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Introduction

• Identifying the 𝑘 most influential individuals is a well-

studied problem.

• We generalize this problem to identify the 𝑙 most 

influential groups.

• Application:

• Companies often target groups of people

• E.g. by billboards, TV commercials, newspaper ads, etc.
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Group targeting

• Groups

• Advantages

• Improved performance

• Natural targets for advertising

• An economical choice
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Fine-Grained Diffusion (FGD)

• Determine how advertising to a group translates into 

individual adopters.

• Run individual diffusion process on these adopters.
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FGD Modeling

• Graph 𝐺′: add a node for each group, add edges between 

a node corresponding to a group 𝑔𝑖 and its members with 

weight 𝑤𝑖 that depends on

• Advertising budget, size of group, the escalation factor, and the 

budget needed to convince an individual
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FGD Modeling (Cont’d)

• Escalation Factor 𝛽: how many more initial adaptors we 

can get by group targeting rather than individual targeting.
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FGD Modeling (Cont’d)

• Escalation Factor 𝛽

• Based on the problem structure, the size and shape of the network, 

the initial advertising method, etc.

• Individual advertising: 𝛽 = 1

• Billboard advertising: 𝛽 = 200

• Online advertising: 𝛽 = 400
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Problem statement

• Goal: Find the 𝑙 most influential groups (blue group-

nodes)

• NP-hard under FGD model
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topfgd algorithm

• Diffusion in FGD is monotone and submodular

• topfgd: a greedy algorithm provides a (1-1/e) 

approximation factor. 

• In each iteration, add the group resulting to the maximum marginal 

increase in the final influence.

• Time: 𝑂(𝑙×𝑚×|𝐸𝑖𝑛𝑑|×𝑅)
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Coarse-Graind Diffusion (CGD)

• FGD is not practical for large social networks

• Idea: incorporate information about individuals without 

running explicitly on the level of individuals

• A graph to model inter-group influences
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CGD Modeling

• Differences with “Individual Diffusion” models

• No binary decisions

• Progress fraction for each group

• Two types of diffusion

• Inter-group diffusion

• Intra-group diffusion

• Submodularity?
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CGD Diffusion Model

• Each newly activated fraction of a group can activate its 

neighboring groups

• As a result of an activation attempt from A to B, some activation 

attempts also occur between members of B

• Continue for several iterations to converge
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topcgd algorithm

• Goal: Find the 𝑙 most influential groups

• NP-hard under CGD model

• Diffusion in CGD is monotone and submodular

• topcgd: a greedy algorithm provides a (1-1/e) 

approximation factor. 

• Time: 𝑂( 𝐸𝑖𝑛𝑑 +𝑚𝑙 𝑚𝑡 + 𝑛 )
• 𝑡 is the number of iterations to converge (~10)
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Experimental setup

• Datasets: 

• DBLP: 800K nodes,  6.3M edges, 3200 groups

• Comparison

• Spend same advertising budget on all algorithms

• Measure the final influence (the number of convinced individuals)

• Run Individual Diffusion process on the initial convinced individuals
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Results

• DBLP-1980: 8000 nodes, 69 groups

• Compare topid vs. topfgd vs. topcgd

• Final influence: topfgd and topcgd outperform topid for 𝛽 > 3

• Time: topid (30 days), topfgd (an hour), topcgd (0.2 sec)
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Results (Cont’d)

• DBLP: topcgd vs. Baselines

• rnd, small, big, degree

• Time of topcgd: 100 minutes

• topfgd and topid not practical
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Conclusion and Future Works

• Focus on groups rather than individuals

• Wider diffusion

• Improved performance

• More less influential individuals vs. less more influential individuals

• Although CGD aggregates the information about

individuals (hence improved performance), it results to

final influence comparable to FGD.

• We are interested in a generalized model where

• Groups are allowed to receive different budgets

• The cost of advertising to each group is predetermined
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Thanks!

(Questions?)

18


