Strategies for MapReduce

Shahan Khatchadourian and Julia Rubin
Department of Computer Science

University of Toronto
{shahan, mjulia}@cs.toronto.edu

ABSTRACT
In this work, we discuss possible strategies for increasing
the computational power of the MapReduce framework in a
dynamic manner, using SnowFlock’s cloning mechanism.
We describe the implementation strategy that we have
chosen and rationalize our decisions. We then discuss
issues that we encountered during the implementation and
the evaluation that we performed. Besides initial evaluation
of the idea, our work provides ground and identifies issues
related to the future exploration of this approach.

1. INTRODUCTION
MapReduce[1] is a programming model designed for
processing large volumes of data in parallel by dividing the
work into a set of independent tasks. It allows programmers
to think in a data-centric fashion: they focus on applying
transformations to sets of data records, and allow the details
of distributed execution, network communication and fault
tolerance to be handled by the MapReduce framework. The
framework has become prevalent due to its simplicity as a
cloud programming model.

Conceptually, a MapReduce program (also referred to as a
Job) transform lists of input data elements into lists of
output data elements. It does this in two phases: the map
phase and the reduce phase. Each phase is made up of
several tasks which run on a cluster of machines (workers).

Hadoop, a popular implementation of the MapReduce
framework [2], is commonly installed on shared hardware
controlled by virtual machine monitors (Cluster Setup
Hadoop installation [3]). Such installations require
identification and configuration of all machines in the
cluster upfront. Adding a new machine to the cluster
involves additional installation steps performed by a cloud
administrator – a process that might take a significant
amount of time (“minutes”, according to [4]). Additionally,
a job's configuration needs to be updated and may require
the job itself to be restarted.

While Hadoop allows controlling the way cluster machines
are used (by providing explicit configuration options that
define the number of spawned map and reduce tasks for
each job, as well as the number of map and reduce tasks for

each worker), it does not provide a way to dynamically
grow its computational power. Enhancing Hadoop with the
ability to dynamically provision machines as a job is being
processed is the main objective of our work. Towards this
end, we propose to integrate Hadoop with SnowFlock [5] –
a system that allows Xen virtual domains [6] to be cloned
into impromptu clusters in a matter of sub-seconds. An
application that has been designed to work in the
SnowFlock environment should be able to expand its
processing footprint in sub-second time, and then reduce it
again when the computation is finished. Fast cloning is
achieved by transmitting a VM state on demand, instead of
replicating it upfront.

In what follows, we discuss the MapReduce framework in
more details. We then explore different strategies for
enhancing the Hadoop MapReduce implementation with the
ability to expand its computational power in a dynamic
manner. We discuss the strategies that we implemented for
this project and evaluate our implementation by comparing
the performance of the extended Hadoop system to the
original one. Finally, we outline related approaches and
discuss the future work.

2. MAP-REDUCE EXECUTION FLOW
A MapReduce program consists of two phases – map and
reduce. A computation unit of each phase is referred to as a
task. A special entity, called master, is responsible for
keeping track of the job’s execution and assigning tasks to
workers.

The input to the map phase is a set of data files in an
arbitrary format – line-based log files, multi-line input
records, etc. These files are split into input splits, each of
which describes a unit of work that comprises a single map
task in a MapReduce program. The program executes as
follows (see also Figure 1 for the high level architecture
view):

1. A worker who is assigned a map task reads the contents
of the corresponding input split. It parses key/value
pairs out of the input data using the record reader and
passes each pair to the user-defined map function. The
intermediate key/value pairs produced by the map
function are buffered in memory.

2. Periodically, the buffered pairs are written to local disk,
partitioned into R regions, corresponding to R reduce

Produced on December 17, 2010
for CSC2231 Special Topics in Computer Systems: Cloud Computing.
Department of Computer Science, University of Toronto.

tasks. The locations of these buffered pairs on the local
disk are passed back to the master, who is responsible
for forwarding these locations to the reduce workers.

3. When a reduce worker is notified by the master about
these locations, it uses remote procedure calls to read
the buffered data from the local disks of the map
workers (shuffling). When a reduce worker has read all
of the intermediate data, it sorts it by the intermediate
keys so that all occurrences of the same key are grouped
together. The sorting is needed because typically many
different keys map to the same reduce task.

4. The reduce worker iterates over the sorted intermediate
data and for each unique intermediate key encountered,
it passes the key and the corresponding set of
intermediate values to the user-defined reduce function.
The output of the reduce function is appended to a final
output file for this reduce partition.

Figure 1 - MapReduce Framework.

Fault tolerance of the MapReduce job is ensured by the
master, which pings every worker periodically and, if no
response is received from a worker in a certain amount of
time, marks the worker as failed. Any map task or reduce
task in progress on a failed worker is reset to idle and
becomes eligible for rescheduling.

