1. Show that the following TRIANGLE decision problem belongs to P.

Input: An undirected graph $G = (V, E)$.

Question: Does G contain a “triangle”, i.e., a subset of three vertices with all edges between them present in the graph?

Solution: The following algorithm decides TRIANGLE.

On input G:

For each triplet of vertices (u, v, w) in G:

Return True if G contains all edges $(u, v), (v, w), (w, u)$.

Return False.

By definition of TRIANGLE, the algorithm will return True iff G contains a triangle.

Let $n = |V|$ (number of vertices) and $m = |E|$ (number of edges) in G. There are $\binom{n}{3} = \Theta(n^3)$ many triplets of vertices in G, and it is possible to enumerate them one by one in time $O(n^3)$. For each triplet, it takes time $O(m)$ to verify the presence of the three edges (depending on how G is encoded, this could be reduced). So the algorithm runs in time $O(mn^3)$.

2. Show that the following CLIQUE decision problem belongs to NP.

Input: An undirected graph $G = (V, E)$ and a positive integer k.

Question: Does G contain a k-clique, i.e., a subset of k vertices with all edges between them present in the graph?

For example, the shown graph contains a 3-clique (there are sets of 3 vertices with all edges between them, e.g., $\{a, b, c\}$), but it does not contain a 4-clique (every set of 4 vertices is missing at least one edge, e.g., $\{a, b, c, d\}$ is missing (b, d)).

Solution:

Verifier for CLIQUE:

On input $< G, k, c >$, where c is a subset of vertices:

Return True if c contains k vertices and G contains edges between all pairs of vertices in c; return False otherwise.
Verifier runs in polytime (where $n = |V|, m = |E|$): checking all pairs of vertices in c takes time $O(k^2m)$ ($O(k^2)$ pairs in c, times $O(m)$ for each one).
If $<G, k> \in \text{CLIQUE}$, then verifier returns True when c is a k-clique of G;
if verifier returns True for some c, then $<G, k> \in \text{CLIQUE}$ (c is a k-clique).

CLIQUE $\in P$? Unknown (checking all possible subsets not polytime because k not fixed, part of input).

Contrast CLIQUE with TRIANGLE: TRIANGLE $\in \text{NP}$ (on input $<G, c>$, check c encodes a triangle in G), but TRIANGLE $\in \text{P}$ as well.

What’s the difference? Same algorithm to decide CLIQUE takes time $O(n^{k+1})$, except that k is part of the input (instead of being fixed) so this could be as bad as, e.g., $O(n^{n/2})$ – not polytime.

3. Show that the following IndependentSet (IS) decision problem belongs to NP.
Input: An undirected graph $G = (V, E)$ and a positive integer k.
Question: Does G contain an independent set of size at least k, i.e., a subset of vertices $I \subseteq V$ such that $|I| \geq k$ and G contains no edge between any two vertices in I?

Solution: Verifier for IS:
On input (G, k, c), where c is a subset of k vertices of G:

Return True if G does not contain any one of the edges between vertices in c; return False otherwise.

This takes time $O(k^2m)$: there are $O(k^2)$ pairs of vertices in c and $O(m)$ edges to check for each one.
Also, if there is some value of c such that the verifier returns True for (G, k, c), then G contains an independent set of size k or more (c is such an independent set), and if G contains an independent set of size k or more, then there is some value of c such that the verifier returns True for (G, k, c) (let c be the independent set).
It does not appear likely that IS $\in \text{P}$, because checking every subset of k vertices takes more than polynomial time (time $\Omega(n^k)$ where k can depend on n), and there is no obvious way to speed this up.

4. Show that the following UNARY-PRIMES decision problem belongs to P.
Input: 1^n (i.e., a string of 1’s of length n).
Question: Is n prime?

Solution: The following algorithm decides UNARY-PRIMES:
On input 1^n:

For $k = 2, 3, ..., n - 1$:

If k divides n, return False

Return True if no value of k worked.

The algorithm returns True iff n is prime, by definition. The division can be carried out by repeated subtraction, which takes time $O(n^2)$ for each value of k, so the entire algorithm runs in time $O(n^3)$.

NOTE: This works because n is the size of the input at the same time as the value of the input. For any other base, this would NOT work because the value m would be represented using $n = \log m$ many digits so the size would be proportional to $n = \log m$ and the running time would become exponential (as a function of n).