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ABSTRACT
Identifying the k most influential individuals in a social net-
work is a well-studied problem. The objective is to detect k
individuals in a (social) network who will influence the max-
imum number of people, if they are independently convinced
of adopting a new strategy (product, idea, etc). There are
cases in real life, however, where we aim to instigate groups
instead of individuals to trigger network diffusion. Such
cases abound, e.g., billboards, TV commercials and news-
paper ads are utilized extensively to boost the popularity
and raise awareness.

In this paper, we generalize the “influential nodes” prob-
lem. Namely we are interested to locate the most “influ-
ential groups” in a network. As the first paper to address
this problem: we (1) propose a fine-grained model of in-
formation diffusion for the group-based problem, (2) show
that the process is submodular and present an algorithm to
determine the influential groups under this model (with a
precise approximation bound), (3) propose a coarse-grained
model that inspects the network at group level (not indi-
viduals) significantly speeding up calculations for large net-
works, (4) show that the diffusion function we design here is
submodular in general case, and propose an approximation
algorithm for this coarse-grained model, and finally by con-
ducting experiments on real datasets, (5) demonstrate that
seeding members of selected groups to be the first adopters
can broaden diffusion (when compared to the influential in-
dividuals case). Moreover, we can identify these influential
groups much faster (up to 12 million times speedup), deliv-
ering a practical solution to this problem.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications;
J.4 [Social and Behavioral Sciences]: Economics
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1. INTRODUCTION
Innovation diffusion (information cascade), the study of

network entities’ reactions against new objects and ideas,
has been a hot topic in social sciences since 1890, and in
game theory and computer science for the last two decades [5,
10,13]. In this field of study, we are interested in how, why,
and when the entities in a society adopt an innovation (an
idea, information, a product, a behavior, a culture, an emo-
tion, a virus, a disease, or other objects that are “perceived
as new by an individual or other unit of adoption” [32]).
We are also interested in how this adoption impacts friends
and neighbors, and thus the overall cascade of innovation
in a network. The spread of a particular health trend like
obesity or happiness in a community [8], switching from a
product or a service to another, support of specific political
parties in an election, participating in political uprisings in
unsteady societies are only a few examples emphasizing the
importance of information diffusion studies.

Communication and interpersonal relationships play a prin-
cipal role in spreading innovations among members of a com-
munity. To maximize this spread, wise selection of the first
adopters is crucial. The problem of identifying the most in-
fluential set of k people in a social network (the “seed set”
or the “first adopters”) has received much attention in the
literature. Final influence of a seed set S is defined as
the number of people that will eventually adopt the inno-
vation if S is the set of all members that initially adopt
it. Thus, the goal is to find a seed set S with k members
that has the highest final influence among all sets of size
k. Clearly, the final influence of a seed set depends on the
interpersonal relationship of the nodes in the network. The
problem has been studied extensively [7, 23, 26, 31]. It has
been shown that this problem is NP-hard for most models
studied, even for very simple special cases [23]. Furthermore,
there are models for which even approximating the optimal
value within a factor of n1−ε is NP-hard (n is the number
of individuals) [30]. Thus, several heuristic and greedy algo-
rithms have been proposed to approximate the best solution
for models that are susceptible to achieve good approxima-
tion results [7, 10,23,35].

In this paper, we generalize this problem and study the
problem of picking influential groups rather than individ-
uals to target, as well as how this choice impacts the final
influence. Here, we define each group as the set of people
that can be targeted using a specific advertising medium: a
given group can include a demographic in a city (targeted
by a TV commercial); all highway drivers passing by spe-
cific billboards can form a group; another group can include



people who attend a seminar/conference, etc. As a result
of targeting a typical group g, some members of g become
convinced (these members would constitute the set of first
or early adopters) and diffuse to others. In this paper, Indi-
vidual Diffusion (ID) refers to a diffusion in the network
where the seed set consists of individuals and Group Dif-
fusion (GD) refers to a diffusion in the network where the
seed set consists of groups. Given a set of groups M, the
goal is to identify the most influential set of l groups. We
expect to achieve the maximum final influence when we tar-
get groups in the most influential set compared to any other
subset of M with size l. Here, final influence of a setM is
defined as the number of people that will eventually adopt
the innovation ifM is the set of all groups that are targeted
for initial convincing attempts such as advertisements. To
the best of our knowledge, this is the first study of influential
groups, as opposed to individuals; a simple paradigm shift
that offers several advantages:
(1) Groups and associations are natural targets of
initial convincing attempts in many real-life scenar-
ios. There are many cases in real-life where people and or-
ganizations target groups. One example is advertising cam-
paigns: companies usually advertise their products by tar-
geting large groups of people. TV commercials, billboards,
newspaper ads, etc. are popular ways of advertising since
they reach a wide range of audiences ranging from the peo-
ple living in an area to those reading specific newspapers
and magazines. Online social networks, such as Facebook
and MySpace, are other homes for a large number of groups.
These groups, that consist of people with a common inter-
est or characteristics, offer well-defined targets for advertise-
ments. In online social networks, people aggregate naturally
in fan pages and events offering self formed groups.
(2) The running time for identifying influential groups
is reasonable. The individual-case problem is NP–hard in
most studied cases. Due to the large size of social networks,
solving this problem requires extremely fast algorithms. In
the group-based problem, assuming we have m groups, and
considering these groups as the vertices of a new graph, the
näıve algorithm of examining all possible subsets of groups
to find the most influential one takes exponential time in
m. Obviously, in case that m = O(log(n)) (when we target
very large groups), this simple algorithm runs considerably
fast (linear in n). In Section 5, we show that our proposed
algorithms for identifying influential groups are fast.
(3) Targeting groups can be an economical choice.
Convincing specific individuals to ensure they adopt a new
strategy and building personal loyalty can be extremely ex-
pensive. Even offering a sample product to someone [20,23]
(which can be very costly for some products) does not nec-
essarily convince the target to use it and recommend it to
others in the network. In contrast, the cost of targeting a
group is not necessarily linear in the size of the group. For
instance, if the cost of convincing a specific individual is x
units (in dollars, hours, or any other cost metric), targeting
a large group of people might lead to an expected number
of r convinced individuals with a cost significantly less than
r × x. The key difference here is that when we target an
individual in the individual diffusion case, we need to en-
sure that the targeted person is convinced, which can be
extremely costly. In contrast, in group diffusion we might
gain the benefits as long as a reasonable fraction of group
members are convinced regardless of who they are, and with-