Hadoop’s MapReduce framework uses HDFS [7] as the
underlying storage mechanism. HDFS supports fault-
tolerance by replicating data to different nodes. Thus,
intermediate results that are produced by the MapReduce
jobs and stored in HDFS are protected by the same
mechanism.

3. PROPOSED EXTENSIONS
We explored several strategies that extend Hadoop’s
MapReduce implementation with SnowFlock’s ability to
dynamically spawn new virtual machines. The most obvious

approach involves introducing clones for increasing the
number of map and reduce tasks that are able to execute in
parallel. However, since the number of these tasks is
defined by the number of input splits and the number of
intermediate partitions, respectively, these numbers are
known before the job begins executing and the desired
multiplexing level can be achieved statically. On the other
hand, the number of records processed by each map or
reduce task is unknown in advance, because it depends on
the input itself – the records in each input split and the
number of keys in each reduce partition. Thus, we have
chosen to focus on multiplexing the execution within a
single map or reduce task. We define the following two
cloning strategies:

1. Create clones as part of the map task, before the user-
defined map functions are called; destroy them after
they finish processing and returning their output to the
map task.

2. Create clones as part of the reduce task, before the user-
defined reduce functions are called; destroy them after
they finish processing and returning their output to the
reduce task.

However, due to the time constraints and due to the
unexpected issues discussed in Section 5, we implemented
cloning in the map phase only. We believe that the cloning
in the reduce phase can be implemented in a similar
manner.

In our architecture, the original map task creates clones to
process tuples generated by the map’s record reader. Each
clone processes a subset of input tuples. As in the native
MapReduce implementation, a tuple is processed by a call
to the user-define map function. Tuples and their processing
results (intermediate key/value pairs) are transferred
between the original task and the spawned clones over the
network. Intermediate results are then committed to disk by
the original map task.

One consequence of this approach is the introduction of
network overhead even for data-local map tasks.1 However,
allowing only the original map task to commit the produced
intermediate key/value pairs to disk preserves MapReduce’s
fault-tolerance using Hadoop’s native implementation: if
some tuples are unprocessed because of clone or network
failures, the map task is deemed incomplete and is
rescheduled by the master. The simplicity of this fault-
tolerance mechanism comes at a price: due to the increased
number of clones, the potential for machine failure to
disrupt the task increases as well, since if one clone fails,
the entire task fails. We discuss possible solutions to this
issue in Section 8.

1 We investigate the overhead introduces by transferring tuples
over the network in our evaluation.

4. PROTOTYPE IMPLEMENTATION
We implemented two versions of the prototype, varied by
how clones are created and destroyed in the map phase.

In the first version, the map task fills buckets of input tuples
(configured to 1K tuples per bucket) and spawns a clone for
each bucket once it finishes filling it. The clone is destroyed
immediately after it finishes processing the bucket that was
assigned to it. This method relies on having clones process
buckets that are in memory due to the shared state that
clones obtain from the original when they are spawned. It
should be noted that besides the data associated with tuples,
additional types of memory pages, such as kernel and user
pages, are transferred by SnowFlock as well.

After implementing this version, it became apparent that it
does not perform well due to the overhead of creating and
destroying clones (and transferring the state for each
created clone). Thus, we devised a second version that
reuses clones. In this version, a fixed number of clones are
created when a map task starts its execution. These clones
live for the whole duration of the map task and are
destroyed right before it finishes. They pull buckets of input
tuples from the queue that the original map task populates,
process them, and send the intermediate tuples back to the
original.

An RPC protocol is used for communication purposes.
Figure 2 outlines the details of the communication between
an original and a cloned map tasks. An original map task,
depicted on the left part of the figure, together with
Hadoop’s file system HDFS, reads the input data from
HDFS locally. An RPC server, which is started by the
original map task, is used to communicate with a clone,
which is depicted on the right. RPC is used by clones to
pull buckets, and then to send bucket of processed tuples
back.

Cloning itself is conducted within a user-defined
MapReduce job, thus, allowing all clone handling to be
accomplished without modifying the Hadoop code.
Embedding the cloning into the Hadoop infrastructure
seems quite straightforward and is beneficial because this
will allow running existing MapReduce jobs without
modification. However, since the exact placement of the
code that manages cloning does not influence the results of
our evaluation, we have chosen the first approach and left
embedding of the code into Hadoop framework for the
future work.

5. DISCUSSION
While working on this project, we encountered several
technical issues that prevented us to achieve the results that
we expected. We discuss these issues below.

