
Bursty Subgraphs in Social Networks

Milad Eftekhar
Department of Computer

Science
University of Toronto
Toronto, ON, Canada

milad@cs.toronto.edu

Nick Koudas
Department of Computer

Science
University of Toronto
Toronto, ON, Canada

koudas@cs.toronto.edu

Yashar Ganjali
Department of Computer

Science
University of Toronto
Toronto, ON, Canada

yganjali@cs.toronto.edu

ABSTRACT
Data available through social media and content sharing
platforms present opportunities for analysis and mining. In
the context of social networks, it is interesting to formal-
ize and locate bursts of activities amongst users, related to
a particular event and to report sets of socially connected
users participating in such bursts. Such collections present
new opportunities for understanding social events, and ren-
der new ways of online marketing.

In this paper, we model social information using two con-
ceptualized graph models. The first one (the action graph)
provides a detailed model of all activities of all users while
the second one (the holistic graph) provides an aggregate
view on each user in the social media. We also propose two
models to define the notion of “burst”. The first model (in-
trinsic burst model) takes the intrinsic characteristics of each
user into account to recognize the bursty behaviors; while
the second model (social burst model) considers neighbors’
influences when identifying bursts. We provide two linear
algorithms to detect bursts based on the proposed mod-
els. These algorithms have been extensively evaluated on
a month of full Twitter dataset certifying the practicality of
our approach. A detailed qualitative study of our techniques
is also presented.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining ; J.4 [Social and Behavioral Sciences]: Eco-
nomics

Keywords
Social networks; Information burst; Bursty subgraphs; Twit-
ter

1. INTRODUCTION
Social media have been widely adopted in recent years.

Services such as Twitter, Facebook and Google Plus (to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

name a few) enable millions of individuals to connect with
each other, share diverse pieces of information content and
interact via a multitude of services (e.g., apps, exchanging
messages, etc).

In the vast majority of social media platforms available,
there are a few prevailing characteristics of functionality that
are common across services. These include a) the formation
of an underlying graph structure arising from social con-
nections (e.g., becoming “friends” or following each other’s
messages) and b) the ability to share and act upon (e.g.,
like, retweet) diverse pieces of information content. As a re-
sult, these two main functions can be conceptualized via a
graph in which vertices represent“users”and edges are social
connections. Information (in terms of content produced and
shared) flows across edges amongst nodes. In addition, con-
tent can be acted upon by vertices (users) through (platform
dependent) means such as “liking” content or sharing con-
tent produced by others (“sharing” or “retweeting”). These
and other related actions can be viewed as direct means of
content endorsement. With this conceptual view in mind,
there are several interesting patterns of activity that can
emerge.

Consider for example an external event, such as an out-
break of violence or protest (e.g. recent protests in Tahrir
square in Egypt) or a natural disaster (e.g., an earthquake).
These events will be reported by several users (vertices in
the graph) and such content will rapidly be endorsed (liked,
shared, retweeted) by the social connections of these users.
These, in turn, will instigate additional rapid content en-
dorsement by additional users causing what is generally re-
ferred to as an information cascade in the graph. The rate
with which such cascades are formed (i.e., the time delay
between content endorsements) commonly points to the im-
portance of the event. It is natural to expect that there are
millions of such cascades forming at different time intervals.
Being able to quickly identify the most prominent ones (i.e.,
those that are forming rapidly) will aid in the identification
of breaking events or events that are gaining popularity very
rapidly in the graph. Such information cascades can be vi-
sualized as bursty subgraphs (the set of socially connected
users involved in the cascade).

The graph structure along with the information shared
by users gives rise to additional interesting activity pat-
terns which in some sense are complementary to the ex-
ample above. Consider the information shared by all nodes
in the graph over the period of some fixed time interval
(say one hour). If we have an a priori subject area in mind
(e.g., political chatter associated to say Barack Obama) it

would be possible to identify subgraphs (sets of socially con-
nected users) that primarily produce and share information
related to our target subject area (i.e., Barack Obama) dur-
ing the time interval of interest. A näıve solution to this
problem would be to detect nodes posting more than a spe-
cific threshold of related information and report as the so-
lution (subgraphs), the connected components containing
these nodes. However, since the distribution of activity is
non-uniform among users, this approach would result in nu-
merous spurious transitions in the activity status of users
and produce several tiny subgraphs as solutions primarily
segmenting larger burst graphs. It is desirable to assign
each node with an activity status providing smooth transi-
tions among neighbors and obtain large smooth subgraphs.
This is analogous to the goals of the algorithms presented
by Kleinberg [9] for the case of document streams.

The bursty subgraphs can be of vast interest for a vari-
ety of reasons. Depending on the subject area of interest,
they can be important sources of information (e.g., interest-
ing users to follow on twitter given ones interests) or im-
portant candidates for word of mouth marketing and (con-
tent or display) advertising. Consider for example (fur-
ther details in the experimental section) one of the trending
topics of June 10, 2012 on Twitter, namely “Grand Prix”.
When we search for bursty subgraphs using the query“grand
prix” using the techniques presented herein, we identify sev-
eral subgraphs consisting of twitter accounts that tweet ac-
tively about several facets of grand prix, such as “Canadian
formula 1 grand prix”, “Thailand open badminton grand
prix”, “volleyball FIVB world grand prix”, “CSI show jump-
ing grand prix, “Kazan FIDE Women Chess grand prix”, and
“San Marino motorcycle grand prix”. These subgraphs, each
corresponding to one aspect of our specified topic (namely
grand prix), consist of twitter accounts in social proximity
that exhibited a lot of activity related to our topic of in-
terest for that day. In addition to providing more context
around the topic of interest (that is useful in search; e.g., in
query expansion, and diversified search), they provide valu-
able topical targets for marketing campaigns.

In this paper, we formalize these intuitions and present ef-
ficient algorithms to identify such activity patterns in social
networks. The notion of information burst has successfully
been studied in the content of time series streams and docu-
ment collections [9,12]. We extend these notions in the con-
text of social networks and formalize problems that concern
detecting information bursts in large collections of socially
connected users. More formally in this paper, we present and
formalize two graph theoretic conceptual models of informa-
tion sharing. The first (referred to as“action graph”) focuses
on user actions, timings, and how actions trigger other ac-
tions. The second model (referred to as “holistic graph”)
does not track timestamps and the relationship between in-
dividual actions. Instead, it keeps track of all content en-
dorsed (generated or shared) by each user. We also develop
two formal approaches to quantify information bursts. The
first (called the“intrinsic burst model”) treats each user (ver-
tex) as an isolated unit and does not consider the influence
of neighboring nodes during burst detection. This is pro-
vided to capture the cases in which nodes share a piece of
information (in the action graph case) or multiple pieces of
information on a particular subject (in the holistic graph
model) due to genuine interest without being influenced by
their neighbors that actively share or produce related con-

tent. The second (called the “social burst model”) takes into
account neighbor influences during the detection of bursts.
This model naturally takes into account the effects of neigh-
bors and their actions or type of information they share.