out the need to convince every single member of the group.
The following example shows that depending on the adver-
tising medium, the advertising cost can be very low for a
large group of people.

Example 1. The monthly rent for a billboard is around
$700-$2500 [14]. Assume that a firm wants to put a billboard
on a highway. Moreover, assume that an average of 2 cars
per second use the highway. Thus, in one month around 5
million cars access the highway. If we assume that an average
of 2 people are in each car, for the monthly rent of $2500,
the cost of advertising is $1 per 4000 people. Comparing
individual and group advertising, we realize that directly
targeting a few individuals has a cost equal to advertising
to millions of people using mass media. Likewise, the cost
of a national TV or a local TV commercial is about $10-$50
and $5, respectively, for 30 seconds per 1000 viewers.

Given the advantages pointed in the analysis of group dif-
fusion, the question is when the budget for the initial persua-
sion attempts (e.g., advertisements) is fixed, what approach
results in higher final influence: targeting influential indi-
viduals or targeting influential groups? This is one question
we answer in this paper.
Contributions and overview. This paper provides the
first analysis of the innovation diffusion problem from a
group perspective. We start by presenting a simple fine-
grained group diffusion model (FGD) to identify influential
groups in a social network. We show that locating these
groups is NP-hard (in the number of groups) and provide
an algorithm (topfgd) to identify the set of influential groups
(with a guaranteed approximation bound) (Section 3).

The proposed algorithm is not practical for large networks
when there are hundreds of thousands of nodes in the net-
work. We present a coarse-grained group diffusion model
CGD (the main contribution besides the paradigm shift to
studying group influences and cascades) that looks into net-
work at the higher level of groups not at the level of individu-
als (Section 4). We show that identifying the most influential
set of groups in this new model is still an NP-hard problem
(in the number of groups). After proving the submodularity
of the final influence function in this coarse-grained group
diffusion model, we present an algorithm topcgd that signif-
icantly speeds up the calculations providing similar results.

We use real datasets to evaluate our algorithms (Sec-
tion 5). We show that targeting groups can broaden dif-
fusion and increase the final influence up to 11 times (than
targeting individuals) in our experiments. Moreover, our
evaluations demonstrate that the two algorithms topfgd and
topcgd that run on group diffusion models respectively run
up to 700 and 12 million times faster than the individual
diffusion topid algorithm. We also show that our topcgd al-
gorithm, although removes lots of details about individuals
(hence results in higher speed), can identify groups as influ-
ential as the groups found by the detailed topfgd algorithm.

2. BACKGROUND
Several models have been proposed to analyze the individ-

ual diffusion in social networks. The widely-studied mod-
els can be generalized into the categories of threshold mod-
els [10, 16, 23] and cascade models [6, 7, 23]. In the former,
an acceptance threshold θ and an aggregation function
f are associated with each node. We call a node active,



if it adopts the innovation. If Xv denotes the active neigh-
bors of v and if fv(Xv) ≥ θv, v becomes active. In the
traditional version of “linear threshold model”, the aggrega-
tion function f is the sum of the weights of edges from Xv
to v. The cascading model, on the other hand, uses acti-
vation success probabilities for edges instead of accep-
tance thresholds for nodes. A node tries once to activate its
neighbors after adopting the innovation and succeeds with
specified probabilities. These probabilities can either be in-
dependently determined (“independent cascade model”) or
depend on both sides of diffusion (i.e., the active diffuser
node and the targeted neighbor) and the history of previous
activation attempts. A survey of these diffusion models can
be found in [11, 30]. Other model variations have been also
proposed, ranging from changing budget constraints [19,31]
to increasing decision options [21]. Other applications of the
problem has also been studied such as analyzing networks
resilience when failures cascade in the network. Blume et al.
have proposed techniques to evaluate the maximum failure
probability of d-regular graphs [4]. Some works are also done
to infer the underlying influence network based on causal re-
lationships [34] or when the links are unobserved [15,25,27].

