Interval Scheduling Problem on \boldsymbol{m} machines (m-ISP): Schedule a set of intervals $\left\{I_{1}, I_{2}, \cdots, I_{n}\right\}$ on m machines such that no two intervals scheduled on the same machine intersect. Note that each interval I_{i} has a start time s_{i} and a finish time f_{i}. This problem is an extension of the standard Interval Scheduling Problem discussed in the lecture.

An optimal algorithm

```
Algorithm 1: Best Fit EFT (an extension of the standard EFT algorithm)
    Sort intervals such that \(f_{1} \leqslant f_{2} \leqslant \ldots \leqslant f_{n}\)
    for \(k=1\) to \(m\) do
        \(e_{k}=0 \quad / / e_{k}\) is the latest finish time of intervals on machine \(k\).
    for \(i=1\) to \(n\) do
        Let \(k= \begin{cases}\arg \min _{l}\left(s_{i}-e_{l} \geqslant 0\right) & \text { if such } l \text { exists } \\ 0 & \text { if such } l \text { does not exist }\end{cases}\)
        \(\sigma(i)=k \quad / / \sigma(i)\) specifies on which machine Interval \(I_{i}\) is scheduled. \(\sigma(i)=0\)
            means that \(I_{i}\) is not scheduled.
        \(e_{k}=f_{i}\)
```

Proof of optimality: The exchange proof method.
Idea: Let $S_{0}, S_{1}, \ldots, S_{n}$ be the partial solutions constructed by the algorithm at the end of each iteration. The solution S_{i} contains the scheduling for intervals I_{1}, \cdots, I_{i}.
Prove each S_{i} can be completed (extended) to reach an optimal solution (just by scheduling I_{i+1}, \cdots, I_{n}). Call that optimal solution S_{i}^{\prime}. The scheduling for all intervals I_{1}, \cdots, I_{i} are the same in both S_{i} and S_{i}^{\prime}.
If S_{i}^{\prime} exists, we say S_{i} is promising.
Note: S_{i}^{\prime} may not be unique (there may be more than one way to achieve optimal).
Prove that S_{i} is promising by induction in i (number of iterations).

Proof:

- Base case: $S_{0}=\{ \}$: any optimal solution S_{0}^{\prime} extends S_{0} just by scheduling the intervals in $\left\{I_{1}, \ldots, I_{n}\right\}$.
- Ind. Hyp.: Suppose $i \geqslant 0$ and optimal S_{i}^{\prime} extends S_{i} by scheduling only the intervals in $\left\{I_{i+1}, \ldots, I_{n}\right\}$.
- Ind. Step (To prove): S_{i+1} is promising w.r.t. $\left\{I_{i+2}, \ldots, I_{n}\right\}$.

Let's see what happens in iteration $i+1$. There are two cases.

1. The algorithm sets $\sigma(i+1)=0$

It means that I_{i+1} conflicts with all machines according to the S_{i} scheduling. Thus, in S_{i}^{\prime} we should have $\sigma_{S_{i}^{\prime}}(i+1)=0$ (otherwise, S_{i}^{\prime} has a conflict and it is not a solution). Set $S_{i+1}^{\prime}=S_{i}^{\prime}$. Thus, S_{i+1} is promising.
Note: $\sigma_{S_{i}^{\prime}}(i+1)$ is the scheduling for interval I_{i+1} in S_{i}^{\prime}.
2. The algorithm sets $\sigma(i+1)=k(k \neq 0)$

Three cases may happen:
(a) $\sigma_{S_{i}^{\prime}}(i+1)=k$

Set $S_{i+1}^{\prime}=S_{i}^{\prime}$. Thus, S_{i+1} is promising.
(b) $\sigma_{S_{i}^{\prime}}(i+1)=0$

It means that there is an interval I_{j} scheduled by S_{i}^{\prime} on machine k that conflicts with I_{i+1}; otherwise we can change $\sigma_{S_{i}^{\prime}}(i+1)$ to k (schedule I_{i+1} on machine k) and get a better solution. It means
that $S_{i}^{\prime \prime}$ is not optimal that is a contradiction!
Moreover, $j>i+1$ and also I_{j} is unique. Why? If there are two intervals $I_{j_{1}}$ and $I_{j_{2}}$, since $f_{i+1} \leqslant f_{j_{1}}$ and $f_{i+1} \leqslant f_{j_{2}}$, they should conflict. Hence they cannot be part of a solution.
Therefore if we set $\sigma_{S_{i}^{\prime}}(i+1)=k$ and $\sigma_{S_{i}^{\prime}}(j)=0$, the updated scheduling S_{i}^{\prime} still extends S_{i} and is optimal.
Set S_{i+1}^{\prime} to this updated S_{i}^{\prime}. Hence, S_{i+1} is promising.
(c) $\sigma_{S_{i}^{\prime}}(i+1)=k^{\prime}\left(k^{\prime} \neq k, k^{\prime} \neq 0\right)$

Look at machines k and k^{\prime}. First we know that $s_{i+1}-e_{k} \geqslant 0$. Thus, $s_{i+1} \geqslant e_{k}$.
Second, $s_{i+1}-e_{k}$ has the minimum positive value among all machines. Thus, $e_{k^{\prime}} \leqslant e_{k}$.
Substitute all jobs after e_{k} on machine k with all jobs after $e_{k^{\prime}}$ on machine k^{\prime}. Note that the number of scheduled intervals remain the same and there is no conflict. why?
In the new scheduling, I_{i+1} is scheduled on machine k. This scheduling can be utilized to extend S_{i+1}. Hence, S_{i+1} is promising.

Thus, S_{n} is promising. It means that S_{n} is optimal.