For each type of graph (action/holistic), we present an op-
timal polynomial solution for the intrinsic burst model. For
very large graphs, an optimal linear approach (calledDIBA)
is presented by simplifying the problem. Furthermore, we
present an iterative linear algorithm (called SODA) for the
social burst model for each type of graph.

To evaluate our developments, we utilize real data from
the Twitter fire hose, namely the set of all tweets flowing
through the Twitter service. In Section 4, we evaluate our
algorithms at full scale for days worth of twitter data (not
samples of it). Both DIBA and SODA algorithms can op-
erate on the days worth of full fire hose in seconds on action
graphs. On the holistic graph, DIBA takes about 3 minutes
and SODA takes about 2 hours. In addition we deploy a
qualitative study demonstrating the goodness of our findings
(Section 4.3).

2. MODELING
Let U = {u1, ..., un} be the set of users in a social net-

work. We say that users ui and uj are socially connected
in the network if there exists a direct social relationship be-
tween them (for example they are friends on Facebook or
Google Plus or have a follower-folowee relationship on Twit-
ter, etc). We denote by C = {c1, ..., cm} the set of actions
generated by all users. An action in this context is a piece
of information (e.g., a document, a status update, a tweet,
a retweet, a reply, etc) generated by a user. This section de-
tails two graph models (Section 2.1) and two burst models
(Section 2.2) formalizing burst definition.

2.1 Graph Models
We present two graph models; the action graph (Sec-

tion 2.1.1) and the holistic graph (Section 2.1.2) to repre-
sent the users, the content they generate, and their relation-
ships. An action graph represents each action generated by
each user (Section 2.1.1), while a holistic graph consolidates
all actions generated by each user providing an aggregate
view and yielding a simpler model (Section 2.1.2). Action
graphs provide an elaborate view over the social network
and the actions of each user recording explicitly a timestamp
for each action, signifying the time the action occurred. In
this graph, time difference between actions plays an essential
role in detecting a burst. Holistic graphs on the other hand,
simplify this representation by aggregating all actions of a
user maintaining only an aggregate view. Burst detection in
holistic graphs proceeds by considering the aggregate num-
ber of actions related to a particular subject (e.g., “Barack
Obama”).

2.1.1 Action graph
For each topic, an action graph is a graph G = (V,E)

where each node a of the graph represents an action that is
related to that topic (relevant actions). Given an action
(e.g., a post on Facebook or a tweet) and a topic description,
there are numerous ways to assess whether the action is
relevant to the topic. The specific approach used is totally
orthogonal to our discussion. To simplify our presentation,
we adopt a simple approach. We describe a topic by a set
of keywords Sk (e.g., ’Barack Obama’) and declare that the

action (i.e., the post) is relevant to the topic if the action
contains at least one keyword in Sk. Clearly other more
elaborate approaches could be applied and indeed we can
incorporate those without affecting our framework.

In this model, each node a of the graph is a relevant action
and is associated with a user u, as well as timestamp t. If
an action a of user u triggers another action b of user v (for
example a retweet, or a reply in Twitter), we add a link from
a to b in the graph G. Here, we assume that for each action
a, we can identify the set of all actions, T (a), which have
triggered a. Notice that in the action graph, it is possible
to have an edge between two actions even if the associated
users are not directly socially connected (e.g., friends on
facebook).

2.1.2 Holistic graph
In the holistic graph G = (V,E), each node v of the graph

represents a user. There is an edge between users u and v in
E if and only if they are socially connected. Moreover, each
node u maintains a weight wu = (ru, du). The variable ru is
subject/topic specific and represents the fraction of actions
of u relevant to a given topic. We use du to refer to the total
number of actions conducted by u.

2.2 Burst Models
We introduce two models to formalize the notion of a

burst: (1) the intrinsic burst model and (2) the social burst
model. The former (Section 2.2.1) does not incorporate
neighboring effects throughout burst detection. In several
cases users act independently (primarily via occurrences of
external events, such as during a sports game) and this
model is geared towards such cases. The latter (Section 2.2.2)
identifies bursts considering the influence of neighbors.

2.2.1 Intrinsic burst model
For a given (action/holistic) graph G = (V,E), a burst

state sv ∈ {B, N} is associated with each vertex v ∈ V deter-
mining whether v is bursty B or non-bursty N. Note that v
represents an action that a user did at a specific time in the
action graph model, while it represents a user in the holistic
graph model.

Here, we model the process of generating actions by a two
state automaton. The two states are “bursty B” and “non-
bursty N”. This automaton transitions between states with
fixed probabilities. The probability to keep the same state
is λ; while the probability to change state is 1−λ. To avoid
spurious transitions between bursty and non-bursty states,
we require that λ should be greater than 0.5.

At the non-bursty state, the automaton emits actions at
a rate γ; while at the bursty state, actions are emitted at a

higher rate γ∗ > γ (α = γ∗

γ
> 1).

For the case of action graphs, the automaton emits actions
with time gaps x according to an exponential probability
density function fN (x) = γe−γx at a rate of γ = 1

E[x]
(the

non-bursty state rate) [9]. The exponential density function
is a distribution that models the inter-arrival times between
events occurring in an independent and continuous manner.
The time gap x for each vertex v is defined as the time
difference between the timestamp of v and the neighboring
vertex with the most recent timestamp prior to v; i.e.,

xv = min
u∈N(v):tu<tv

tv − tu

where N(v) is the set of v’s neighbors and tv is v’s times-
tamp.

Holistic graphs do not have timing information. Here,
the only parameters available for each node u are du, the
total number of actions, and ru, the number of relevant
actions (actions that are related to our topic of interest).
The automaton emits du actions out of which ru actions
are relevant. Assuming a fixed probability of being relevant,
the distribution becomes binomial fN (ru, du) =

(
du
ru

)
γru(1−

γ)du−ru with the rate of γ = R/D (the non-bursty state
rate) [9, 12]. Here, R =

∑
u∈V ru and D =

∑
u∈V du are,

respectively, the number of relevant actions and the number
of all actions generated by all users.

Problem 1. For graph G = (V,E), identify a burst state
assignment S = (sv1 , ..., sv|V |) to maximize

P (S|G) ∼ P (G|S)P (S) = (

|V |∏
i=1

fsvi (vi))× (
∏

(vi,vj)∈E

λsvisvj)

where svi ∈ {B, N} is the assigned burst state of vi, and
fsvi (vi) determines the probability that the vertex vi is gen-
erated by the bursty or the non-bursty exponential/binomial
distribution function. Moreover, λsvisvj equals to λ when

svi = svj and equals to 1− λ when svi 6= svj . This problem
is equivalent to maximizing

log(P (S|G)) ∼
|V |∑
i=1

log(fsvi (vi)) +
∑

(vi,vj)∈E

log(λsvisvj)

The bursty subgraphs of G are consisting of nodes with an
assigned burst state B.