First, the stability of clones was unpredictable. Typically,
after requesting an allocation of clones, clones would not
start up at the same time, with delays ranging from several

Figure 2 – Architecture.

seconds to minutes between clone starts. In some cases,
several clones failed to start at all. In other cases, clones
stopped responding for some time before coming back alive
and continuing to process tuples. As a result, clones did not
share the workload equivalently. Some discussions with the
SnowFlock team members indicated this might be a
network issue. It was beyond our ability to resolve this
issue.

In addition, due to the memory limitations of the virtual
machine, the number of tuples that the original map task
could queue for the clones was severely limited, resulting in
clones being idle. This affected the results of our
experiments.

Due to the way originals and clones are networked, we were
unable to perform evaluations when map tasks running in
parallel on several VM spawn clones for the same job. This
is because the network is setup so that original VMs can
communicate with each other, as well as with their
corresponding clones, but clones from one original cannot
communicate with other originals and their clones. When
clones are spawned from multiple machines in parallel,
most were unable to communicate with the NameNode,
which runs on one of the VMs. Deeper introspection of
both SnowFlock and Xen scripts is required to implement
our network requirements.

6. EVALUATION
We run experiments on a cluster of two machines with eight
cores each. One machine was used as a SnowFlock master
while the other was used for hosting clones. The master
machine was preconfigured with a virtual machine running
the Hadoop NameNode, JobTracker, TaskTracker and
DataNode.

For our experiments, we used a bucket of 1K tuples. Some
preliminary testing showed that smaller bucket sizes
performed worse than larger bucket sizes. Figure 3
benchmarks the processing overhead as function of the
bucket size – the number of tuples in a bucket that is passed
from the original to the clone. The experiments were

performed with one clone spawned from the original map
task. While it can be seen that large buckets perform better
than small buckets, we did not increase the bucket size
beyond 1K in our experiment because the performance
improvement was insignificant, while we had to avoid
running out of memory, which happened due to the
combination of two facts: (1) the available memory was
limited and (2) clones sometimes became idle.

690000
700000
710000
720000
730000
740000
750000
760000
770000
780000
790000
800000
810000
820000
830000

500 1000 1500

bucket size (tuples)

m
se

c

Figure 3 – Processing Overhead for Varying Bucket Size

To benchmark our implementation, we evaluated the
performance of the WordCount MapReduce application on
a 177M snapshot of the Wikipedia data available in an xml
format. As the baseline, we measured the performance of
the unmodified Hadoop processing the input in three
different forms: (1) one virtual machine configured to run
one map task at a time, (2) one machine configured to run
three map tasks at a time, and (3) three machines configured
to run one map task each (each machine performs a data-
local map task). Since Hadoop uses 64M blocks, by default,
the 177M input data is split into three input splits, which
allowed us to initiate three concurrent map tasks, when
needed.

We compared the performance of the unmodified Hadoop
with the performance achieved with cloning. For cloning,
we used one machine that runs one map task at a time and
spawns various numbers of clones – from one clone per job
up to six clones per job (the clone host we were provided
with allows up to six clones). Also, as discussed in
Section 5, we could not perform cloning from several
machines in parallel due to the network configuration
problems.

The results of our experiments are summarized in Figure 4.
Each experiment was executed twice and we present an
average between these two runs.2 It is easy to see that the
modified version (bars that correspond to 1-6 clones)
performs worse that the original one. In addition, in spite of
the expected result of having improved performance when

2 Due to clone instability discussed in Section 5, we only have one

run of the experiment with three and six clones.

increasing the number of clones, we observe a high variety
in the results.

To further understand how the time is spent during a job’s
execution, we instrumented the code and performed micro-
benchmarking, measuring time spent in specific activities
during the execution. We benchmarked five such activities,
presented in Figure 4:

1. Clone create is the time spent creating a specified
number of clones.

2. Clone destroy is the time spent destroying the created
clones.

3. Map execution is the time spent processing input tuples
(i.e., time spent in the user-defined map function)

4. Implementation and network overhead is the time spent
in our implementation, the major bulk of which involves
the data transfer over the network.

5. Hadoop processing is the processing overhead
introduced by the Hadoop framework itself.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000
1300000

0 (
1 w

or
ke

r 1
 ta

sk
s)

0 (
1 w

or
ke

r 3
 ta

sk
s)

0 (
3 w

ork
ers

 1
tas

k e
ac

h) 1 2 3 4 5 6
clones

m
se

c

hadoop processing
implementation and network overhead
map execution
clone destroy
clone create

Figure 4 – Evaluation.

These detailed metrics revealed that the map execution time
does not decrease linearly as the number of clones
increases. We attribute that to the fact that clones
sometimes become stale and/or network is unstable. We
have also noticed that the time to create and, especially, to
destroy clones took significantly longer than was indicated
in [5]. Also, the higher is the number of created clones, the
longer it takes to destroy them, while clone creation time
does not display such behavior.

