1. Show that the INDEPENDENT-SET decision problem is NP-hard.

 Input: An undirected graph \(G = (V, E) \), positive integer \(k \).

 Question: Does \(G \) contain an independent set of size at least \(k \)? (Recall that an independent set is a subset of vertices with no edge between any two members of this subset.)

 Solution: First, choose decision problem \(D \) for reduction. How to choose? Pick problem “close” to IS, if possible, to make reduction easier. We choose VERTEX-COVER (VC) and show VC \(\leq_p \) IS:

 On input \((G, k)\) (for VC), construct \((G', k')\) (for IS) as follows:

 Set \(G' = G \) and \(k' = n - k \) (where \(n = |V| \) in \(G \)).

 Clearly, \((G', k')\) can be computed from \((G, k)\) in polytime. Also, if \(G \) contains a vertex cover \(C \) of size \(k \) or less, then \(V - C \) is an independent set in \(G \) of size \(n - k \) or more: since every edge of \(G \) has at least one endpoint in \(C \), no edge has both endpoints in \(V - C \). Finally, if \(G \) contains an independent set \(I \) of size \(n - k \) or more, then \(V - I \) is a vertex cover of size \(k \) or less: since no edge of \(G \) has both endpoints in \(I \), every edge of \(G \) has at least one endpoint in \(V - I \).

2. Show that CLIQUE is NP-hard

 Input: An undirected graph \(G = (V, E) \) and a positive integer \(k \).

 Question: Does \(G \) contain a clique of size at least \(k \), i.e., a subset of \(k \) or more vertices such that \(G \) contains every possible edge between the vertices in the clique?

 Solution: We show that CLIQUE is NP-hard by proving IS \(\leq_p \) CLIQUE (where IS is the INDEPENDENT-SET problem).

 On input \((G, k)\) (for IS), where \(G = (V, E) \), construct \((G', k')\) (for CLIQUE) as follows:

 Set \(k' = k \) and \(G' = (V, \bar{E}) \), where \(\bar{E} \) is the complement of \(E \), i.e., for all \(x, y \in V \), \((x, y) \in \bar{E} \iff (x, y) \notin E \).

 Clearly, \((G', k')\) can be computed from \((G, k)\) in polytime (in linear time, in fact).

 Also, if \(G \) contains an independent set \(I \) of size \(k \) or more, then \(I \) forms a clique in \(G' \): since \(G \) contains no edge between any two vertices of \(I \), \(G' \) contains every edge between any two vertices of \(I \).

 Finally, if \(G' \) contains a clique \(C \) of size \(k \) or more, then \(C \) forms an independent set in \(G \): since \(G' \) contains every edge between any two vertices of \(C \), \(G \) contains no edge between any two vertices of \(C \).

3. Show that LargeSAT is NP-hard.

 Input: Propositional formula \(F \) in CNF, positive integer \(k \)

 Question: Is there an assignment of values to the variables of \(F \) that makes at least \(k \) clauses of \(F \) True?

 Solution: CNF-SAT \(\leq_p \) LargeSAT

 Reduction:

 On input \(F \), output \((F, m)\) where \(m \) is the number of clauses in \(F \).

 Clearly, \((F, m)\) can be computed from \(F \) in polytime.

 Also, \(F \) is satisfiable iff there is an assignment of values to the variables of \(F \) that makes at least \(m \) clauses True (by definition of “satisfiable”).
4. Show that Restricted3SAT is NP-hard.

Input: Propositional formula F in 3CNF, where no variable appears in more than three clauses.

Question: Is there an assignment of values to the variables of F that makes F True?

Solution: $3\text{SAT} \leq_p \text{Restricted3SAT}$

On input F, construct F' as follows:

Start with $F' = F$.
Scan F' and for each variable x that appears in more than three clauses, replace the first occurrence of x with a new variable x_1, the second occurrence with x_2, ..., the k-th occurrence with x_k. Then add clauses

$$(\sim x_1 \lor x_2 \lor x_2) \land (\sim x_2 \lor x_3 \lor x_3) \land ... \land (\sim x_{k-1} \lor x_k \lor x_k) \land (\sim x_k \lor x_1 \lor x_1)$$

F' can be constructed from F in polytime: the replacement of variables is done in linear time, and at most a linear number of new clauses need to be added.

Also, if F is satisfiable, then it is possible to set the variables of F' to match (make all the new variables have the same value as the old variable they correspond to), and this will satisfy F'.

Finally, if F' is satisfiable, then every new variable corresponding to some old variable x must be set to the same value (to make the new clauses True), so the old variable x can be set to this value and doing this for each variable will satisfy F.