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Introduction
A cool clip the authors made (00:20 - 01:50)

Kalman Filter  timeswep 4


https://www.youtube.com/watch?v=2uQ6bgemuLw

Introduction

Problem with current model

* Current approaches to learning word embeddings in a dynamic context rely
on grouping the data into time bins and training the embeddings separately

* This approach, however, raises three fundamental problems.



Introduction

Problem with current model

1. word embedding models are non-convex, training them twice on the same data will lead to
different results.

* Thus, embedding vectors at successive times can only be approximately related to each
other, and only if the embedding dimension is large (Hamilton et al., 2016).

2. dividing a corpus into separate time bins may lead to training sets that are too small to train
a word embedding model.

* Runs the risk of overfitting

3. due to the finite corpus size the learned word embedding vectors are subject to random
noise.

 difficult to disambiguate this noise from systematic semantic drifts between subsequent
times



Introduction

Circumvent these problems by introducing a dynamic word embedding model

* Derive a probabilistic state space model where word and context embeddings evolve
In time according to a diffusion process.

* This leads to continuous embedding trajectories, smoothes out noise in the word-
context statistics, and allows us to share information across all times.

 Propose two scalable black-box variational inference algorithms for filtering and
smoothing. These algorithms find word embeddings that generalize better to held-

out data.

* Analyze three massive text corpora that span over long periods of time.

« Automatically find the words whose meaning changes the most, with smooth word
embedding trajectories.
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“Smooth”

1.0
1. marginal 2. computer 3. versus 4. commitment 5. radio
——— text productivity —-—- | -—— exact software ——- | -—— quam Effects ——- | -—- nomination willingness ——- | -—- peripheral TV ——
0.8 |——-photographs  diminishing —-—--]~-—--accurate user —-—--]——--aut Effect —-—--}—-—--offender loyalty —-—--{~-—--basal telephone —-—-4]
—-—- preface elasticity —--—- | —--—- sampling machine ---—- | ----quod Influence —--—- [ -~ custody dedication —--—- | —--—-0S newspapers —--—
Q —-..— references aggregate —--— | —--— observer devicg-£>—~ |- Arizona Amer —---— | —--— assignment adherence —--— | —— cortex phor]_ea-m—
c —-=memorandum utility —----=] =----clever pwﬁ. |- auf pp. == |=--=voting devotion —-----| == nuclear ..compater —----
g 0.6 pIvEenon T e Tt T Vil ST T
' ~ - r' v ./ﬁ . .v taatY M
% -~ v"_,‘-::mﬂ:.;: I [, ‘\ g 7/:;;&‘;*#. ~ \: - / ,I’ Ny / 'If’ o
(o} P T A / W AUt PN Sl 5’/// s "2"%4 M N I <
c Lo R N e R R T e g 1Y 7N A I N KT
g 04 e L e a LN I N, hitc e N 14 NSRS T
o yn"; T T AR, W SN e/ Nt N NAS S S i TS Ny y ey
(& N ))?\-c = S .- T \-\ \""“‘.,'?u ~— e~ -70‘(5‘* it e ¢ }\. ... v\- e <. \’& ,»Q o " A
—"F"“ W '&\f ~\,\' "- \ ~" N, ‘)Q-,.\v\.\w»‘ N e R TR A A , '~ A .. [ \\'x'} ‘, M
N N \.v" \\ \4-‘*‘\.' /'EJQ’LM og e DN - = 2 R g AN *g’\ AN SR P Sy \Ah\v;‘:‘v‘\'v‘%ﬂn v
0.2 | * ArATA AL e ] 2N ~;w"’” R e R N AN TR AR LU g M, ar s B T TN
5.\:\"’7/ g ~\. b \‘VV,S&’ _\v_vA A ~ \/&%‘l‘-\f"r"’d\.\:ﬁ'.’;::','~"""*"\‘"Q.. s mw\’.w‘,,”"’“‘«-""»%' ‘°“"-,~__,_,.\_,~\ . $ \‘..\
- T R '\‘;-\w e ~t At ’ \'"'h'"‘"-.\.-.\ TS NN ./‘\"""\" I -'\ /"/ TR,
h Yt ” R L /. o -~
?8 | | | B Datind | | | | | | | | | | | | | | | |
' 6. potential 7. notably 8. peer 9. significantly 10. software
——— objective possibilities ——- | -—— materially especially -—- | -—- nobleman classroom —--- | -—— emphatically considerably --- |--- processing computer ——-
0.8 |——-perception potentially —-—--}—-—--faithfully particularly —-—--}—-—--lawyer cognitive —-—--}—-—--significant substantially —-—--}—-—--Planning Web —-—--
—--—-Subjective possibility —--—- | —-—- effectually including —--=- | == knight networks —-—- | --— gestures greatly =--—- [—---Freud techno!ogy =
Q —--—verb ~risks == |—-—clearly notable —--— [ —--—member teacher —---— | —---— smiled materially »—=|---—enzyme application
= | —-----verbs likelihood —----- | ------ abundantly xemplified —----- | == nobility parent —----- | —---sharply slightfy~=«| —-.- specialized flsgm —---&
-I(T) o ROV IC:/‘ - o,
5 | N ‘\\.\ Pt Y _,;:,%;;‘?y-::,.%y‘:m \ _____r"\v- , w/‘“"r\
(0)] v aR’s V‘:"“Qi’:i:k'\-\ \-—'\—\v\ “ PP . ‘../.“" J'vf;/_ ‘.::J \ \’\"I\I\l\
ol ER - o &G o~ ] .,0\ - v
= B B '\:\‘ﬁ.'\'r- \\\ v, Y o l‘-\;\‘“:\’r\g%a:&f;’(\\ y \'.::/ e 'U\u-— QA \ N J '
8 & "vf.-\‘\.” 'V'V."\"“‘. \\ .}‘ﬁm".‘}’;\’: o R '//‘ ~\ L V\\ I_l \‘/'?‘ 4 Lt l"‘
o g,. o ..\‘.\ ) ., ,’\:\J «\i.o e ./. N s Ll STTIPTI N "':'.\-'. x. \ -Ll - 21 l
7 T \-'\"ﬂ'/;:k;. }:&/ﬂ A J‘\‘?'//'" L. \\ \—tf‘”\}“‘\_/]“ R.“« ¥ 2, g S aliant TN
v~":’-/ /7 \ '\ S L \"';:/.'-é'-\ ‘_f/ Teamt e, \\ A" | v~ 1,\ } ﬂk \\ J | R AN I
A : —v\p,a\/.- ~"T. ~ "f .l k \‘Q B e U R \M:.v\.)\-—w.ﬂ'*‘_\ ‘_Jv_ m -r ‘\& 7. AL
<.r {*2e m s ‘h'} AR N --‘<§ 11 Rl R e 4 TR N , {’ 5,-40 o, ,.\ ,,w‘ A -\/‘{1
N e S e e A v = [ WOV
~ e C"W\,,.,r'f':‘f/’-#:f' .
0.0 & ! ! | ! ! L1 S e . | | . | | !
1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000
date date date date date