2.2.2 Social burst model
In accordance with prior observations [2, 8, 11] that the

activity of neighbors has an influence on the activity of a
node, we present a model that takes the influence of neigh-
bors into account. We aim to assign a fuzzy burst state
su = sBu/s

N
u to each vertex u ∈ V to represent the severity

of burst in u. The value sBu (sNu) represents the probability
that the vertex u is bursty (non-bursty) and 0 ≤ sNu, sBu ≤ 1.
A node u is called bursty in this model, if su is bigger than
a predetermined threshold θ > 1.

Problem 2. For a graph G = (V,E), assign a fuzzy burst
state S = (sv1 , ..., sv|V |) to members of V to minimize

D =

|V |∑
i=1

(svi −
P (B|vi)
P (N|vi)

)2

where for the vertex vi ∈ V :

P (B|vi) = fB(vi)
∏

vj :(vi,vj)∈E

(P (B|vj)λ+ P (N|vj)(1− λ))
1
ni ,

(1)

P (N|vi) = fN(vi)
∏

vj :(vi,vj)∈E

(P (B|vj)(1− λ) + P (N|vj)λ)
1
ni ,

(2)
vj is a neighbor of vi, and ni is the number of vi’s neighbors.

By minimizing D in Problem 2, we attempt to assign si
values that are as close (in Euclidean metric) as possible to
a set of values satisfying equations 1 and 2.

In these equations, the probability to be bursty B (non-
bursty N) depends on two factors: (1) the intrinsic char-
acteristics of nodes to match the probability distribution
functions (fB(vi), fN(vi)) and (2) the influence of neighbors

(
∏
vj :(vi,vj)∈E(P (B|vj)(1−λ)+P (N|vj)λ)

1
ni). Here, λ (1−λ)

is the probability to see two neighboring nodes with the same
(different) burst state and is defined similar to the intrinsic
burst model. Note that the power 1/ni in the second factor
provides an equal weight for each of the two mentioned fac-
tors in probability calculations. Similarly to Problem 1, the
nodes with an assigned burst state B constitute the bursty
subgraphs.

2.3 Weighted graphs
We can consider scenarios where the underlying graphs are

weighted and social ties (influences) between various pair of
individuals have different weights. We note that our models
and algorithms still apply on weighted graphs; the gener-
alization is pretty straightforward. In the intrinsic burst
model, we need to substitute λsvisvj with λwij (instead of

λ) if svi = svj and with (1 − λ)wij (instead of 1 − λ) if
svi 6= svj . Here wij is the weight of the edge between vi and
vj . Similarly, in the social burst model, we use λwij instead
of λ and (1− λ)wij instead of 1− λ in Equations 1 and 2.

We utilize the same algorithms (Section 3) for identifying
the burst state assignment S on the weighted graphs. Note
that the time complexity of the algorithms does not change
when we incorporate weights.

3. ALGORITHMS
We address Problem 1 in Section 3.1 and Problem 2 in

Section 3.2. We commence with providing a polynomial al-
gorithm to identify the optimal solution of Problem 1 (Sec-
tion 3.1.1). Although optimal, the complexity can be an
issue with large social graphs. Thus, we offer a simplified
version of problem 1 in Section 3.1.2 and present a linear
algorithm (DIBA) in Section 3.1.3 that optimally solves
it. Section 3.2 addresses the social burst detection problem
(Problem 2) with suggesting an iterative algorithm (SODA)
to solve it (Section 3.2).

3.1 Intrinsic burst detection

3.1.1 The optimal solution
The optimal solution for Problem 1 can be obtained by

establishing the equivalence between this problem and the
well-known Min Cut problem.

Theorem 1. Problem 1 is equivalent to identifying the
minimum s-t cut (the Min Cut problem [4]) on weighted
graphs.

For the sake of saving space, we remove the complete proof
and content ourselves with the proof sketch.

Proof sketch. Problem 1 can be transformed to asso-
ciating graph’s vertices with a burst state S such that

cost = − log(P (S|G)) =

|V |∑
i=1

log
1

fsvi (vi)
+

∑
(vi,vj)∈E

log
1

λsvisvj

is minimized. We provide a bi-directional reduction between
Problem 1 and the Min Cut problem.

Assume G = (V,E) is the underlying graph of Problem 1
and N = (V ′, E′) is the graph (flow network) for the Min
Cut problem.

Reducing Problem 1 to Min Cut: Problem 1 can be re-
duced to an instance of the Min Cut problem. The reduction
is as follows:

1. For each node u ∈ V , a node u′ is added in V ′.

2. A source s and a sink t are added to V ′.

3. A directed edge is added from the source s to each
node u′ ∈ V ′ with a capacity of w′su′ = log(1

fN(u)
) > 0.

4. A directed edge is added from each node u′ ∈ V ′ to
the sink t with a capacity of w′u′t = log(1

fB(u)
) > 0.

5. For each pair of neighboring nodes (u, v) ∈ E, two
directed edges are added to E′ between their corre-
sponding nodes (u′, v′) with a capacity of w′u′v′ =
wuv log(λ

1−λ) > 0.

The cost of the minimum cut identified on N ′ is equal to the
cost of the optimal burst state assignment on G.

Reducing Min Cut to Problem 1: Having the flow network
N = (V ′, E′), we create a graph G = (V,E) as follows:

1. For each vertex u′ ∈ V ′ − {s, t} (all nodes except the
source s and the sink t), there is a vertex u ∈ V .

2. For each vertex u ∈ V , set 0 < fB(u) = 1
exp(w′

u′t)
< 1

and 0 < fN(u) = 1
exp(w′

su′)
< 1.

3. For each edge (u′, v′) ∈ E′ (where u′ 6= s and v′ 6= t),
add an edge (u, v) in E with the weight wuv = w′u′v′ .

4. Set λ = e
1+e

.

The cost of the optimum burst state assignment in G is equal
to the minimum cut in N ′ .

To solve Problem 1, the reduction proposed in the proof
of Theorem 1 is utilized to create an instance of Min Cut
problem. We can employ the Ford-Fulkerson algorithm [4],
Edmonds-Karp algorithm [3], Preflow-Push algorithm or its
efficient implementations (Preflow-Push algorithm with FIFO
vertex selection rule, Preflow-Push algorithm with dynamic
trees) [6] to determine the minimum cut of the created flow
network N . Among these algorithms, the most efficient one
for sparse graphs (e.g., social networks) is Preflow-Push al-
gorithm with dynamic trees that has a time complexity of
O(|V |×|E|×log(|V |2/|E|)). After running these algorithms,
the network will be divided into two partitions, one contain-
ing the source s and the other containing the sink t. We
label all nodes in the partition containing the source s as
bursty B and all nodes in the other partition as non-bursty
N.1

1We note that a similar approach has been used in image
processing domain to solve a problem that attempts to dis-
tinguish whether each pixel of a given image belongs to fore-
ground or background [7].