Finding the most influential set of k nodes is a well-known
problem in social networks analysis [3, 7, 9, 10,17,23,24,26].
Since this problem is NP-hard in most studied cases [23],
several heuristic and greedy algorithms have been proposed;
these include the näıve algorithm of randomly choosing k
nodes, the heuristic approaches of k central nodes, k high
out-degree nodes [35], degree-discount [7], and the greedy
algorithm of hill climbing [10, 23]. The mentioned greedy
hill climbing algorithm is the most well-known algorithm
for finding the target set, however it is not fast enough for
large networks. Several extensions have been proposed to
alleviate this problem [6,7, 26].

3. FINE-GRAINED GROUP DIFFUSION (FGD)
We start by a simple model (FGD) and an algorithm

(topfgd) to identify the set of most influential groups in the
network. FGD is a fine-grained design that determines the
final influence of targeting each group set by simulating the
individual diffusion process inside. The basic idea is to de-
termine how advertising to a group translates into individual
adopters. Having these first adopters, we then run individ-
ual diffusion to identify the final influence. Later, we show
why this approach is not practical for large graphs and how
we can enhance this model, to aggregate individual-level in-
formation and run the algorithm in group scale rather than
individuals with results nearly identical to FGD but at a
fraction of its run time (that is the main contribution of this
paper after the paradigm shift from the individual influence
problem to the group influence problem).

3.1 Modeling
We model a (social) network using a graph, Gind = (Vind, Eind).

In this graph, Vind is the set of individuals (nodes) in the
network, and Eind contains existing edges between pairs of
individuals (nodes). This graph can be either undirected
or directed and either unweighted or weighted. In weighted
graphs, edges contain the amount of influence that individ-
uals can exert on each other (normalized such that the sum
of the weight of all incoming edges to any node does not ex-
ceed 1). A set of m groups M = {g1, ..., gm} is also available

where each gi ⊆ Vind (1 ≤ i ≤ m) represents an input group
in this (social) network.

To trigger a diffusion, we primarily target some groups by
initial persuasion attempts, such as advertisements. As a
result of these persuasion attempts, some members of these
groups become active (adopt the innovation). These active
nodes start diffusion by attempting to activate their neigh-
bors and this process continues for newly activated nodes.
We assume that the process is progressive, i.e., when a node
adopts the innovation, it will not switch back [30].

Let’s take a deeper look at the details of the proposed dif-
fusion model. As stated in Section 1, targeting groups for
activation is more economical than targeting individuals at
times. Reconsider Example 1. Assume the cost for directly
convincing an individual is $100 (for example, by offering
sample products as suggested by [20, 23]) and also assume
there is a total advertisement budget of $2500. Hence, we
can directly activate 25 individuals. In Example 1, we con-
cluded that around 10 million passengers pass the billboard
in a month. If 0.05% of these people adopt the innovation,
there will be 5000 active people before diffusion affects the
network. Comparing the 25 active people in the first case
with 5000 in the second case, this shows that group adver-
tising might naturally extend budget power.

We define a parameter, called escalation factor β, to
show the extent to which group targeting can increase the
power of budget and the number of first adopters (compared
to the individual case). The value of β changes based on the
problem structure, the size and shape of the network, the
products to be sold, the brands involved, the set of competi-
tors as well as the initial convincing methods (e.g., advertis-
ing media). While it is as low as 1 in a simple case where we
target members of a group individually, it can be 200 in the
billboard advertising example (where β = 5000/25 = 200).
In online advertising, as another example, the average CPM
(Cost Per thousands iMpressions) is $5 [22] and CTR (Click-
Through Rate) varies from 0.2−3% in average [33] to 2% for
Google AdWords to 2− 12% in email marketing campaigns
and 5 − 15% in email newsletters [2]. Assume the cost of
directly convincing an individual is $100. With the same
budget ($100), we achieve 20000 impressions (when CPM is
$5). If CTR rate is 2%, we get a β of 400. In general, by
choosing the right media to target groups, we can readily
achieve high values of β.

The model follows: we assume each node a has an in-
herent acceptance threshold θa (Section 2) that is identi-
fied according to the threshold model [10] (a random vari-
able in [0,1]) and determines the influence a should receive
to acquire the innovation. Let’s say we spend a budget
of Cg units to target group g. We assume, in each tar-
geted group, the budget is distributed uniformly between
all members. An arbitrary node a will achieve a budget of
Ca =

∑
g∈M IsMember(a, g) × Cg, where the binary func-

tion IsMember(a, g) is 1 if node a is a member of group g
and 0 otherwise, and Cg is the enhanced initial budget per

capita in group g that is Cg =
Cg×βg
Ng

where Ng is the size

of group g, Cg is the initial budget assigned to it, and βg
is its escalation factor (depending on the media used to tar-
get group g). In this paper, adhering to the most common
approach of budget assignment, we assign equal budget to
target each selected group. Thus, if we spend a total budget
of C to target l groups, Cg = C

l
for all groups g targeted

for initial persuasion attempts and is zero for other groups.



As previously mentioned, initial persuasion attempts acti-
vate some members of the targeted groups. Let’s assume we
need a budget of x units to directly convince one individual.
Therefore, all nodes a for which Ca

x
> θa are activated and

are the first adopters. Consider A as the set of these first
adopters when we target group g. Having A, we utilize the
individual diffusion threshold model to simulate how the dif-
fusion proceeds in Gind. Here the final influence of targeting
group g in the group diffusion model (FIFGD({g})) is equiv-
alent to the final influence of targeting A in the individual
diffusion model (FIID(A)); i.e., FIFGD({g}) = FIID(A).
We stress, however, that both the threshold and the cascade
models [23] can be utilized here by our algorithms to simu-
late the individual diffusion process. It has been shown that
these diffusion process models are equivalent in the general
case [23]. Proposing the fine-grained group diffusion model,
our goal is to identify the set of l groups leading to the high-
est final influence.