Figure 1. Evolution of the 10 words that changed the most in cosine distance from 1850 to 2008 on Google books, using skip-gram
filtering (proposed). Red (blue) curves correspond to the five closest words at the beginning (end) of the time span, respectively.



Model

(Skip related work)

 Dynamic skip-gram is a probabilistic model which combines a Bayesian
version of the skip-gram model with a latent time series.

b)

° a)
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Figure 2. a) Bayesian skip-gram model (Barkan, 2017). b) The
dynamic skip-gram model (proposed) connects 1’ copies of the

Bayesian skip-gram model via a latent time series prior on the
embeddings.




Model

(Non-Bayesian) Skip-Gram Model

[ )
2 2 2 2 2
0o o) o) 0o o)

» For each pair of words 1, J in the vocabulary, the model assigns probabilities
that word 1 appears in the context of word ;.

» The generative model assumes that many word-word pairs (i, /) are
uniformly drawn from the vocabulary and tested for being a word-context
pair



Model

Some notations for (Non-Bayesian) Skip-Gram Model

* U, V; E R4 for each word i in the vocabulary, where d is the embedding dimension.
» U;Is the word embedding vector
 v:Is the context embedding vector.

 sigmoid function o(x) = 1/(1 + ™).

o Let Z;i € {0,1} be an indicator variable that denotes a draw from that probability distribution,
hence p(z; = 1) = G(I/tl-TVj).

