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Introduction
A cool clip the authors made (00:20 - 01:50)

https://www.youtube.com/watch?v=2uQ6bgemuLw


Introduction
Problem with current model

• Current approaches to learning word embeddings in a dynamic context rely 
on grouping the data into time bins and training the embeddings separately


• This approach, however, raises three fundamental problems.



Introduction
Problem with current model

1. word embedding models are non-convex, training them twice on the same data will lead to 
different results. 


• Thus, embedding vectors at successive times can only be approximately related to each 
other, and only if the embedding dimension is large (Hamilton et al., 2016). 


2. dividing a corpus into separate time bins may lead to training sets that are too small to train 
a word embedding model. 


• Runs the risk of overfitting


3. due to the finite corpus size the learned word embedding vectors are subject to random 
noise.


• difficult to disambiguate this noise from systematic semantic drifts between subsequent 
times 



Introduction
Circumvent these problems by introducing a dynamic word embedding model

• Derive a probabilistic state space model where word and context embeddings evolve 
in time according to a diffusion process. 


• This leads to continuous embedding trajectories, smoothes out noise in the word-
context statistics, and allows us to share information across all times.


• Propose two scalable black-box variational inference algorithms for filtering and 
smoothing. These algorithms find word embeddings that generalize better to held-
out data. 


• Analyze three massive text corpora that span over long periods of time. 


• Automatically find the words whose meaning changes the most, with smooth word 
embedding trajectories.



Introduction
“Smooth”



Model
(Skip related work)

• Dynamic skip-gram is a probabilistic model which combines a Bayesian 
version of the skip-gram model with a latent time series.


•



Model
(Non-Bayesian) Skip-Gram Model

• For each pair of words  in the vocabulary, the model assigns probabilities 
that word  appears in the context of word . 


• The generative model assumes that many word-word pairs  are 
uniformly drawn from the vocabulary and tested for being a word-context 
pair

i, j
i j

(i, j)



Model
Some notations for (Non-Bayesian) Skip-Gram Model

•  for each word  in the vocabulary, where  is the embedding dimension. 


•  is the word embedding vector 


•  is the context embedding vector. 


• sigmoid function . 


• Let  be an indicator variable that denotes a draw from that probability distribution, 
hence . 


• collect evidence of word-word pairs for which 


• , the number of times that a word-context pair  is observed in the corpus. 

ui, vi ∈ Rd i d

ui

vi

σ(x) = 1/(1 + e−x)

zij ∈ {0,1}
p(zij = 1) = σ(u⊤

i vj)

zij = 1

n+
ij (i, j)



Model
(Non-Bayesian) Skip-Gram Model

• But, we also need negative sampling, the possibility to reject word-context 
pairs if . 


• ,  is the frequency of word  in the training corpus. 


•  is the matrix of all word embedding vectors, and V 
is defined analogously for the context vectors

zij = 0

n−
ij ∝ P(i)P( j)3/4 P(i) i

U = (u1, …, uL) ∈ Rd×L



Model
(Non-Bayesian & Bayesian) Skip-Gram Model

• , the combination of both positive 
and negative examples.


• 


• Barkan (2017) gives an approximate Bayesian 
treatment of the model with Gaussian priors on 
the embeddings. 

n± = (n+, n−)

log p(n± |U, V) =
L

∑
i,j=1

(n+
ij log σ(u⊤

i vj) + n−
ij log σ(−u⊤

i vj))



Dynamic Skip-Gram Model
Kalman filter to “smooth”

  Truth;   filtered process;   observations.

Consider a truck on frictionless, straight rails. 

Initially, the truck is stationary at position 0, but it is 
buffeted this way and that by random uncontrolled forces. 

We measure the position of the truck every Δt seconds, but 
these measurements are imprecise; we want to maintain a 
model of the truck's position and velocity. 

Source: Wikipedia

https://en.wikipedia.org/wiki/Velocity


Dynamic Skip-Gram Model
Kalman filter as a prior for the time-evolution of the latent embeddings 



Dynamic Skip-Gram Model
Kalman filter as a prior for the time-evolution of the latent embeddings 

• The variance of the transition kernel , where  is a global diffusion constant and  
is the time between subsequent observations


•  is an additional Gaussian that prevents the word embeddings 
from growing very large. Same for 


• 


•

σ2
t = D(τt+1 − τt) D (τt+1 − τt)

p(Ut+1 |Ut) ∝ 𝒩(Ut, σ2
t )𝒩(0,σ2

0) . 𝒩(0,σ2
0)

Vt

p(U1 |U0) ≡ 𝒩(0,σ2
0 I)



Inference
Bayesian inference

• Problem: normalization is intractable :(


• KL divergence / ELBO to approximate  with 


• Note: the paper use , but I prefer the notation 

p(U, V |n±) qλ(U, V |n±)

qλ(U, V) qλ(U, V |n±)



Inference
KL Divergence

A measure of how one probability 
distribution is different from a second, 
reference probability distribution

Source: Wikipedia

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution


Inference
ELBO

DKL(Q ∥ P(Z |X)) = ∑
Z

Q(Z)[log
Q(Z)P(X)
P(Z, X) ]

DKL(Q ∥ P) = ∑
Z

Q(Z)[log
Q(Z)

P(Z, X)
+ log P(X)]

DKL(Q ∥ P) = ∑
Z

Q(Z)log Q(Z) − ∑
Z

Q(Z)log P(Z, X) + log P(X)

log P(X) − DKL(Q ∥ P) = ∑
Z

Q(Z)log P(Z, X) − ∑
Z

Q(Z)log Q(Z) = L(X)

A distribution   over unobserved variables  is optimized as an approximation to the true posterior  , 
given observed data  . 