Note that an equivalent representation for this model is
to create a new graph G′ built on Gind = (Vind, Eind), add
a node for each group g ∈ M to Vind, and insert edges
between the node representing the group g and all nodes
representing users belonging in the group g with a weight

of
Cg
x

. The individual diffusion model can be executed on
this new graph by restricting the initial seed selection to the
nodes representing the groups.

3.2 The most influential groups on the Fine-
grained Group Diffusion Model

We consider the following problem.

Problem 1. Let Gind be a given (social) network and M
be the set of input groups. Moreover, let l be an input integer.
Identify a subset M⊆M with a size l leading to the highest
final influence if it is targeted for initial persuasion attempts.

Theorem 1. Problem 1 is NP-hard.1

Theorem 2. In the fine-grained group diffusion model,
the final influence function FIFGD(X) is monotone and sub-
modular.

topfgd: An algorithm to identify TOP influential groups
on FGD. We generalize the greedy algorithm proposed for
the individual case problem [23] to address Problem 1. The
generalized algorithm, topfgd, runs in l iterations. In itera-
tion i, it inspects the marginal influence increase (FIFGD(Mi−1∪
{g})−FIFGD(Mi−1)) of each group g ∈M−Mi−1, selects
the group g∗ corresponding to the maximum value and sets
Mi = Mi−1 ∪ {g∗}. FIFGD(X) is estimated according to
Section 3.1. Note that Ml is the solution.

Corollary 1. Based on Nemhauser et al. [28], since
FIFGD is a non-negative monotone submodular function,
topfgd approximates the optimal value to within a factor of
1− 1/e.

Theorem 3. The run time of topfgd algorithm is T =
O(l×m× (n+ |Eind|)×R) where R determines the number
of iterations we should simulate the diffusion using different
thresholds.

1All proofs are removed to save space. See proofs at [12]

4. COARSE-GRAINED GROUP DIFFUSION
(CGD)

The run time of the FGD diffusion process and the topfgd
algorithm is not practical for large networks with lots of
nodes and edges. It is crucial, hence, to design a diffusion
process that scales up to larger networks and is practical to
be utilized in real world scenarios and provides approxima-
tion guarantees. In this section, we propose a coarse-grained
group diffusion model (CGD) that incorporates information
about individuals in its calculations but does not run ex-
plicitly on the level of individuals. Our goal is to design
a model that simulates this diffusion by merely looking at
the groups not individuals. By aggregating the individual-
level information in groups, we hope to preserve the accu-
racy of our algorithms, and at the same time reduce the run
time. Section 4.1 details modeling of the network, the groups
and their relations. We discuss the diffusion process in Sec-
tion 4.2 and present an approximation algorithm to identify
the most influential groups in this model in Section 4.3.

4.1 Graph Models
We model a (social) network using two directed and weighted

graphs, the graph of individualsGind and the graph of groups
Ggroup. The graph Gind is created similar to Section 3. We
define Ggroup = (Vgroup, Egroup) to model inter-group influ-
ences in a social network. In this graph, vertices are the
predefined (input) groups, and edges represent the aggre-
gate influence of members of each group on other groups.
Intuitively, the higher the weights of edges {(a, b); (a, b) ∈
Eind, a ∈ A, b ∈ B}, the higher the weight of the edge (A,B)
in Egroup. We define the weight of the edge from group A
to group B as:

wAB =

∑
i∈A−B,j∈B−A wij +NA∩B

NB
(1)

where 0 ≤ wij ≤ 1 is the weight of the edge from node i
to j in Gind and NB is the size of group B. We consider
wij = 0 if (i, j) 6∈ Eind. Moreover, NA∩B is the number of
individuals that are members of both groups. Adding NA∩B
to the enumerator, we indeed set the influence weight of each
individual on itself to 1. Clearly, wAB ≤ 1.

Figure 1 depicts a typical graph of individuals Gind in
(a) and its corresponding graph of groups Ggroup in (b).
Individuals who are targeted by the billboard constitute a
group (group 1). Similarly, individuals who are targeted
by TV and the newspaper, respectively, form group 2 and 3.
The thickness of an edge in Figure 1(b) represents its weight
(influence value).
Ggroup is a graph where nodes are the input groups and

edges are the influence weights of groups on each other.
The question is whether we can identify the top-l influen-
tial groups in a network by running the individual diffusion
model on its corresponding Ggroup. Generalizing the dif-
fusion process for this coarse-grained group model is not a
trivial extension of the individual diffusion. In fact, it is
impossible to utilize previously proposed algorithms for the
individual case on the group graph without considering the
following factors. (i) Unlike the individual diffusion model,
the decision to adopt an innovation and become active is not
binary for nodes in the graph of groups. A model, that as-
sumes the only possible cases in a group are that no member
adopts the innovation or the entire group adopts it, is not
adequate. (ii) We need to use a more developed diffusion
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Figure 1: (a) A typical individual graph Gind. (b)
The corresponding group graph Ggroup. Thickness
of edges in (b) represents the value of inter-group
influences.