- collect evidence of word-word pairs for which z;; = 1

. nl:‘; , the number of times that a word-context pair (i, j) is observed in the corpus.



Model

(Non-Bayesian) Skip-Gram Model

 But, we also need negative sampling, the possibility to reject word-context
pairs if z;; = 0.

. N X P()P(j)**, P(i) is the frequency of word i in the training corpus.

e U= (uy,...,u;) € R%L is the matrix of all word embedding vectors, and V
Is defined analogously for the context vectors

L
p(nT,n"|U,V) = H a(u,jvj)”;rja(—uij)”;j.

2
1,7=1



Model

(Non-Bayesian & Bayesian) Skip-Gram Model

e NT = (n™,n7), the combination of both positive
and negative examples.

L
. logp(n=|U,V) = Z (nl;.r log a(uiij) + n;; log 0(—ul.ij))
ij=1
 Barkan (2017) gives an approximate Bayesian

treatment of the model with Gaussian priors on
the embeddings.



Dynamic Skip-Gram Model

Kalman filter to “smooth”

Consider a truck on frictionless, straight rails.

>
>

Initially, the truck is stationary at position O, but it is : |
buffeted this way and that by random uncontrolled forces. S

We measure the position of the truck every At seconds, but
these measurements are imprecise; we want to maintain a
model of the truck's position and velocity.

| Truth; | filtered process; | observations.

Source: Wikipedia


https://en.wikipedia.org/wiki/Velocity

Dynamic Skip-Gram Model

Kalman filter as a prior for the time-evolution of the latent embeddings




Dynamic Skip-Gram Model

Kalman filter as a prior for the time-evolution of the latent embeddings

- The variance of the transition kernel 67 = D(t,,; — ,), where D is a global diffusion constant and (z,, ; — 7,)
Is the time between subsequent observations

e p(U, | U) x N (U, atz)/V(O,ag) . /V((),ag) is an additional Gaussian that prevents the word embeddings
from growing very large. Same for V,

. p(U,|Uy) = ¥ (0,651)
T—1
p(n*,U,V) = || p(Ues1|Us) p(Vig1|Vi)

t=0
T L
X H H p(nz’j,t‘ui,t?vj,t)
t=14 =1




Inference

Bayesian inference

p(n=,U,V)
p(nE,U,V)dUdV

p(U,VIn™=) =5

 Problem: normalization is intractable :(
» KL divergence / ELBO to approximate p(U, V|n™) with ¢,(U, V| n™)

» Note: the paper use g,(U, V), but | prefer the notation g,(U, V| n-)



Inference

KL Divergence

P(x)
DgL(P || Q)= ) Pz 108( ) /
; Q(x) /
A measure of how one probability e
distribution is different from a second,

reference probability distribution
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KL Area to be Integrated

Source: Wikipedia


https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution

Inference
ELBO

A distribution Q over unobserved variables Z is optimized as an approximation to the true posterior P(Z | X),
given observed data X.

- Q(Z)P(X)
Dy (O || P(Z| X)) = ;Q(Z) llog P ]
- 0Z)
D (O || P) = ; O(Z) llog A log P(X)]

D (Q | P)= ) OZ)log Q(Z) — ) Q(Z)log P(Z,X) + log P(X)
Z Z

log P(X) = Dy (Q || P)

Source: Wikipedia


https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Posterior_probability

Inference

A cool video demo



https://www.youtube.com/watch?v=xrCalU-MPCc

Inference
Skip-Gram Filtering

+ + +
» p(U, Vi|ni) o« p(ng | U, V)p(U, Vi ngy_ )
. Approximate p(U,_,, V,_, | n;-,_,) from ELBO
° p(Ut’ Vt | nft—l) = Ep(Ut_l,Vt_l|n1“—“:t_1)[p(Ut9 Vt‘ Ut—l’ Vt—l)] ~ Eq(UH,VH|nli:t_1)[P(Uta Vt‘ Ut—l’ Vt—l)]

- p(U,V,|U,_,, V,_) from Kalman filter



Inference
Skip-Gram Smoothing

. Q(UlzT‘ nliT) — HlL:lH]C{l=1Q(uik,1:T‘ ni%,l:T)
e Same forV

* Fitted jointly to all time steps; no longer restricted to a variational distribution
that factorizes in time

* This approach results in smoother trajectories and typically higher likelihoods
than with filtering, because evidence is used from both future and past
observations.