3.1.2 Simplifying the problem
The above algorithm is not practical for very large graphs

such as social network graphs. Every day about 30 million
unique Twitter users send about 350 million tweets. The
corresponding action/holistic graphs are large, making the
previously mentioned algorithm impractical. Therefore, we
need strictly faster algorithms.

Instead of maximizing the transition probability over all
edges, Problem 1 can be simplified by attempting to max-
imize the transition probability on the edges that are the
most likely ones to achieve the smallest transition probabili-
ties (edges that reduce the overall probability of P (S|G) the
most).

Problem 3. Assign burst states S = (sv1 , ..., sv|V |) to
maximize

P (S|G) = (

|V |∏
i=1

fsvi (vi))× (

|V |∏
i=1

λsv∗
i
svi

)

where

v∗i = arg max
vj :

(vi,vj)∈E,
vj<vi

ψvivj (3)

Here, ψvivj = |(fB(vi)−fN(vi))−(fB(vj)−fN(vj))| and vj < vi
means that vj happens prior to vi. For nodes vi with no
predecessor, we set λsv∗

i
svi

= 1.

The node v∗i , for each node vi ∈ V , is a neighboring node
such that the probability that it’s burst state is different
from the burst state of vi is the maximum among all neigh-
boring nodes of vi that are prior to vi. To determine what
nodes are prior to others, an ordering between members of
V should be defined. In the action graph, the timestamp of
nodes can be adopted to make an ordering. In the holistic
graph, we can utilize any arbitrary (e.g., random) ordering
between vertices.

Problem 3 is equivalent to maximizing

log(P (S|G)) =

|V |∑
i=1

log(fsvi (vi)) +

|V |∑
i=1

log(λsv∗
i
svi

)

3.1.3 DIBA: Dynamic programming Intrinsic Burst
detection Algorithm

Let G = (V,E) be an action/holistic graph. We aim to
distinguish the bursty subgraphs of G according to Prob-
lem 3. DIBA starts by creating a forest F (a disjoint union
of trees) out of G: for each connected component of G,
DIBA identifies a spanning tree. The spanning trees are
created by considering v∗ (defined in Problem 3) as the par-
ent of each node v ∈ V . The union of these spanning trees
create the forest F .
DIBA examines vertices of F starting from the leaves,

going up to the roots. For any leaf l, LP (B|l) = log(fB(l))
and LP (N|l) = log(fN(l)) are calculated. Here, for each leaf
l, LP (B|l) is the logarithm of the probability to have the
burst state B and LP (N|l) is the logarithm of the probabil-
ity to have the burst state N. Moreover, f is the exponen-
tial/binomial probability density function. The algorithm,
afterwards, traverses the trees of F bottom-up to reach the

roots. For each non-leaf node v, we define and calculate

LP (B|v) = log(fB(v))+ (4)∑
u∈C(v)

max(LP (B|u) + log(λ), LP (N|u) + log(1− λ)),

and

LP (N|v) = log(fN(v))+ (5)∑
u∈C(v)

max(LP (B|u) + log(1− λ), LP (N|u) + log(λ)),

where C(v) is v’s children set.
For each tree T in the forest F , the burst state assignment,
ST , is the chain of burst states for T ’s nodes maximizing the
value of “max(LP (B|rT), LP (N|rT))” where rT is the root of
the tree T . The burst state assignment S is the union of all
ST for each tree component T of forest F .

Algorithm 1: DIBA
input : Graph G = (V,E)
output: burst state assignment S = (sv1 , ..., sv|V |)

// Create a forest F from G
1 foreach v ∈ V do
2 parent(v) = v∗ // Eq. 3

3 end
// Probability calculations

4 Traverse F bottom-up (from leaves to roots):
5 foreach v ∈ V do
6 Bv =

log(fB(v))+
∑
u∈C(v) max(Bu+log(λ), Nu+log(1−λ));

7 Nv =
log(fN(v))+

∑
u∈C(v) max(Bu+log(1−λ), Nu+log(λ));

8 BPointerv = arg max(Bv + log(λ), Nv + log(1− λ));
9 NPointerv = arg max(Bv + log(1− λ), Nv + log(λ));

10 end
11 foreach root r ∈ V do
12 sr = arg max(Br, Nr);
13 end
14 Traverse F top-down (from roots to leaves):
15 foreach v ∈ V do
16 sv = NPointerv;
17 if sv∗ = “B” then
18 sv = BPointerv;
19 end

20 end

The pseudo code of DIBA is provided in Algorithm 1.
Note that in this algorithm, Bv represents LP (B|v) (Equa-
tion 4) and Nv represents LP (N|v) (Equation 5). The vari-
able BPointerv holds the optimum burst state assignment
to node v (an assignment leading to the maximum value of
P (S|G)) when the burst state assigned to its parent (v∗ in
Equation 3) is bursty B. Similarly, NPointerv is the optimal
burst state assigned to v when the parent’s assigned burst
state is non-bursty N. Moreover, the function “arg max(a, b)”
declares what argument (a or b) has the maximum value.
Formally it returns B (bursty) if a > b and returns N (non-
bursty) otherwise. At the end of the algorithm, sv contains
the assigned burst state of node v ∈ V .

Theorem 2. DIBA discovers the optimal burst state as-
signment according to Problem 3 for a graph G.2

Theorem 3. The run time of DIBA on a graph G =
(V,E) is T (G) = θ(|V |+ |E|) that is linear in size.

3.2 Social burst detection
Problem 2 can be represented by a set of 2n polynomial

equations with 2n variables: the variables are P (B|vi) and
P (N|vi) and the equations are Equations (1), and (2) for
each vi ∈ V . Since discovering the solution for a polynomial
equation system is NP-hard [5], we propose an iterative algo-
rithm in Section 3.2.1 to identify the burst state assignment
S.

3.2.1 SODA: SOcial burst Detection Algorithm
SODA is an iterative algorithm to address Problem 2.

The goal is to locate the closest values svi to P (B|vi)
P (N|vi)

for each

vi ∈ V (to minimize the value of D).

By dividing equations 1 and 2 and substituting P (B|vi)
P (N|vi)

with svi , the following equation holds:

svi =
fB(vi)

fN(vi)
×

∏
vj :(vi,vj)∈E

(
svjλ+ (1− λ)

svj (1− λ) + λ
)1/ni

SODA initializes the svi variables as follows:

s0vi = fB(vi)/fN(vi)

In the kth iteration, the algorithm updates the variables’
values according to Equation (6).

skvi = s0vi ×
∏

vj :(vi,vj)∈E

(
sk−1
vj λ+ (1− λ)

sk−1
vj (1− λ) + λ

)1/ni (6)

We assume that the convergence is accomplished when

distance =
∑|V |
i=1(skvi − sk−1

vi)2 < ε. In all of our exper-
iments, SODA converges in a very small number of itera-
tions, usually around 10 for action graphs and 20 for holistic
graphs.