Q Z P(Z |X)
X

Source: Wikipedia

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Posterior_probability


Inference
A cool video demo

https://www.youtube.com/watch?v=xrCalU-MPCc


Inference
Skip-Gram Filtering

• 


• Approximate  from ELBO


• 


•  from Kalman filter

p(Ut, Vt |n±
1:t) ∝ p(n±

t |Ut, Vt)p(Ut, Vt |n±
1:t−1)

p(Ut−1, Vt−1 |n±
1:t−1)

p(Ut, Vt |n±
1:t−1) ≡ Ep(Ut−1,Vt−1|n±

1:t−1)[p(Ut, Vt |Ut−1, Vt−1)] ≈ Eq(Ut−1,Vt−1|n±
1:t−1)[p(Ut, Vt |Ut−1, Vt−1)]

p(Ut, Vt |Ut−1, Vt−1)



Inference
Skip-Gram Smoothing

• 


• Same for 


• Fitted jointly to all time steps; no longer restricted to a variational distribution 
that factorizes in time 


• This approach results in smoother trajectories and typically higher likelihoods 
than with filtering, because evidence is used from both future and past 
observations. 

q(U1:T |n±
1:T) = ΠL

i=1Π
d
k=1q(uik,1:T |n±

ik,1:T)

V



Experiments
Let’s see some cool graphs

• SGI: non-Bayesian skip-gram model with independent random initializations 
of word vectors


• SGP denotes the same approach as above, but with word and context 
vectors being pre-initialized with the values from the previous year


• DSG-F: dynamic skip-gram filtering (proposed). 


• DSG-S: dynamic skip-gram smoothing (proposed). 



Experiments
Data they use

• Google books corpus (Michel et al., 2011) from the last two centuries (T = 209). This amounts to 5 million digitized books and 
approximately 1010 observed words. 


• The corpus consists of n-gram tables with n ∈ {1, . . . , 5}, annotated by year of publication. 


• Considered the years from 1800 to 2008 (the latest available). 


• In 1800, the size of the data is approximately ~70m words. Used the 5-gram counts, resulting in a context window size of 4. 


• “State of the Union” (SoU) addresses of U.S. presidents, which spans more than two centuries, resulting in T = 230 different 
time steps and approximately 106 observed words. 


• Some presidents gave both a written and an oral address; if these were less than a week apart, concatenate them and use 
the average date. 


• Constructed the positive sample counts using a context window size of 4. 


• Twitter corpus of news tweets for 21 randomly drawn dates from 2010 to 2016. 


• Used a context window size of 4

n+
ij



Experiments
Hyperparameters

• The vocabulary for each corpus was constructed from the 10,000 most 
frequent words through-out the given time period. 


• In the Google books corpus, the number of words per year grows by a 
factor of 200 from the year 1800 to 2008. 


• To avoid that the vocabulary is dominated by modern words, normalize the 
word frequencies separately for each year before adding them up. 



Experiments
Qualitative results

• Results in smooth word embedding trajectories on all three corpora


• Can automatically detect words that undergo significant semantic changes 
over time



Experiments
Let’s see some cool graphs



Experiments
Let’s see some cool graphs



Experiments
Quantitative results

• Generalizes better to unseen data


• Analyze , the predictive likelihoods on word-context pairs at a given time , where  is 

excluded from the training set


• For SGI and SGP, used the embeddings  and  from the previous step 


• For DSG-F, set  and  to be the modes  of the approximate posterior at the previous time step


• For DSG-S, hold out 10%, 10% and 20% of the documents from the Google books, SoU, and Twitter 
corpora for testing, respectively. 


• After training, estimate the word (context) embeddings  by linear interpolation between the values of 
 and  in the mode of the variational distribution, taking into account that the time 

stamps  in general are not equally spaced. 

1
|n± |

log p(n±
t | Ũt, Ṽt) t t

Ũt = Ut−1 Ṽt = Vt−1

Ũt Ṽt Ut−1, Vt−1

Ũt, Ṽt
Ut+1, Vt+1 Ut−1, Vt−1

τt



Experiments
Let’s see some cool graphs



Conclusion
TL;DR

• Presented the dynamic skip-gram model: a Bayesian probabilistic model that 
combines word2vec with a latent continuous time series. 


• Showed experimentally that both dynamic skip-gram filtering (which conditions 
only on past observations) and dynamic skip-gram smoothing (which uses all 
data) lead to smoothly changing embedding vectors that are better at predicting 
word-context statistics at held-out time steps. 


• The benefits are most drastic when the data at individual time steps is small, 
such that fitting a static word embedding model is hard. This approach may be 
used as a data mining and anomaly detection tool when streaming text on social 
media, as well as a tool for historians and social scientists interested in the 
evolution of language. 