Experiments

Let’s see some cool graphs

 SGI: non-Bayesian skip-gram model with independent random initializations
of word vectors

« SGP denotes the same approach as above, but with word and context
vectors being pre-initialized with the values from the previous year

 DSG-F: dynamic skip-gram filtering (proposed).
 DSG-S: dynamic skip-gram smoothing (proposed).



Experiments

Data they use

 Google books corpus (Michel et al., 2011) from the last two centuries (T = 209). This amounts to 5 million digitized books and
approximately 1010 observed words.

* The corpus consists of n-gram tables with n € {1, . . ., 5}, annotated by year of publication.

 Considered the years from 1800 to 2008 (the latest available).
* In 1800, the size of the data is approximately ~70m words. Used the 5-gram counts, resulting in a context window size of 4.

o “State of the Union” (SoU) addresses of U.S. presidents, which spans more than two centuries, resulting in T = 230 different
time steps and approximately 106 observed words.

 Some presidents gave both a written and an oral address; if these were less than a week apart, concatenate them and use
the average date.

« Constructed the positive sample counts nl;.’ using a context window size of 4.

» Twitter corpus of news tweets for 21 randomly drawn dates from 2010 to 2016.

e Used a context window size of 4



Experiments

Hyperparameters
* The vocabulary for each corpus was constructed from the 10,000 most
frequent words through-out the given time period.

* |n the Google books corpus, the number of words per year grows by a
factor of 200 from the year 1800 to 2008.

* Jo avoid that the vocabulary is dominated by modern words, normalize the
word frequencies separately for each year before adding them up.



Experiments

Qualitative results

* Results in smooth word embedding trajectories on all three corpora

 Can automatically detect words that undergo significant semantic changes
over time



Experiments

Let’s see some cool graphs
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Figure 3. Word embeddings over a sequence of years trained on year 1998 and their positions in subsequent years (colors).
Google books, using DSG-F (proposed, top row) and compared  DSG-F (top panel) displays a continuous growth of these dis-
to the static method by Hamilton et al. (2016) (bottom). We used  tances over time, indicating a directed motion. In contrast, in

c!yna.mic t-SNE (R:auber et al., 2016) for dimens.ion.ality reduc- SGP (middle) (Kim et al., 2014) and SGI (bottom) (Hamilton
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jectories with only few words that move quickly. Figure 4 shows sence of a directed drift; i.e. almost all motion is random.
that these effects persist in the original embedding space.



Experiments

Let’s see some cool graphs
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Figure 5. Smoothness of word embedding trajectories, compared across different methods. We plot the cosine distance between two
words (see captions) over time. High values indicate similarity. Our methods (DSG-S and DSG-F) find more interpretable trajectories
than the baselines (SGI and SGP). The different performance 1s most pronounced when the corpus 1s small (SoU and Twitter).



Experiments

Quantitative results

 (Generalizes better to unseen data

Analyze ey log p(n=| ﬁt, Vt), the predictive likelihoods on word-context pairs at a given time t, where ¢ is
n_
excluded from the training set

» For SGI and SGP, used the embeddings Ut = U,_; and Vt = V._, from the previous step

e For DSG-F, set l?t and Vt to be the modes U,_,, V,_, of the approximate posterior at the previous time step

 For DSG-S, hold out 10%, 10% and 20% of the documents from the Google books, SoU, and Twitter
corpora for testing, respectively.

o After training, estimate the word (context) embeddings l7t, Vt by linear interpolation between the values of
U..1, V.1 and U,_q, V,_; in the mode of the variational distribution, taking into account that the time
stamps 7, in general are not equally spaced.



Experiments

Let’s see some cool graphs
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Conclusion
TL;DR

* Presented the dynamic skip-gram model: a Bayesian probabilistic model that
combines word2vec with a latent continuous time series.

 Showed experimentally that both dynamic skip-gram filtering (which conditions
only on past observations) and dynamic skip-gram smoothing (which uses all
data) lead to smoothly changing embedding vectors that are better at predicting
word-context statistics at held-out time steps.

* The benefits are most drastic when the data at individual time steps is small,
such that fitting a static word embedding model is hard. This approach may be
used as a data mining and anomaly detection tool when streaming text on social
media, as well as a tool for historians and social scientists interested in the
evolution of language.