Table 1: Notations
Notation Description
n – m Total #individuals – Total #groups
k – l Desired #individuals – Desired #groups

R #iterations the diffusion process should be
simulated by different threshold values.

t Max #iterations for convergence (§ 4.2)
β – ρ Escalation factor - Cohesion factor (§ 4.2)

λ Progress fraction (§ 4.2)
d Max #groups a node can belong to (§ 4.2)

model to analyze both intra-group and inter-group diffusion
processes. (iii) The current techniques for the individual
case greatly depend on the submodularity of the individ-
ual diffusion process; however, it is not easy to establish
submodularity when we shift from the individual diffusion
process to the coarse-grained group diffusion process. The
following section describes the additional required steps. Ta-
ble 1 summarizes the main notations used in this paper.

4.2 Diffusion Model
To trigger a diffusion in a network in CGD, we primarily

target some groups by initial persuasion attempts. Some
members of these groups become active and start the dif-
fusion process. We define a continuous variable, called a
progress fraction λ, for each group to represent the frac-
tion of group members that are currently active. We note
that one cannot model group activation in the group diffu-
sion model using a simple binary variable; usually, there is a
mixture of active and inactive nodes in each group. Initially,
the progress fraction value is zero for all groups except the
targeted ones. There are several key factors that affect the
initial progress fraction of targeted groups: the budget of ini-
tial persuasion attempts per capita, the group’s structure,
and the method of persuasion.
(1) Budget per capita spent to initially target groups.
We spend some budget to target each group. The budget,
we allot on each group, is essential in determining how many
nodes are active in that group. Up to a certain bound, we
assume that higher budgets lead to higher progress fraction
since, in this case, more time/money is spent to activate
each group member.
(2) Group structure. The cohesion of a group helps to in-
crease its initial progress fraction. Within a cohesive (highly
connected) group, members have such a high influence on
each other that they can activate their group-mates more
easily than in sparse groups. Thus, it is more likely that
people, who are not ordinarily activated by initial convinc-

ing attempts, become active due to the influence of their
group members. We define group cohesion ρi of group gi as:

ρi =

∑
l,j∈gi wlj∑

k∈Vind,j∈gi
wkj

(2)

The denominator equals the group size Ngi , when the sum
of the weight of each node’s incoming edges is 1.
(3) Power of the initial persuasion method. As previ-
ously stated in Sections 1 and 3, targeting groups for activa-
tion can be more economical. Hence, the escalation factor β
also plays an important role in initializing progress fraction
values.

We define the initial progress fraction of group gi as:

λInitgi = min(1,
Cgi

x× (1− pρi)
)

where Cgi =
βgi×C
Ngi×l

is the enhanced initial budget per capita

in gi, ρi is its cohesion factor, x is the cost of directly con-
vincing an individual, and p is the probability that each
activation attempt succeeds (the activation success proba-
bility in the independent cascade model [23]). The intu-
ition behind this definition follows. Merely based on sys-

tem’s initial persuasion attempts, αi =
Cgi
x

percent of gi
members become convinced (in fact αi is the fraction of gi
members that can be directly convinced utilizing the en-
hanced budget). These convinced members diffuse inside
the group. Since the success probability is p, the activa-
tions inside this group lead to an expected number of αiρip
additional convinced members. The newly activated mem-
bers start the intra-group diffusion, and will succeed to in-
crease the progress fraction by (αiρip)ρip. Adhering to this
intra-group diffusion process yields this progress fraction:
λInitgi = αi+αi(pρi)+αi(pρi)

2 +αi(pρi)
3 + · · · = αi× 1

1−pρi
.

After calculating the initial values, to estimate the final
progress fraction values (when diffusion has taken place be-
tween groups), we simulate the diffusion process by execut-
ing it in several iterations once the newly activated portion
of each group tries to activate the neighboring groups. These
attempts partly succeed according to the activation success
probability p. Hence, it is expected that p percent of these
activation attempts are successful. Based on the previous
arguments, we propose the following coarse-grained group
diffusion model once the process iteratively continues until
it converges. In iteration i + 1, the newly activated frac-
tion of any group A (i.e., I = λiA − λi−1

A where λiA is A’s
progress fraction in iteration i) attempts to activate inac-
tive members of neighboring groups B (inactive fraction is
J = 1−λiB). As a result of this diffusion, some members of B
become active (the fraction of the newly activated members
is I × J × wAB × p) and try to activate their group-mates.
This diffusion leads to a change in B’s progress fraction:

λi+1
B = min(1, λiB +

(λiA − λi−1
A )× (1− λiB)× wAB × p

1− pρB
) (3)

We note that Equation 3 models both intra-group diffusion
(the denominator) and inter-group diffusion (the numera-
tor).

As previously mentioned, the goal is to find a seed set of l
groups that maximizes the final influence. We approximate
the final influence (FICGD) utilizing Equation 4 (by consid-
ering inclusion-exclusion to take care of intersections):



FICGD =

d∑
j=1

(−1)j+1
∑

i1,...,ij :

1≤i1<i2<···<ij≤|Vgroup|

N⋂j
e=1 gie

j∏
e=1

λFgie (4)

where λFgie represents the final progress fraction of group
gie . Moreover, N⋂j

e=1 gie
is cardinality of the intersection of

groups gi1 , · · · , gij . We assume that each individual can be

a member of a constant number (d) of groups.2. To clarify
Equation 4, as an example for two non-disjoint graphs g1
and g2, FICGD = Ng1λ

F
g1 +Ng2λ

F
g2 −Ng1∩g2λ

F
g1λ

F
g2 .