The pseudo code of SODA is presented in Algorithm 2.
When this algorithms terminates, the variable sv holds the
assigned burst state of node v.

Theorem 4. The run of SODA on a graph G = (V,E)
is T (G) = θ(|V |+|E|)×I where I is the number of iterations
till convergence achieved.

4. EXPERIMENTAL RESULTS
To evaluate our algorithms, we use a dataset consisting of

30 days of the Twitter fire hose (May 15, 2012 – June 13,
2012). Each day contains between 300− 400 million tweets.
This dataset is about 25 TB on disk.

Section 4.1 explains how the graph models are created.
The results on the run time of all proposed algorithms are
presented in Section 4.2 and qualitative results of their out-
put are discussed in Section 4.3.

The algorithms were coded in Java and were evaluated on
a computer with 16 cores 2.4GHz (AMD OpteronTM Pro-
cessor 850) with 100G of memory that is running CentOS
5.5 with kernel version 2.6.18-194.11.1.el5. All algorithms
are single-threaded.
2Hereafter, we remove all proofs to save space.

Algorithm 2: SODA
input : Graph G = (V,E)
output: burst state assignment S = (sv1 , ..., sv|V |)

1 foreach v ∈ V do

2 s0v = fB(v)
fN(v)

;

3 end
4 K = 0;
5 distance = Infinity;
6 while distance ≥ ε do
7 k = k + 1;

8 skv = s0v ×
∏
u:(v,u)∈E(

sk−1
u λ+(1−λ)
sk−1
u (1−λ)+λ

)
1

nv ;

9 distance =
∑
v∈V (skv − sk−1

v)2;

10 end
11 foreach v ∈ V do
12 sv = skv ;
13 end

Topic Queries (ignoring case)
Fire contains(“highparkfire” or “high park fire”)
Prix contains(“grandprix” or “grand prix”)
Tennis contains(“djokovic” or “ nadal ” or “#nadal”)
Euro 2012 contains(“euro2012” or “euro 2012” or “eufa”)
Debate contains(“debate2012” or “yosoy132” or
2012 “#epn” or “#amlo” or “#quadri” or “#jvm”

or “#amlopresidente” or “#marchantiepn”)

Table 1: Topics and the associated queries.

4.1 Topics, Modeling, and Parameter Setting
We evaluate our algorithms on 5 popular topics on Jun

10, 2012. These topics are: (1) “Colorado high park fire”,
(2) “the grand prix race”, (3) “French Open 2012 tennis final
match between Rafal Nadal and Novak Djokovic”, (4) “Euro
2012”, and (5) “Mexico Presidential TV debate on June 10”.
Table 1 presents these topics and the queries used to retrieve
the relevant tweets. A tweet is considered as relevant if it
matches the corresponding query.

To evaluate the algorithms, we create the action graph
and the holistic graph for each of these topics. In the ac-
tion graph, any relevant tweet is a vertex. The number of
relevant tweets varies from about 10 thousand for the “Fire”
topic to about 1.1 million for the “Debate 2012” topic. To
add edges between the vertices, the sender-recipient informa-
tion of replies (tweets containing “@” sign) has been utilized.
An edge (a, b) is added, in the action graph, between nodes
a and b if: a is the value of the “in_reply_to_status_id”
attribute in the JSON object of b or (1) action “b” is in reply
to a user“ u” (i.e., “@u” exists in the tweet’s text of action
“b”), and (2) “a” corresponds to the last relevant action con-
ducted by user “u” prior to the occurrence of “b”.

For the holistic graph, we employ Twitter’s social graph
created based on one month of tweets. We note that there
exist about 27.5 million users in this social graph who tweeted
at least once in Jun 10, 2012 (nodes of the holistic graph).
Moreover, these users are connected with more than 1.5 bil-
lion edges.

In the following experiments, we set the parameters λ =
0.8 and α = γ∗/γ = 2. Recall that λ is the probability
to keep the current burst state in the assumed automa-
ton and α is the increase in the action generation rate for

0

1

2

3

4

5

6

7

8

9

0.5 0.6 0.7 0.8 0.9

ti
m

e
 (

se
c)

λ

debate2012 euro2012 tennis prix fire

0

50

100

150

200

250

0.5 0.6 0.7 0.8 0.9

ti
m

e
 (

m
in

)

λ

debate fire euro tennis prix

the action graph the holistic graph

Figure 1: The impact of changing λ on the run time
of SODA
the bursty state over the non-bursty state. We will analyze
how things change when the values of these parameters alter
(Sections 4.2 and 4.3.2).

4.2 Time Analysis
There are three parameters that our burst detection al-

gorithms depend on: (1) the parameter λ, (2) the rate ra-
tio α, and (3) the dataset size. This section analyzes how
varying these parameters affects the execution time of the
algorithms.

Execution time vs λ: Our experiments show that the
run time of DIBA does not depend on the value of λ (as
predicted by Theorem 3).

Figure 1 displays how the run time of SODA increases
as λ ascends from 0.5 to 1. When λ = 0.5, a node is in-
different to the burst state of the neighboring nodes. Thus,
the burst state of each node u solely depends on its intrinsic
probability (fB(u) to be bursty, or fN(u) to be non-bursty).
Hence, SODA converges in the first iteration. When we
move farther from 0.5, the dependency to neighbors inten-
sifies. Hence, as the values of burst states continuously
change, SODA needs more iterations to converge and takes
more time.
Execution time vs α: Our experiments validate Theo-

rem 3 and show that the run time of DIBA does not depend
on the value of α.

As Figure 2 depicts, initially when α ascends on action
graphs, the run time of SODA grows. Further increase in
α , however, reduces the run time. After a certain point,
the run time remains unchanged when additional increments
take place. As a matter of fact, the run time of SODA de-
pends on the number of iterations performed and this relates
to the number of pairs of neighbors in the graph with differ-
ent burst states. When α = 1.1, many nodes are recognized
as non-bursty; hence d = |(number of nonbursty nodes)−
(number of bursty nodes)| is large. When α increases, d de-
creases resulting in a growth in the number of neighboring
pairs with non-matching states. Augmenting α further in-
creases d;3 hence the number of the mentioned pairs reduces;
correspondingly the number of iterations required and the
associated run time decline.

On the holistic graph, the run time of SODA remains
constant when α raises. In fact, SODA identifies a big frac-
tion of nodes in holistic graphs as non-bursty (d holds a very
big value).4 Altering α does not have a significant impact

3Section 4.3.2 studies the impact of altering α on the number
of bursty/non-bursty nodes.
4Note that for the discussed topics, more than 26 million
users (among 27 million users) have not tweeted about the

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

ti
m

e
 (

se
c)

α

debate2012

euro2012

tennis

prix

fire

Figure 2: The impact of changing α on the run time
of SODA on action graphs.