In addition, we observed that in our experiments, time spent
in similar runs (e.g., same configuration, same number of
clones) can vary significantly. We don’t know the exact
cause, for that but we noticed that generally rebooting the
machines improve the stability and performance of
subsequent runs. Another guess could be disk contention, or
the network instability.

Table 1 presents the detailed results from our experiments
with cloning.

clone
create

clone
destroy

map
execution

Impl. and
network
overhead

hadoop
processing total

1 31083 40715 63277 753683 50221 938979

1 34847 61026 37964 863104 73461 1044545

2 35405 69726 122478 739478 48209 1015296

2 34320 65425 46838 699349 45229 891161

3 20551 93633 46890 676826 42254 880154

4 42268 121146 62231 679973 44774 954311

4 44908 150166 84984 1110168 63857 1435406

5 47228 167336 269639 498080 48045 1030328

5 28670 183334 80255 585044 45990 923293

6 51968 145207 84725 552975 49615 884490

Table 1 – Detailed Results of the Experiments (msec).
As to our objective of multiplexing the map execution: even
though we are able to observe some benefits from such
multiplexing, e.g., map time for several experiments that
use cloning are smaller than the map time of the original
Hadoop with one map task3 (due to the dynamic creation of
new virtual machines and, thus, better load balancing),
these benefits are not consistent and are lost altogether due
to the implementation overhead that is introduced.

7. RELATED WORK
Enhancing an existing framework with SnowFlock’s ability
to dynamically clone virtual machines as required was
instantiated in [8]. While in that work the authors combine
SnowFlock with a parallel processing framework MPI, the
idea behind the work is similar to ours – users of the system
only need to maintain a fixed number of VMs, and install
their usual applications. The system grows its
computational power on demand and in a dynamic manner.

In MapReduce Online [9], the authors propose a modified
MapReduce architecture in which intermediate data is
pipelined between the map and the reduce phases, while
preserving the programming interfaces and fault tolerance
models of previous MapReduce frameworks. To implement
pipelining, the data between the map and the reduce phases
is passed over the network instead of being materialized
onto the disk. We use similar technique for exchanging data
between a map task and its spawned clones – map task
sends to the clones input buckets over the network, and the
clones send back the processed results.

8. FUTURE WORK
First, additional effort is required to make the
implementation more robust to handle the issues outlined in
Section 5.

3 69,74 msec comparing to the times shown in the forth

column of Table 1.

Looking forward, the cloning strategy that we implemented
supports coarse-grained fault recovery mechanism: if at
least one of the spawned clones or the original fails, the
whole task fails. As the number of clones per task increases,
failures become more prevalent and they should be treated
gracefully. Thus, a finer-grained fault recovery mechanism
that tracks and re-execute only the tuples that were assigned
to the failed clone could be implemented. Another possible
extension is to track and re-execute slow “struggler” clones
in order to improve the overall execution time of a task.

Instead of relying on the network to transfer data, a
possibility of using a shared network-mounted disk that is
mounted when a clone starts could be explored. However,
this would incur a performance penalty due to the cost of
serialization (in addition to the network overhead typically
incurred for communicating with the shared disk).

Implementing cloning in the reduce phase, as well as
implementing additional cloning strategies mentioned in
Section �3 is another aspect of a possible future work.

9. ACKNOWLEDGMENTS
We wish to thank the SnowFlock team for their support
during the implementation of this project.

10. REFERENCES
[1] Dean J, and Ghemawat S. MapReduce: Simplified data

processing on large clusters. In OSDI (2004).

[2] Apache Hadoop MapReduce Project.
http://hadoop.apache.org/mapreduce

[3] Apache Hadoop Cluster Setup.
http://hadoop.apache.org/common/docs/current/cluster_setup
.html

[4] Amazon Elastic Compute Cloud Developers Guide.
http://docs.amazonwebservices.com/AWSEC2/latest/Develo
perGuide/

[5] Lagar-Cavilla H. A, Whitney J. A, Scannell A, Patchin
P, Rumble S. M, De Lara E, Brudno M, and
Satyanarayanan M. SnowFlock: Rapid Virtual Machine
Cloning for Cloud Computing. In Eurosys 2009.

[6] Barham P, Dragovic B, Fraser K. Hand S, Harris T, Ho
A, Neugebauer R, Pratt I, and Warfield, A. Xen and the
art of virtualization. In SOSP 2003.

[7] Apache Hadoop Distributed File System
http://hadoop.apache.org/hdfs/

[8] Patchin P, Lagar-Cavilla H.A, De Lara E, and Brudno
M. Adding the Easy Button to the Cloud with
SnowFlock and MPI. In HPCVirt (2009).

[9] Condie T, Conway N, Alvaro P, Hellerstein J.M,
Elmeleegy K, and Sears, R. MapReduce Online. In
NSDI (2010).