4.3 The most influential groups on CGD
We now turn to study the problem of identifying the most

influential groups. The goal is to find a set of l groups that
has the maximum final influence under CGD model.

Problem 2. Let Gind and Ggroup be, respectively, the
graph of individuals and groups of a (social) network. Let l
be an input integer. Identify a set of groups M ⊆ M with
size l that has the maximum value of FICGD among all sub-
sets of M with a size of l. Here FICGD is the final influence
(Equation 4).

Theorem 4. Problem 2 is NP-hard.

Theorem 5. The final influence function in CGD model
(FICGD) is monotone and submodular.

topcgd: An algorithm to identify TOP influential groups
on CGD. The proposed coarse-grained group diffusion model
(Section 4.2) resolves the three concerns raised in Section 4.1.
In this section, we propose a greedy algorithm that runs
CGD process on Ggroup to approximate the most influential
l groups. The algorithm runs similarly to topfgd by a differ-
ence in the diffusion function that it should simulate. We
note that topcgd utilizes the diffusion process discussed in
Section 4.2. Algorithm 1 presents the pseudo code.

Corollary 2. Since CGD is non-negative, monotone and
submodular (Theorem 5), topcgd approximates the optimal
value to within a factor of 1− 1/e.

Theorem 6. The run time complexity of topcgd is Ttopcgd =
θ(|Eind| + lm(mt + n)) where t is the maximum number of
iterations we continue the diffusion process to converge.

Section 5 shows that small values of t (about 10) are suf-
ficient. Note that the run time of topcgd does not depend on
R. Recall that parameter R determines the number of times
the diffusion should be executed in topid (topfgd) with differ-
ent threshold values to identify influential nodes (groups).
However since in topcgd we have a top-level look into the
diffusion process and because of the continuous nature of
progress fraction values (compared to the binary nature of
activation status of nodes in the individual diffusion model),
one simulation is sufficient. In fact it is sufficient in topcgd
to know that, when there are n activation attempts with
probability p, after infinite repetitions the expected number

2This assumption holds in real online social networks. For
example, Facebook lets users join up to 300 groups [1]

of successes would be np, while in topid and topfgd we need
to know the exact active nodes. This is one reason (besides
the size of the network) that topcgd performs much faster
than topid and topfgd.

Algorithm 1: topcgd

input : Gind,M, β, C, x, l, t, p
output: M : the set of l influential groups
// Creating Ggroup and the cohesion factors

1 foreach g, g′ in M do
2 Calculate Wgg′ according to Equation 1.
3 end
4 foreach g in M do
5 Calculate ρg according to Equation 2.
6 end

// Identifying influential groups

7 M0 ← ∅
8 for i ∈ 1 . . . l do
9 foreach g in M−Mi−1 do

10 Mg ←Mi−1 ∪ {g}
// Diffusion

11 foreach g′ in Mg do

12 λ1
g′ = min(1,

Cβg′
lNg′x(1−pρg′ )

)

13 end
14 for j = 1 to t do

15 τ = arg maxg′∈M(λjg′ − λ
j−1
g′ )

16 for g′ 6= τ in M do

17 λj+1
g′ =

min(1, λjg′ +
(λjτ−λ

j−1
τ )wτg′p(1−λ

j

g′ )

1−pρg′
)

18 end

19 end
// Computing influenceg = FICGD(Mg)

20 influenceg ← 0
21 for g′ in M do
22 influenceg+ = Ng′ × λt+1

g′

23 end
24 for v in Vind do
25 foreach s ⊆ groups(v) do
26 adjust = (−1)Ns+1 // Ns: size of s
27 foreach g′ in s do
28 adjust× = λt+1

g′

29 end
30 influenceg+ = adjust

31 end

32 end

33 end

34 Mi =Mi−1 ∪ {arg maxg∈M−Mi−1 influenceg}
35 end

36 return Ml

5. EXPERIMENTS
This section compares the final influence and the run time

of the individual algorithm (topid) with group algorithms
(topfgd, and topcgd). In order to have an apple-to-apple
comparison, we use the individual diffusion to compare the
final influence of the seed sets identified by each algorithm.
In other words, if S1 is the set of individuals identified by
topid, and S2 and S3 are the group sets respectively returned



by topfgd and topcgd, we compare FIID(S1), FIFGD(S2) and
FIFGD(S3). Note that to calculate FIFGD, the FGD process
utilizes ID too, hence a fair comparison is provided.

5.1 Experimental Datasets and Setup
In accordance with previous works [6, 7, 23], we employ

a co-authorship dataset to compare our algorithms. The
dataset is a network of co-authorship between scientists pub-
lishing papers or articles in computer science conferences or
journals indexed by DBLP by Oct 21, 2012. As argued by
Newman [29], co-authorship networks capture many key fea-
tures of social networks. In the corresponding graph model,
vertices are scientists, and edges represent co-authorship in
at least one paper. To be more specific, assume P is the set
of all papers with more than one author. Similar to [29], we

define ωuv =
∑
p∈P

IS(p,u,v)
coauthors(p)−1

where coauthors(p) deter-

mines the number of coauthors who wrote paper p. More-
over, IS(p, u, v) is 1 if u and v are both among coauthors of p
and is 0 otherwise. To normalize weights (to make the sum of
the weights of the incoming edges equal 1 for every node), we
define the weight of edge uv as wuv = ωuv∑

u∗∈(Vind−{v})
ω(u∗,v) .