0.1

1

10

100

1000

10000

100000

1000000

0 5 10 15

D
is

ta
n

ce

lo
g
a

ri
th

m
ic

 s
ca

le

Iteration number

debate 2012 euro 2012 tennis

prix fire

-10

40

90

140

190

240

290

0 10 20 30

Iteration number

debate2012 euro2012 fire tennis prix

��
�
�
�
��

��
�	

�
�

the action graph the holistic graph

Figure 4: The convergence of SODA
on d; hence, the number of iterations (and correspondingly
run time) does not change.

Execution time vs graph size: The linear relation
between the run time and the graph size is depicted in
Figure 3(a)-(b) for DIBA, and (c)-(d) for SODA on ac-
tion/holistic graphs. Here, size is sum of the number of
nodes and edges in the graph. In the action graph, we mea-
sure the size of the graph and the run time of the algorithms
for each topic. Note that all topics share the same holistic
graph (the only difference is in nodes’ weights). Thus, to
evaluate the impact of changing holistic graph size on the
run time, we run the algorithms on the smaller subsets of
this fixed underlying graph and report the average run time
(over all topics) for each subset. We note that both algo-
rithms run in seconds on the action graphs; on the holistic
graph, DIBA takes about 3 minutes and SODA takes about
2 hours in average.

Convergence: In this section, we study how SODA con-
verges. Note that as DIBA is not iterative, convergence is
not defined there. The SODA algorithm converges when
the distance between the identified solution at the end of
the last iteration and the identified solution at the end of
its previous iteration is smaller than some threshold. Here,
we use a Euclidean distance function. If Sk = (sk1 , . . . , s

k
n)

is the solution (burst state assignment) at iteration k, we
define the distance between iteration k and iteration k − 1
solutions as distance =

∑n
i=1(ski −sk−1

i)2. SODA continues
until distance < 1. Figure 4 shows that distance declines
exponentially as we perform more iterations.

4.3 Qualitative Results
There are two main differences between the subgraphs

identified on action graphs and the subgraphs identified on
holistic graphs. Firstly, the algorithms on holistic graphs
identify bursty users. On action graphs, however, since the
algorithms assign burst states to each single action, the
output indicates which users with what actions at what

specified topic (ri = 0) and are non-bursty. The balance be-
tween the number of bursty and non-bursty nodes is much
better in action graphs, as these graphs are built up on rel-
evant actions.

fire
prix

tennis
euro

debate

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

T
im

e
 (

se
c)

Size Millions

0

50

100

150

0 0.4 0.8 1.2

T
im

e
 (

se
c)

Size Billions

fire
prix

tennis

euro

debate

0

2

4

6

0 1 2 3 4

T
im

e
 (

se
c)

Size Millions

0

20

40

60

80

100

120

0 0.4 0.8 1.2

T
im

e
 (

m
in

)

Size Billions

(a) DIBA on action graph (b) DIBA on holistic graph (c) SODA on action graph (d) SODA on holistic graph

Figure 3: The impact of changing size on the run time of DIBA and SODA.

times are bursty. This helps to find out why and based
on what actions, a user is considered bursty. Moreover, we
can clearly state at what specific times a user was active
or inactive. Secondly, the algorithms on the holistic graphs
identify subgraphs that are bursty in the whole time inter-
val under analysis. On the action graphs, however, besides
these subgraphs, the algorithms can identify subgraphs that
are temporarily bursty. We sometimes observe a bunch of
continuously arriving actions about some specific topic that
disappear as time passes. These actions may have a high
rate of generation in a subset time interval but the rate may
continuously decreases afterwards. We may see a low rate of
generation if we look at these actions cumulatively for the
whole time interval hence report them as non-bursty. An-
alyzing arriving documents with action graphs helps us to
detect these temporal bursty subgraphs.

Our observations suggest that the main difference between
the top bursty subgraphs identified by DIBA and SODA
is that, for a given topic, DIBA locates collections (usu-
ally small in size) of highly bursty users who continuously
tweet about some topic; while SODA is capable of finding
much larger collections of connected users who are bursty as
a whole but may contain some nodes that are not bursty if
we look at them individually. Since in reality, we similarly
see that not all members of an active physical group pro-
gressively execute actions (e.g., tweet) on a specified topic,
the subgraphs identified by SODA better match with these
groups.

In this section, we take a closer look at the top subgraphs
identified by the proposed algorithms on the topics discussed
in Section 4.1 in order to qualitatively understand the“good-
ness” of the results. For each case, we retrieve all subgraphs
and rank them according to their size (Section 4.3.1). We
follow by a demonstration on how the results change when
we utilize different parameter values (Section 4.3.2).

4.3.1 Bursty subgraphs
By manually inspecting the subgraphs identified for dif-

ferent topics, we found them meaningful. Here, we choose
to report the detected subgraphs for 2 topics (“grand prix”
and “high park fire”) in detail. Other topics are omitted to
save space.

Among the 10 top subgraphs of running SODA for“grand
prix”on the action graph, we can find a group of car race fans
in different countries talking about the Canadian formula1
grand prix and Pocono 400. Pocono 400 is a “NASCAR
Sprint Cup Series stock car race held annually at Pocono
Raceway in Long Pond, Pennsylvania”.5 We note that both
Canadian formula1 grand prix and Pocono 400 took place

5http://en.wikipedia.org/wiki/Pocono_400

on Jun 10, 2012. The other subgraph is created around a
joke by the famous spanish driver of the Italian car man-
ufacturer Ferrari “Fernando Alonso” who achieved the 3rd
rank in the Canadian grand prix. Fernando said: “If we
[Spain] win [in the Spain vs Italy soccer match in euro 2012
happening simultaneously], then maybe I might find there
are not too many people on hand to change my tires at
the pit stop.!”6 It is very interesting to note that other sub-
graphs represent other grand prix matches that happened
on the same day on other parts of world. There exist 2 sub-
graphs of Brazilian volleyball websites and citizens support-
ing their team in the Brazil vs Poland match for volleyball
FIVB world grand prix. Two subgraphs represent Domini-
can Republic citizens discussing the Dominican Republic vs
USA match in Women volleyball grand prix 2012 worldcup.
We note that in the larger subgraph (with a size of 813 ac-
tions), members mostly live in Santa Domingo the capital
of Dominican Republic. Another subgraph contains citizens
of Thailand talking about Thailand vs China match on the
FIVB grand prix. Two subgraphs contain Indian citizens
and Indonesian citizens discussing the victory of “Saina Ne-
hwal”, the Indian female winner, and “Sony Dwi Kuncoro”,
the Indonesian male winner of the Thailand Open Grand
Prix Gold badminton tournament. Finally, the last sub-
graph is composed of Turkish citizens discussing the victory
of the Turkish motorcycle racer “Kenan Sofuoglu” in the Su-
persport world championship’s San Marino grand prix event.
We note that all of the mentioned races happened on Jun
10, 2012.

