Interval Scheduling Problem on m machines (m-ISP): Schedule a set of intervals $\{I_1, I_2, \dots, I_n\}$ on m machines such that no two intervals scheduled on the same machine intersect. Note that each interval I_i has a start time s_i and a finish time f_i . This problem is an extension of the standard Interval Scheduling Problem discussed in the lecture.

An optimal algorithm

 Algorithm 1: Best Fit EFT (an extension of the standard EFT algorithm)

 1 Sort intervals such that $f_1 \leq f_2 \leq \ldots \leq f_n$

 2 for k = 1 to m do

 3 $\lfloor e_k = 0$ // e_k is the latest finish time of intervals on machine k.

 4 for i = 1 to n do

 5 \lfloor Let $k = \begin{cases} \arg\min_l(s_i - e_l \geq 0) & \text{if such } l \text{ exists} \\ 0 & \text{if such } l \text{ does not exist} \end{cases}$

 6 $\sigma(i) = k$ // $\sigma(i)$ specifies on which machine Interval I_i is scheduled. $\sigma(i) = 0$

 7 $| e_k = f_i$

Proof of optimality: The exchange proof method.

Idea: Let $S_0, S_1, ..., S_n$ be the partial solutions constructed by the algorithm at the end of each iteration. The solution S_i contains the scheduling for intervals I_1, \dots, I_i .

Prove each S_i can be *completed (extended)* to reach an optimal solution (just by scheduling I_{i+1}, \dots, I_n). Call that optimal solution S'_i . The scheduling for all intervals I_1, \dots, I_i are the same in both S_i and S'_i . If S'_i exists, we say S_i is promising.

Note: S'_i may not be unique (there may be more than one way to achieve optimal).

Prove that S_i is promising by induction in i (number of iterations).

Proof:

- Base case: $S_0 = \{\}$: any optimal solution S'_0 extends S_0 just by scheduling the intervals in $\{I_1, ..., I_n\}$.
- Ind. Hyp.: Suppose $i \ge 0$ and optimal S'_i extends S_i by scheduling only the intervals in $\{I_{i+1}, ..., I_n\}$.
- Ind. Step (To prove): S_{i+1} is promising w.r.t. $\{I_{i+2}, ..., I_n\}$.

Let's see what happens in iteration i + 1. There are two cases.

1. The algorithm sets $\sigma(i+1) = 0$

It means that I_{i+1} conflicts with all machines according to the S_i scheduling. Thus, in S'_i we should have $\sigma_{S'_i}(i+1) = 0$ (otherwise, S'_i has a conflict and it is not a solution). Set $S'_{i+1} = S'_i$. Thus, S_{i+1} is promising.

Note: $\sigma_{S'_i}(i+1)$ is the scheduling for interval I_{i+1} in S'_i .

2. The algorithm sets $\sigma(i+1) = k \ (k \neq 0)$

Three cases may happen:

- (a) $\sigma_{S'_i}(i+1) = k$ Set $S'_{i+1} = S'_i$. Thus, S_{i+1} is promising.
- (b) $\sigma_{S'_i}(i+1) = 0$ It means that there is an interval I_j scheduled by S'_i on machine k that conflicts with I_{i+1} ; otherwise we can change $\sigma_{S'_i}(i+1)$ to k (schedule I_{i+1} on machine k) and get a better solution. It means

that S'_i is not optimal that is a contradiction!

Moreover, j > i + 1 and also I_j is unique. Why? If there are two intervals I_{j_1} and I_{j_2} , since $f_{i+1} \leq f_{j_1}$ and $f_{i+1} \leq f_{j_2}$, they should conflict. Hence they cannot be part of a solution. Therefore if we set $\sigma_{S'_i}(i+1) = k$ and $\sigma_{S'_i}(j) = 0$, the updated scheduling S'_i still extends S_i and is optimal.

Set S'_{i+1} to this updated S'_i . Hence, S_{i+1} is promising.

(c) σ_{S'_i}(i + 1) = k' (k' ≠ k, k' ≠ 0) Look at machines k and k'. First we know that s_{i+1} - e_k ≥ 0. Thus, s_{i+1} ≥ e_k. Second, s_{i+1} - e_k has the minimum positive value among all machines. Thus, e_{k'} ≤ e_k. Substitute all jobs after e_k on machine k with all jobs after e_{k'} on machine k'. Note that the number of scheduled intervals remain the same and there is no conflict. why? In the new scheduling, I_{i+1} is scheduled on machine k. This scheduling can be utilized to extend S_{i+1}. Hence, S_{i+1} is promising.

Thus, S_n is promising. It means that S_n is optimal.