This graph contains about 800 thousand nodes and 6.3 mil-
lion directed weighted edges. Each conference or journal
(e.g., KDD, PVLDB) is a group. Each author is assigned to
the top-3 groups that s/he has the highest number of publi-
cations in. The DBLP dataset contains about 3200 groups.

In addition, we have evaluated our algorithms on two
other datasets. The first one is another co-authorship dataset
in Physics [23, 29] with over 40 thousand nodes (authors)
and 350 thousand directed edges (co-authorships). The sec-
ond dataset is a dataset that consists of phone call records
from one of the largest phone service providers in North
America. This dataset contains the call records of over 1
million phone subscribers over the course of 2 months, which
amounts to about 85 million phone calls and about 23 million
edges. Here, the nodes are telephone numbers, and the edges
represent the call history. Since information on group struc-
tures in the last two datasets is unknown, we created 1000
synthetic groups utilizing ROCK clustering algorithm [18]
on the nodes. We observed similar trends in results over
all 3 datasets hence we choose to report the results for the
DBLP dataset that contains real groups.

We conducted our experiments on a computer with 16
cores 2.6GHz (AMD OpteronTM Processor 850), 100GB of
memory that is running CentOS 5.5. All algorithms are
coded in Java and are single-threaded.

In the individual case of the problem, algorithms gener-
ate a set of k influential nodes as the output; the output in
the group case is a set of l influential groups. The question
we face is how to evaluate which approach leads to wider
diffusion. Our strategy is to spend the same budget in all
scenarios and evaluate the final influence. Assume C = kx
is the amount of budget we should spend to directly acti-
vate k influential nodes in the individual case. We spend
the same budget to target l influential groups in the group
cases. Assume Ca is the portion of the budget spent on node
a (according to the FGD model, Section 3.1). To make
meaningful comparisons, we start with a set of active nodes
in all cases and measure the final influence using the indi-
vidual diffusion techniques. For topid, the first adopters are
the k influential individuals. In the grouping case (topfgd,
topcgd), the first adopters are all nodes a for which Ca

x
> θa
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Figure 2: Analyzing the impact of k
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Figure 3: Analyzing the impact of l

where θa is the acceptance threshold for a (the threshold
model). For simplicity, we use the same β for all groups.

5.2 Experimental Results
Several experiments are conducted to compare the final

influence and the run time of the algorithms. We study how
these algorithms behave when various parameters change.
As suggested by previous works [23], since the activation
threshold values for individuals are not known, we determine
the final influence for any seed set by running the diffusion
process for R = 10000 times by re-choosing the activation
thresholds δ, uniformly at random, and taking the average.

In our evaluations, we estimate final influence using the
standard methods. We expect to see a similar decrease in
the run time of all algorithms (topid, topfgd, topcgd) when
the improvements of [6, 7, 26] (that are orthogonal to our
work) are implemented.

5.2.1 Individuals vs Groups: DBLP-1980 dataset
Since topid and topfgd are not practical on large networks,

in the first set of experiments we choose a subset of the
DBLP dataset (the social graph created utilizing all publica-
tions published before 1980 referred as DBLP-1980) to com-
pare topid, topfgd, and topcgd. This dataset consists of about
8 thousand nodes in 69 groups. The full DBLP dataset will
be utilized later to evaluate topcgd. In the following experi-
ments we employ the default setting of k = 50, l = 10, and
β = 30. In each experiment, two parameters are fixed and
the third one changes.
Impact of the initial convincing budget. Figure 2 de-
picts the final influence and the run time as a function of

k =
initial convincing budget

x
where x is the cost of directly

convincing an individual. Increasing k (equivalently increas-
ing the convincing budget) raises the final influence for all
algorithms. Figure 2(a) offers a new insight: improvements
in the group-based case are more significant when the budget
is smaller due to the submodularity of the influence function.

Figure 2(b) reports the run time of the algorithms. Note
the different scales in y-axis (kilosecond for topfgd vs. de-
cisecond for topcgd). In fact, by increasing k from 10 to 100,
the run time of topid raises from 50 hours to 700 hours and
the run time of topfgd raises from 35 minutes to 61 minutes
while the run time of topcgd remains about 200 milliseconds.
The reason is that a higher value of k leads to more been ac-
tivated nodes initially in topid and topfgd; hence, more edges
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Figure 4: Impact of the escalation factor

are traversed while the diffusion is simulated. However, in
the CGD model, increasing k only increases the progress frac-
tion values of groups and the number of inter-group edges
to be traversed does not change. We observe that topcgd is
considerably faster than topfgd. Note that on this dataset
with the default parameter setting, topid takes about 12 days
while topfgd takes about 53 minutes and topcgd takes about
0.2 seconds to execute (including the modeling time to create
the graph of groups Ggroup and ρ values). This suggests that
utilizing topcgd can produces very similar results to the de-
tailed topfgd algorithm much faster. Our experiments show
that the run time of topcgd vs k is a constant curve while it
is a concave downward curve for topfgd and a concave up-
ward curve for topid. Hence, by increasing k the ratios of
The run time of topid
The run time of topfgd

and
The run time of topid

The run time of topcgd
signifi-

cantly increase.
Impact of the desired number of groups to be tar-
geted. Figure 3(a) shows that the final influence increases
when l goes up to 10 and decreases afterwards. Thus, it is
not the best strategy to spend all of our budget to target few
very influential groups or split the budget on many groups.
In the former (targeting a few number of groups), we restrict
our influence coverage in the network. In the latter (target-
ing many groups), we spend a portion of our budget on less
influential groups, hence obtaining less final influence.