When SODA is run on the holistic graph to detect top
subgraphs of “grand prix”, we notice two differences. First,
it does not output any subgraph related to Alonso’s joke
in Canadian grand prix. The reason is that the mentioned
subgraph is bursty in a subset of time not the whole day.
Therefore, the action graph shows it as bursty while the
holistic graph recognize it as a less bursty event (not in the
top ten list). Second, just one subgraph of Brazilian citizens
is detected talking about the volleyball grand prix (note that
SODA finds two subgraphs in the action graph). In fact,
in the action graph, these two subgraphs are separate while
in the holistic graph that we incorporate social ties between
individuals, these subgraphs are merged. Instead of these
two subgraphs, we observe other bursty subgraphs related
to the “CSI show jumping grand prix” (qualifying Olympics
2012 games) and “Kazan FIDE Women Chess Grand Prix”
both held on June 10.

The top bursty subgraphs detected by running SODA for
the “high park fire” topic on action/holistic graphs also rep-

6http://www.fernandoalonso.com/en/category/
fernando-alonso

http://en.wikipedia.org/wiki/Pocono_400
http://www.fernandoalonso.com/en/category/fernando-alonso
http://www.fernandoalonso.com/en/category/fernando-alonso

resent meaningful physical groups. To save space, we report
the two top subgraphs. The top subgraph is a collection
of Colorado news channels, journalists, nature and animal
activists (mostly in Denver, CO). These include “9NEWS
Denver”, “Denver Channel”, “North Forty News” to name
a few. The second subgraph is a collection of members of
Calvary Chapels churches in some cities of Colorado (e.g.,
Aurora, CO; Castle Rock, CO) concerned about the impacts
of fire.

On the other hand, DIBA generally locates subgraphs
where all users are bursty. For the “high park fire” topic,
top subgraphs can be summarized to news networks, active
bloggers, and some subgraphs of Colorado residents. For
“Grand Prix”, top subgraphs are car news networks, and car
race lovers. We note that the top subgraphs identified by
DIBA include less than 40 members.

4.3.2 The impact of parameter values on the final re-
sults

In this section, we study how modifying α and λ affects
the burst state assignments by inspecting the number of
identified bursty subgraphs, the size of the largest bursty
subgraph, and the final number of bursty nodes for “Euro
2012” topic. We observe similar trends for other topics.
λ on DIBA: Figure 5(a)-(b) displays that the number of

bursty nodes and the size of the largest bursty subgraph de-
crease when DIBA runs on larger λ values. When λ grows,
no change occurs in nodes’ fN and fB values; however,
the role of transition probabilities (providing smoothness in
burst state transitions) intensifies in associating burst states.
If the burst state of a node v and its parent v∗ (Equation 3)
is different, the cost of not changing those states increases
when λ obtains a higher value. We note that DIBA iden-
tifies a large fraction of nodes in our dataset as non-bursty.
Hence, to provide smooth transitions as a result of increasing
λ, nodes aim to be non-bursty. Hence, we observe a decreas-
ing trend in the number of bursty nodes and similarly the
size of the largest subgraph when λ ascends.
α on DIBA: According to Figure 5(c)-(d), the number of

bursty nodes and the maximum size of bursty subgraphs en-
larges when α grows to some point and it remains constant
afterwards. When we increase α, the role of intrinsic prob-
abilities (fN and fB values) intensifies in associating burst
states of nodes. When α is small, there are nodes that are
individually (according to f values) bursty but are declared
as non-bursty and vice versa to provide smooth transitions.
When we increase α, we achieve higher P (S|G) values if
for these nodes the burst state si matches with the individ-
ually assigned burst states (solely according to the values
of fN and fB). As previously mentioned, DIBA originally
has identified a large fraction of nodes in our dataset as
non-bursty. Hence, the absolute number of nodes aiming
to change state is higher in the (large) non-bursty fraction.
Thus, overall, the number of newly announced as bursty
nodes increases and accordingly the maximum size of the
bursty subgraphs enlarges.
λ on SODA: Figure 6(a) depicts the impact of λ on
SODA’s burst state assignment in action graphs. SODA
determines burst states utilizing both intrinsic values and
neighbors’ influences. When we increase λ, there is more
motivation for the neighbors of large (compact) bursty sub-
graphs to become bursty to match with their large number
of bursty neighbors. Thus, the large subgraphs expand. On

the other hand, in the small (sparse) bursty subgraphs, some
members with many non-bursty neighbors are passionate to
change their burst state to non-bursty to match with their
neighbors. Therefore, we see some of these subgraphs break
into several smaller ones. This results in a higher number
of bursty components. Further enlargements of λ causes to
make some small bursty subgraphs to totally disappear (all
members eventually switch to the non-bursty state) and re-
sults in a reduction in the number of bursty components.

As discussed in Section 4.2, on holistic graphs, SODA
identifies a large fraction of nodes as non-bursty. Thus,
we see many relatively small (compared to the graph size)
bursty subgraphs. When we raise λ, the smoothness in
transitions becomes more important. Thus, the members
of these small bursty subgraphs (of the holistic graph) start
to change state to match with their non-bursty neighbors.
Hence, the number of bursty nodes and the size of the largest
bursty subgraph will eventually shrink (Figure 6(b)).
α on SODA: To identify the optimal burst state as-

signment, SODA initializes si to fB(i)/fN(i). Hence, in the

action graphs, si = α× e(1−α)γx. When α grows, two cases
happen:

• xi ≥ 1/γ: the value of si decreases.

• xi < 1/γ: as we increase α to 1
xiγ

, si grows; further

increments in α will reduce the value of si.

When α increases (to some point β), the large (compact)
bursty subgraphs (containing many nodes with xi < 1/γ)
expand as the si value of the members raises and this affect
the non-bursty neighbors due to the neighboring influences
in SODA. Thus the size of the largest bursty subgraph
increases. Farther increments of α has a negative impact
on bursty nodes by decreasing si values. Hence, we see a
degradation happening in the maximum size of the bursty
subgraphs. The concave diagram in Figure 6 (c) displays
this behavior. Here β = 3. The same trend is seen for the
number of bursty nodes. In the smaller bursty subgraphs
with bigger x values, increasing α will result in reducing si
values, recognizing some members as non-bursty, and break-
ing the subgraphs. Hence a slightly-increasing trend is seen
in the number of bursty subgraphs.

On the holistic graph (Figure 6(d)), since the number of
bursty nodes is considerably smaller than the size of the
graph, enlarging α will end in lower si values for most of the
nodes and this reduces the number of bursty nodes and the
size of the largest bursty subgraph.