Figure 3(b) studies the run time of group-based algorithms
when l raises. We observe that as expected the run time
of topfgd and topcgd increase when more influential groups
should be identified. Since there is no parameter l in topid,
its run time is 12 days for all values of l.
Impact of the escalation factor. Figure 4 shows the im-
pact of the escalation factor β on the final influence and the
run time. Note that β is not defined for topid hence we see
a constant line. According to Figure 4(a), the group target-
ing algorithms (topfgd and topcgd) outperform the individual
case (topid) in terms of final influence when β exceeds 3. Re-
call that based on our discussion in Section 3.1, the value
of β for the billboard advertising in Example 1 is 200. Fig-
ure 4(a) shows that by targeting groups we achieve a final
influence of twice as much as directly targeting individuals
when β = 10 and this goes up to 11 times improvement
when β = 100. Notice the concavity of results due to the
submodularity of the final influence function.

By increasing β, the enhanced budget grows; hence, the
run time of the topfgd increases, while the run time of the
group-based topcgd algorithm remains unchanged (Figure 4(b)).
The run time for topfgd starts from 1650 seconds when β = 1
and reaches 4100 seconds when β = 100, while the run time
of topcgd remains about 200 milliseconds (same reason as in
k’s impact).

5.2.2 Evaluation on the full DBLP dataset
In this section, we evaluate the topcgd algorithm on the

full DBLP dataset. Note that topid and topfgd are not prac-
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Figure 6: Impact of the topcgd parameters

tical on this large dataset. We compare topcgd with four
baseline algorithms:
rnd: l groups are randomly selected to be targeted.
small: the l groups with the minimum sizes are selected.
big: the l groups with the maximum sizes are selected.
degree: the l groups that have the highest out-degree (de-
fined as the weight on the outgoing edges) are selected.
This influence for each group g ∈ Vgroup is measured by∑
g′∈Vgroup wgg′ (Equation 1).

Figure 5 studies how topcgd behaves compared to the base-
line algorithms when k, l, and β values are varied. Among
the baseline algorithms, degree is the most accurate and small
is the least accurate. We observe that in all experiments
topcgd significantly outperforms all baseline algorithms.

We observed similar trends for run time of topcgd in the
full DBLP dataset as DBLP-1980 dataset. We note that
running topcgd with the default parameter setting (β, k, l) =
(30, 50, 10) takes less than 100 minutes in this dataset.

5.2.3 How to adjust topcgd parameters?
There are two other factors that should be evaluated for

topcgd, namely (1) the activation success probability p and
(2) the maximum number of iterations t to converge. We
evaluated topcgd on the DBLP dataset for various values of
p (varying from 0.01 to 0.9). The run time of topcgd in-
creases from 94 minutes (when p = 0.01) to 122 minutes
(when p = 0.9) and the final influence varies according to
Figure 6(a) with the maximum occurring at p = 0.2. We
also studied how the final influence of topcgd changes when
we simulate the process for more number of iterations (Fig-
ure 6(b)). After t iterations pass, we identify the most influ-
ential l groups and measure the final influence when these
groups are targeted. We observe that topcgd converges very
fast within about 30 iterations.

6. CONCLUSION AND FUTURE WORK
This paper takes a closer look at innovation diffusion in

networks when the focus is on groups rather than individu-
als. Under reasonable assumptions, we show that we can
achieve wider diffusion and faster speeds by focusing on
groups. We propose two models (FGD and CGD) to simu-
late the diffusion in group scale. For each model, we present
an approximation algorithm to identify the most influential
groups. Our experiments on real datasets show that group
algorithms (topfgd and topcgd) run much faster than the in-
dividual algorithm (topid): while it takes 30 days for topid
in our most time-consuming experiment to determine influ-
ential individuals in the DBLP-1980 dataset, topfgd takes
about one hour, and topcgd finishes in 0.2 seconds.

Although the CGDmodel aggregates the information about
individuals and ignores many details (hence providing in-
credibly high speed), it results in a final influence compara-
ble to the FGD model. In fact, in the individual diffusion
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Figure 5: Final influence in full DBLP dataset

model as well as the fine-grained group diffusion model, we
identify k entities (individuals or groups) that are highly in-
fluential for different values of nodes’ thresholds θ. When
we run ID and FGD for R times and obtain the average,
we indeed consider the aggregate behavior of diffusion in the
network. The aggregations in CGD produces very similar re-
sults in just one run. As a future work, we are interested
to know how these algorithms behave when threshold values
for nodes are known or they can be estimated. Another di-
rection is to generalize the model to the cases where groups
receive different budgets and/or the cost of advertising to
each group is predetermined.
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