What values are appropriate? One important ques-
tion here is that “what values should be chosen for param-
eters α and λ to run DIBA and SODA?”. Two goals are
defined in assigning burst states: (1) for each node, the as-
signed state is in accordance with the time gap (x) or the
fraction of relevant actions (r/d) and (2) smooth transitions
are provided. The first goal would not be achieved if λ is too
high (close to 1) or α is too low (close to 1). The second goal
would not be satisfied when λ is too low (close to 0.5) or α
is too high (according to Figures 5(c) and 6(c), in average
the pick happens when α is close to 4). In fact, a value in
the middle would be a good choice for both parameters. For
this reason, setting λ to some value around 0.7-0.8 and α to
2-3 seems a reasonable choice.

1

10

100

1000

10000

0.5 0.6 0.7 0.8 0.9

n
u

m
b

e
r

lo
g
a

ri
th

m
ic

 s
ca

le

λ

Bnodes Bsubgraphs MaxSize

0

100000

200000

300000

400000

0.5 0.6 0.7 0.8 0.9

n
u
m
b
e
r

λ

Bnodes components MaxSize

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

n
u

m
b

e
r

lo
g
a

ri
th

m
ic

 s
ca

le

α

Bnodes Bsubgraphs MaxSize

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10

n
u
m
b
e
r

α

Bnodes components MaxSize

(a) action graph (b) holistic graph (c) action graph (d) holistic graph
Figure 5: The impact of changing parameters on DIBA.

0

100000

200000

300000

400000

500000

0.5 0.6 0.7 0.8 0.9

n
u
m
b
e
r

λ

Bnodes Bsubgraphs MaxSize

0

50000

100000

150000

0.5 0.6 0.7 0.8 0.9

n
u
m
b
e
r

λ

Bnodes components maxsize

0

100000

200000

300000

400000

500000

1 2 3 4 5 6 7 8 9 10

n
u
m
b
e
r

α

Bnodes Bsubgraphs MaxSize

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

n
u
m
b
e
r

α

Bnodes components maxsize

(a) action graph (b) holistic graph (c) action graph (d) holistic graph
Figure 6: The impact of changing parameters on SODA.

5. RELATED WORKS
Identifying bursts of activity has been studied in time-

series streams [9] and geographically-focused document col-
lections [12]. Kleinberg [9] utilizes a multi-state automaton
to associate time intervals with different levels of burst activ-
ity. Our intrinsic burst model is analogous to his approach.
Mathioudakis et al. [12] adopt a 2-state automaton to iden-
tify spatial bursty regions in a 2D geographical grid. We
generalize these works to identifying bursts of activity on
social networks without restricting our methods to specific
dimensions (e.g., time/geography or combinations thereof).

Burst detection has been also utilized in specific applica-
tion contexts. Zhu and Shasha [16] proposed algorithms to
detect gamma ray bursts in astrophysical data and trading
activity bursts in stock exchange data. Kotov et al. [10] de-
tect terms with correlated temporal bursts of mention counts
in multiple text streams to recognize major and minor real
life events and assist transliteration.

There are numerous recent works utilizing twitter data for
research, including [1, 13–15]. Such works address problems
orthogonal to ours such as influence identification, corre-
lations between tweets and other data (e.g., stock-market
events), personalized news recommendation, etc.

6. CONCLUSION
We proposed several models to characterize and identify

information bursts in social networks and presented algo-
rithms to identify bursty subgraphs. We evaluated our al-
gorithms on real twitter data on the entire twitter fire hose.
We also presented a quantitative and a qualitative analysis
of our results. This work raises several research questions
for future work. We are interested to explore applications
of our techniques in the web search domain. For instance,
we would like to devise a way to utilize the various sub-
graphs detected (e.g., bursty subgraphs related to various
“grand prix” events) to address problems such as diversi-
fied search and query expansion. Moreover, we would like
to utilize these subgraphs to assign temporal local reputa-
tion values to different users and publishers in the social
web. Another avenue is to explore the relation between sub-

graphs’ structures and their corresponding topics; i.e., how
does the structure of the identified bursty subgraphs (rang-
ing from chains to complete graphs) depend on the topic
at hand? We are also interested to the dynamics of bursty
subgraphs; i.e., how do these subgraphs evolve over time?

7. REFERENCES
[1] G. De Francisci Morales, A. Gionis, and C. Lucchese. From

chatter to headlines: harnessing the real-time web for
personalized news recommendation. WSDM, pages 153–162,
2012.

[2] P. Domingos and M. Richardson. Mining the network value of
customers. SIGKDD, pages 57–66, 2001.

[3] J. Edmonds and R. M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. J. ACM,
19:248–264, 1972.

[4] J. Ford, L.R. and D. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8:399–404, 1956.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1990.

[6] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum-flow problem. J. ACM, 35(4):921–940, 1988.

[7] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact
maximum a posteriori estimation for binary images. Journal of
the Royal Statistical Society. Series B, 51:271–279, 1989.

[8] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread
of influence in a social network. SIGKDD, pages 137–146, 2003.

[9] J. Kleinberg. Bursty and hierarchical structure in streams.
SIGKDD, pages 91–101, 2002.

[10] A. Kotov, C. Zhai, and R. Sproat. Mining named entities with
temporally correlated bursts from multilingual web news
streams. WSDM, pages 237–246, 2011.

[11] C. X. Lin, B. Zhao, Q. Mei, and J. Han. Pet: a statistical
model for popular events tracking in social communities.
SIGKDD, pages 929–938, 2010.

[12] M. Mathioudakis, N. Bansal, and N. Koudas. Identifying,
attributing and describing spatial bursts. VLDB Endowment,
3(1-2):1091–1102, Sept. 2010.

[13] A. Pal and S. Counts. Identifying topical authorities in
microblogs. WSDM, pages 45–54, 2011.

[14] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes.
Correlating financial time series with micro-blogging activity.
WSDM, pages 513–522, 2012.

[15] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding
topic-sensitive influential twitterers. WSDM, pages 261–270,
2010.

[16] Y. Zhu and D. Shasha. Efficient elastic burst detection in data
streams. SIGKDD, pages 336–345, 2003.

	Introduction
	Modeling
	Graph Models
	Action graph
	Holistic graph

	Burst Models
	Intrinsic burst model
	Social burst model

	Weighted graphs

	Algorithms
	Intrinsic burst detection
	The optimal solution
	Simplifying the problem
	DIBA: Dynamic programming Intrinsic Burst detection Algorithm

	Social burst detection
	SODA: SOcial burst Detection Algorithm

	Experimental Results
	Topics, Modeling, and Parameter Setting
	Time Analysis
	Qualitative Results
	Bursty subgraphs
	The impact of parameter values on the final results

	Related works
	Conclusion
	References

